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Abstract

This paper documents a large scale, long-term autonomy dataset for robotics research collected on the University of

Michigan’s North Campus. The dataset consists of omnidirectional imagery, 3D lidar, planar lidar, GPS, and proprioceptive

sensors for odometry collected using a Segway robot. The dataset was collected to facilitate research focusing on long-

term autonomous operation in changing environments. The dataset is comprised of 27 sessions spaced approximately

biweekly over the course of 15 months. The sessions repeatedly explore the campus, both indoors and outdoors, on varying

trajectories, and at different times of the day across all four seasons. This allows the dataset to capture many challenging

elements including: moving obstacles (e.g., pedestrians, bicyclists, and cars), changing lighting, varying viewpoint, seasonal

and weather changes (e.g., falling leaves and snow), and long-term structural changes caused by construction projects. To

further facilitate research, we also provide ground-truth pose for all sessions in a single frame of reference.
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1. Introduction

The North Campus Long-Term (NCLT) dataset consists of data collected by a Segway robotic platform, Fig. 1(a), approxi-

mately biweekly, between January 8, 2012 and April 5, 2013, on the University of Michigan’s North Campus. The Segway

is outfitted with a Ladybug3 omnidirectional camera, a Velodyne HDL-32E 3D lidar, two Hokuyo planar lidars, an inertial

measurement unit (IMU), a single-axis fiber optic gyro (FOG), a consumer grade global positioning system (GPS), and a

real-time kinematic (RTK) GPS.

The NCLT dataset contains 34.9 hours of logs covering 147.4 km of robot trajectory, and was collected in 27 discrete

mapping sessions, Fig. 1(b). Each session covers roughly the entire mapped area and contains both indoor and outdoor

environments. Though the same area is repeatedly explored, the path for each session is varied, as is the time of day for

each session—from early morning to just after dusk. The length, time-of-day, and environmental conditions during each

session are described in Table 1. While the sessions include a variety of environmental conditions, sessions are biased
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(a) Segway robot (b) Sample trajectory

Fig. 1. The Segway robotic platform used for experimental data collection. (a) Outfitted with an RTK GPS (1), omni-directional

camera (2), 3D lidar (3), IMU (4), consumer-grade GPS (5), 1-axis FOG (6), 2D lidars (7), and CPU (8). (b) Sample trajectory from one

session of data collection, overlaid on satellite imagery.

toward favorable weather conditions and do not include adverse weather such as rain or snow as to not risk damaging

the robot. The dataset contains many dynamic elements, including pedestrians, bicyclists, and vehicle traffic. Because

we repeatedly traverse the same environment, the dataset also captures longer-term dynamics, including moving furniture

(indoors), weather and lighting conditions, seasonal changes, and two large construction projects. Sample imagery and lidar

data are depicted in Fig. 2. The data is hosted at http://robots.engin.umich.edu/SoftwareData/NCLT.

1.1. Applications

The NCLT dataset provides a challenging opportunity to evaluate many robotic algorithms and facilitate research in several

areas that have been receiving significant interest in the mobile robotics community. First and foremost are tasks related to

long-term mapping, navigation, and localization using vision and/or lidar in changing environments. This includes long-

term simultaneous localization and mapping (SLAM) (Carlevaris-Bianco and Eustice 2013, Johannsson et al. 2013, Kanji

et al. 2014, Konolige and Bowman 2009, Kretzschmar and Stachniss 2012, Walcott-Bryant et al. 2012), experience-based

navigation (Churchill and Newman 2013), teach-and-repeat navigation systems (Barfoot et al. 2012, Krüsi et al. 2015),

localization (Badino et al. 2012, Dayoub and Duckett 2008, Johns and Yang 2013a, Krajnik et al. 2014, Lowry et al. 2014,

Ranganathan et al. 2013), and place recognition (Cummins and Newman 2008, Johns and Yang 2013b, Masatoshi et al.

2015, Milford and Wyeth 2012, Mishkin et al. 2015). Beyond these spatial tasks, the dataset could be used for obstacle

detection and tracking (using either the lidar data or the imagery), and for computer vision tasks including learning visual

feature descriptors for things such as changing lighting (Carlevaris-Bianco and Eustice 2014, Lategahn et al. 2013), weather

and seasons (Krajnik et al. 2015, McManus et al. 2015), or predicting appearance change (Carlevaris-Bianco and Eustice

2012, Linegar et al. 2015, Neubert et al. 2013).

1.2. Comparison with existing datasets

There are several other related datasets already available to the robotics community (see Table 2), however, the NCLT

dataset provides a unique combination of attributes including:

• Large scale—both spatially and temporarily (roughly a square kilometer over 15 months)
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(a) Sample imagery

(b) Sample single-session point cloud

Fig. 2. The University of Michigan North Campus Long-Term dataset. (a) Sample images from the dataset (only forward camera shown).

(b) Sample coverage provided by the lidar point cloud as collected from a single session (colored by height above ground). The grid

represents 100 m. The black circles indicate where the sample images were taken.
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Table 1: Data Collection Sessions

Date Length Time Sky Foliage Snow

2012-01-08 6.4 km Midday Partly cloudy No No

2012-01-15 7.5 km Afternoon Sunny No Yes

2012-01-22 6.1 km Afternoon Cloudy No Yes

2012-02-02 6.2 km Afternoon Sunny No No

2012-02-04 5.5 km Afternoon Sunny No No

2012-02-05 6.5 km Morning Sunny No No

2012-02-12 5.8 km Midday Sunny No Yes

2012-02-18 6.2 km Evening Sunny No No

2012-02-19 6.2 km Midday Partly cloudy No No

2012-03-17 5.8 km Morning Sunny No No

2012-03-25 5.8 km Midday Sunny No No

2012-03-31 6.0 km Midday Cloudy No No

2012-04-29 3.1 km Morning Sunny Yes No

2012-05-11 6.0 km Midday Sunny Yes No

2012-05-26 6.3 km Evening Sunny Yes No

2012-06-15 4.1 km Morning Sunny Yes No

2012-08-04 5.5 km Morning Sunny Yes No

2012-08-20 6.0 km Evening Sunny Yes No

2012-09-28 5.6 km Evening Sunny Yes No

2012-10-28 5.6 km Midday Cloudy No No

2012-11-04 4.8 km Morning Cloudy No No

2012-11-16 4.8 km Evening Sunny No No

2012-11-17 5.7 km Midday Sunny No No

2012-12-01 5.0 km Evening Sunny No No

2013-01-10 1.1 km Afternoon Cloudy No Yes

2013-02-23 5.2 km Afternoon Cloudy No Yes

2013-04-05 4.5 km Afternoon Sunny No Yes

• Vision and lidar data (hundreds of thousands of images and hundreds of gigabytes of lidar data)

• Repeated exploration of the same environment (roughly every other week)

• Indoor and outdoor coverage (e.g., inside buildings and hallways as well as on streets, sidewalks, and pathways)

• Large variety of environmental changes observed:

– People, bikes and cars

– Moving furniture

– Changing lighting (datasets collected at different times of day)

– Seasonal changes

– Structural changes (e.g., construction of buildings)

• Intra- and inter-session ground-truth (generated via SLAM).

The New College Vision and Laser Dataset (Smith et al. 2009) provides stereo vision, omnidirectional vision, and lidar

from a single 2.2 km session. The Rawseeds project (Ceriani et al. 2009) provides two datasets with omnidirectional and

stereo vision, and planar laser; both datasets have repeated sessions through the same environment, though significantly

fewer and smaller in scale than the NCLT dataset (the Bicocca dataset provides five indoor sessions while the Bovisa dataset

provides six outdoor sessions). The CMU Visual Localization Dataset (Badino et al. 2011) includes monocular vision from
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Table 2: Summary of Available Datasets

Dataset Vision Lidar Large Scale
Seasonal

Change

Ground-Truth

Pose

New College Vision and Laser Dataset Y Y Spatially N N

Rawseeds Project Y Y No N Y

CMU Visual Localization Dataset Y N Spatially & Temporally Y N

Ford Campus Vision and Lidar Dataset Y Y Spatially N N

Alderly Day/Night Dataset Y N Spatially N N

Nordland Dataset Y N Spatially Y N

Malaga Urban Dataset Y Y Spatially N N

VPRiCE Dataset Y N Spatially N N

KITTI Dataset Y Y Spatially & Temporally N N

Cross Season Dataset Y N Spatially N N

MIT Stata Center Dataset Y Y Spatially & Temporally Y Y

NCLT Vision and Lidar Dataset Y Y Spatially & Temporally Y Y

16 sessions covering the same trajectory over the course of a year. The Ford Campus Vision and Lidar Dataset (Pandey

et al. 2011) provides three sessions with omnidirectional vision and 3D lidar. The Alderley Day/Night Dataset (Milford and

Wyeth 2012) contains two sessions on the same route, one collected during the day and one at night. The Nordland Dataset

(Norwegian Broadcasting Corporation 2013), promoted by (Sunderhauf et al. 2013), contains monocular vision for four

3000 km sessions collected in each of the four seasons—because the data was collected from a train, each session follows

exactly the same trajectory. The Malaga Urban Dataset (Blanco-Claraco et al. 2014) contains a single trajectory with stereo

vision and planar lidar. The VPRiCE Challenge Dataset (Suenderhauf 2015) provides two sets of imagery aimed toward

place recognition contests. The Cross Season Dataset (Masatoshi et al. 2015) provides imagery on a university campus

once per each of four seasons. The KITTI Dataset (Geiger et al. 2013) provides six hours of stereo vision and 3D lidar

data. This ambitious and large-scale dataset also provides ground-truth for a number of vision tasks including object labels

in the form of 3D tracklets and benchmarks for stereo, optical flow, and object detection; however, the KITTI dataset was

collected from a car and is therefore confined to outdoor street scenes. Additionally, the KITTI dataset does not focus on

repeated exploration of the same environment. The MIT Stata Center Dataset (Fallon et al. 2013) is most similar in spirit

to the NCLT dataset in that it provides multiple sessions with stereo vision over the course of a year. The dataset is similar

in scale to the NCLT with 38 hours and 42 km of repeated exploration. The key differences are omnidirectional versus

stereo vision and that the Stata Center dataset was collected entirely indoors, limiting its exposure to changing light levels

and other temporal changes that occur outdoors.

The remainder of this paper is outlined as follows. In Section 2 we provide details of the sensors used for data collection.

Section 3 describes the rigid-body transform and coordinate frame conventions used in the dataset. The Segway’s odometry

model is described in Section 4. In Section 5 and Section 6 we describe how the Segway’s sensors are calibrated, and how

the ground-truth is generated. Finally, in Section 7, we describe the dataset directory structure and file formats.

2. Sensors

The sensors collected in the NCLT dataset include:

2.1. Perception sensors

(a) Velodyne HDL-32E lidar: The HDL-32E has 32 lasers mounted on a rotating head that spins about its vertical axis

to provide a full 360◦ azimuthal field of view (Vel 2012). The range of the sensor is 100 m. We captured our dataset



6 Journal name 000(00)

Fig. 3. Comparison of GPS performance between RTK GPS (green) and consumer grade GPS (red) in the NCLT dataset. The true

trajectory follows the RTK solution around the fountain. This performance is typical for many of the outdoor portions of the dataset as

the consumer GPS is more affected by the multipath from campus buildings.

with the laser spinning at 10 Hz. The sensor is mounted in an upside-down configuration to better image tall vertical

structures like buildings and trees.

(b) Pointgrey Ladybug3 omnidirectional camera: The Pointgrey Ladybug3 (LB3) is a high resolution omnidirectional

camera system (Poi 2011). It has six 2-Megapixel (1600 × 1200) cameras with five charge coupled devices (CCDs)

positioned in a horizontal ring and one positioned vertically, which enables the system to collect video from more than

80% of the full sphere. The camera has a global shutter, and the exposure was set to auto. We collected our dataset at

full resolution at 5 Hz as-is from the hardware and stored the images in a JPEG compressed format.

(c) Hokuyo UTM-30LX lidar: The UTM-30 is a single beam lidar with 30 m range and a 270◦ field of view (Hok 2012).

The UTM-30 is mounted horizontally on the front of the Segway platform.

(d) Hokuyo URG-04LX lidar: The URG-04 is a single beam lidar with a 4 m range and a 240◦ field of view (Hok 2005).

The URG-04 is mounted in a “push-broom” configuration to sweep out the ground plane in front of the vehicle.

2.2. Navigation sensors

(a) Microstrain 3DM-GX3-45 IMU: The GX3 IMU contains 3-axis accelerometers, gyroscopes, and magnetometers, and

an integrated GPS receiver (Mic 2012). Its internal signal processor provides filtered 3D position, velocity, and attitude

at 100 Hz.

(b) KVH DSP-3000 single-axis FOG: The KVH single-axis FOG provides highly accurate rotation measurements (KVH

2009). On the Segway platform it is used to measure integrated yaw.

(c) Garmin 18x 5Hz: The 18x provides consumer grade GPS (Fig. 3) at 5 Hz (Gar 2011).

(d) NovAtel DL-4 plus RTK GPS: The DL-4 GPS receiver provides highly accurate, RTK corrected GPS at 1 Hz (Nov

2005). A NovAtel RTK base station was installed on campus to provide corrections. Outdoors this provides highly

accurate position information to ground-truth the robot trajectory (Fig. 3).
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3. Coordinate frame conventions

In this section we describe the coordinate frame conventions used in the NCLT dataset. We define the 6 degree of freedom

(DOF) pose of frame j with respect to frame i as

xij =
[
i
tij

⊤,Θ⊤
ij

]⊤

= [xij , yij , zij , φij , θij , ψij ]
⊤
.

Here, itij is a translation 3-vector from i to j as expressed in frame i, and Θij is a 3-vector of Euler angles with φ

representing roll about the x axis, θ as pitch about y, and ψ as yaw about z. To produce the 3 × 3 orthonormal rotation

matrix that rotates frame j into frame i the Euler angles are applied in rotz(ψ) → roty(θ) → rotx(φ) order yielding

i
jR = rotxyz(Θij)

= rotz(ψij)
⊤ roty(θij)

⊤ rotx(φij)
⊤

=






cosψ sinψ 0

− sinψ cosψ 0

0 0 1






⊤ 




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ






⊤ 




1 0 0

0 cosφ sinφ

0 − sinφ cosφ






⊤

.

The 4× 4 homogeneous coordinate transformation matrix from frame j to frame i defined by xij is then given as

i
jH =

[
i
jR

i
tij

0
⊤ 1

]

.

This 6-DOF convention is used for representing robot pose in the dataset and the rigid-body transformations between the

vehicle and sensor coordinate frames.

Robot poses are represented in a local coordinate frame aligned with the cardinal directions, with x pointing north,

y east, and z down. The origin of this coordinate frame is fixed in GPS coordinates as described in Table 3. Converting

between the local frame and GPS coordinates is done by linearizing around this origin. To define the transformation from

GPS coordinates to the local frame we first compute an approximation of the earth’s radius in the north-south direction,

rns, and in the east-west direction, rew, at the origin of the linearization,

rns =
(rerp)

2

(

(re cos lato)
2
+ (rp sin lato)

2
) 3

2

,

rew =
r2e

√

(re cos lato)
2
+ (rp sin lato)

2
,

(1)

where re and rp are the equatorial and polar radii of the earth, respectively, defined in Table 3. Using the local radii we can

convert from GPS coordinates to the local frame using

x = sin (lat− lato) rns ,

y = sin (lon− lono) rew cos lato ,

z = alto − alt .

(2)
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Table 3: GPS Linearization Constants

Latitude Origin lato 42.293227◦

Longitude Origin lono −83.709657◦

Altitude Origin alto 270 m
Earth Equatorial Radius re 6 378 135 m
Earth Polar Radius rp 6 356 750 m

Table 4: Sensor Coordinate Frames

Sensor Transform x m y m z m φ◦ θ◦ ψ◦

Velodyne lidar xbody,vel 0.002 −0.004 −0.957 0.807 0.166 −90.703
Ladybug3 Base xbody,lb3 0.035 0.002 −1.23 −179.93 −0.23 0.50
Microstrain IMU xbody,imu −0.11 −0.18 −0.71 0 0 0
KVH FOG xbody,fog 0 −0.25 −0.49 0 0 0
Garmin GPS xbody,gps 0 −0.25 −0.51 – – –

Novatel RTK GPS xbody,rtk −0.24 0 −1.24 – – –

Hokuyo UTM30-LX lidar xbody,h30 0.28 0 −0.44 180 0 0
Hokuyo URG04-LX lidar xbody,h04 0.31 0 −0.38 180 −40 0

Conversely, we can convert from the local frame to GPS coordinates using

lat = arcsin

(
x

rns

)

+ lato ,

lon = arcsin

(
y

rew cos lato

)

+ lono ,

alt = alto − z .

(3)

Note that this projection is fast and efficient to evaluate. For additional information, the reader is referred to (Vincenty

1975).

The robot’s body-frame is centered on the axle between the Segway’s wheels with x pointing forward, y to the right,

and z down. Each sensor’s frame of reference is defined with respect to this body frame. An illustration of the body and

sensor frames is provided in Fig. 4. The 6-DOF transformations for each sensor, relative to the body frame, are given in

Table 4.

4. Odometry model

In order to make the NCLT dataset easier to use, we provide two forms of precomputed odometry. The first provides the

mean and covariance of the odometry estimate in the local frame at 100 Hz. The second provides the mean and covariance

of the relative odometry between the timestamps associated with imagery and pre-extracted lidar scans. This allows users

to easily build SLAM graphs with pose nodes associated with images and lidar scans.

Odometry is estimated with an extended Kalman filter (EKF) that uses a differential-drive process model to integrate

measurements from the Segway’s wheel encoders and a single-axis FOG that observes change in heading. Measurement

updates are derived from a commodity IMU that observes roll, pitch, and body-frame angular rates.

We define the Segway’s state at time t as,

xt = [x, y, φ, θ, ψ, p, q, r]
⊤
,
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h04
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Fig. 4. Illustration of the Segway’s sensor frames. For each frame, the x, y, and z axes are colored red, green, and blue, respectively.

where [x, y]⊤ represent the robot’s translation position in a local frame, [φ, θ, ψ]⊤ are the Euler angles representing

orientation, and [p, q, r]⊤ are the body-frame angular rates. We do not estimate the robot’s altitude, z, in the local frame

because change in z is not observable using the Segway’s odometry sensors. Altitude is estimated in our ground-truth by

fusing RTK GPS and lidar scan matching with the odometry.

The Segway process model predicts the translation and heading of the robot using a differential drive model, and the

roll and pitch using a constant velocity model. For a given time step, the process model takes as input

ut = [vr, vl, δψ]
⊤
,

where vr and vl represent the speeds of the left and right wheels and δψ denotes the change in heading measured by the

single-axis FOG. Given the two wheel speeds, we can compute the speed of the vehicle at the center of the wheelbase as

vc =
1

2
(vr + vl). (4)

The relationship between the body-frame angular rates and the roll and pitch rates can be derived, as described in (Eustice

2005, §A.3), by considering the inverse relationship where the Euler angle rotation sequence rotz(ψ) → roty(θ) → rotx(φ)

is used to map Euler rates to body rates as






p

q

r




 =






φ̇

0

0




+ rotx(φ)






0

θ̇

0




+ rotx(φ) roty(θ)






0

0

ψ̇






=






1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ






︸ ︷︷ ︸

J−1






φ̇

θ̇

ψ̇




.

(5)
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Thus, the mapping from body-frame rates to the Euler roll and pitch rates is given by

J =






1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ






−1

=






1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ




.

(6)

The Segway’s process model updates the roll and pitch of the vehicle using a constant velocity model. We compute the

required angular velocities for roll and pitch as

[

φ̇

θ̇

]

=

[

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

]





p

q

r




. (7)

Using (4) and (7), the process model is then defined as

x̂t+δt = f(xt,ut) + ωt =



















x+ vc cos(θ)δt

y + vc sin(θ)δt

φ+ φ̇δt

θ + θ̇δt

ψ + δψ

p

q

r



















+ ωt , (8)

whereωt ∼ N (0,Q) is the process model noise and δt is the duration of the time step. The process model noise is comprised

of two terms—one capturing the uncertainties associated with the control vector and another capturing uncertainties in the

constant velocity terms, which results in the covariance matrix:

Q =
∂f

∂ut
diag([σ2

vr
, σ2
vl
, σ2
δφ
])
∂f

∂ut

⊤

+ diag([0, 0, σ2
φ, σ

2
θ , 0, σ

2
p, σ

2
q , σ

2
r ]) .

(9)

Measurement updates are derived from the Microstrain IMU, which observes the platform’s roll, pitch, and body-frame

angular rates. This leads to linear observation models

ẑφθ = hφθ(xt) =

[

φ

θ

]

+ νφθ ,

ẑpqr = hpqr(xt) =






p

q

r




+ νpqr ,

(10)
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l

xli

xij xjk

xlj xlk

i j k

Fig. 5. The delayed-state EKF estimates the pose of the last node added to the graph and the current pose of the robot. The joint

distribution of these two poses is used to produce the relative odometry factor.

where

νφθ ∼ N
(
0, diag([σ2

φ, σ
2
θ ])
)
,

νpqr ∼ N
(
0, diag([σ2

p, σ
2
q , σ

2
r ])
)
.

In order to produce the relative odometry factors between poses that are used in our SLAM system, the EKF tracks the

current pose of the robot and the pose of the last node added to the graph within a delayed-state framework (Eustice et al.

2006). Letting xli denote the pose associated with the last node added to the SLAM graph, and xlj denote the current robot

pose, the EKF estimates the distribution

p(xli,xlj) ∼ N

([

µli

µlj

]

,

[

Σli,li Σli,lj

Σlj,li Σlj,lj

])

. (11)

When we wish to add a new node associated with the pose xlj to the graph, we can compute the relative transform from the

last node to the current robot pose using the “tail-to-tail” function described by Smith, Self, and Cheeseman (Smith et al.

1990). Because the delayed-state EKF tracks the correlation between the current robot pose and the last node added to the

graph, we can also compute a first-order approximation of the covariance of the odometry factor. This yields the relative

factor

p(xij) ∼ N

(

⊖xli ⊕ xlj , ⊖J⊕

[

Σli,li Σli,lj

Σlj,li Σlj,lj

]

⊖J
⊤
⊕

)

, (12)

where ⊖J⊕ is the Jacobian of the tail-to-tail function. We then marginalize the old pose, xli, from the delayed-state filter

and augment the state with a new vector of variables to track the current pose of the robot, xlk. This process is illustrated

in Fig. 5.

5. Sensor calibration

5.1. Velodyne-frame to body-frame calibration

The transformation between the Velodyne-frame and body-frame is calibrated by solving a SLAM problem that includes

the robot’s pose and the uncertain Velodyne-to-body transform. Odometry factors constrain the motion of the robot, while

lidar scan matching factors constrain the motion of the robot and the Velodyne-to-body transformation.

5.2. Velodyne-frame to Ladybug3-frame calibration

The transformation between the Velodyne and the Ladybug3 is calibrated by minimizing the mutual information between the

two modalities as described in (Pandey et al. 2015). By compounding the Velodyne-to-body and the Velodyne-to-Ladybug3
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(a) Sample imagery shown with lidar point cloud data overlaid

(b) Zoomed in regions of the above

Fig. 6. (a) Sample images from the dataset shown with 10 revolutions of lidar point cloud data that has been motion compensated. Points

are colored by distance. (b) Zoomed in regions of the images.

transformations we can compute the Ladybug3-to-body transformation. The quality of the calibration is demonstrated in

Fig. 6.

5.3. Ladybug3 intrinsic calibration

The Ladybug3 is comprised of six individual cameras each with its own camera frame. The extrinsic calibration between

each camera and the base frame and the intrinsic calibrations for each camera, including lens distortion, are provided by the

manufacturer. The transform between the Ladybug3 base frame and each camera frame is given in Table 5. The cameras’

intrinsic calibrations are provided in Table 6 where the standard pinhole intrinsics matrix is defined as

K =






fx αc cx

0 fy cy

0 0 1




 .

The transformations to distort and undistort the images are also provided as a dense pixelwise mapping. The file format of

the distort and undistort maps are described in Section 7.6.

5.4. Additional Sensors

The coordinate frames for the other sensors, such as the Hokuyo planar lidar and IMU sensors, were manually calibrated.
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Table 5: Ladybug3 Camera Coordinate Frames

Transform x m y m z m φ◦ θ◦ ψ◦

Camera0 xlb3,c0 0.000920 −0.000569 0.062413 −0.028132 0.196467 0.248664
Camera1 xlb3,c1 0.014543 0.039337 0.000398 −138.449751 89.703877 −66.518051
Camera2 xlb3,c2 −0.032674 0.025928 0.000176 160.101024 89.836345 −56.101163
Camera3 xlb3,c3 −0.034969 −0.022993 0.000030 95.603967 89.724274 −48.640335
Camera4 xlb3,c4 0.011238 −0.040367 −0.000393 −160.239278 89.812338 127.472911
Camera5 xlb3,c5 0.041862 −0.001905 −0.000212 160.868615 89.914152 160.619894

Table 6: Ladybug3 Camera Intrinsic Calibration

fx fy cx cy αc
Camera0 410.777504 410.777504 613.277472 805.879152 0.0
Camera1 409.719024 409.719024 624.237344 813.947840 0.0
Camera2 408.385824 408.385824 623.058320 793.959536 0.0
Camera3 406.802144 406.802144 617.352928 810.874208 0.0
Camera4 403.920816 403.920816 601.929520 823.270544 0.0
Camera5 399.433184 399.433184 621.668624 826.361952 0.0

5.5. Time Synchronization

The Ladybug3 provides time synchronization over the IEEE1394 hardware interface. The KVH is timestamped according

to the arrival time of the sensor message. Other sensors are time synchronized according to the method proposed in (Olson

2010). All data is logged and timestamped using one computer on the Segway.

6. Ground-truth

We have preprocessed a large SLAM solution, Fig. 7, with all sessions using lidar scan matching and high-accuracy RTK

GPS (Fig. 3) to provide ground-truth robot pose. Note that scan matching constraints are added within each session and

between sessions, to ensure that the pose is accurate where RTK GPS is unavailable or inaccurate and to align all sessions

into a consistent frame. For example, the RTK GPS is often unavailable indoors or can be off by over ten meters near

certain buildings due to multipath issues that arise around campus. For this reason, we also provide a measure of the error

in the RTK GPS as compared to our provided ground-truth solution. Scan matching constraints were automatically added

between all pairs of nodes within 8 m of each other, and then bad scan matching factors were manually identified and

removed from the graph. To compute ground-truth poses between nodes in the graph we interpolate based on the odometry.

(a) Top View (b) Top View (zoom) (c) Top View (zoom)
(d) Time Scaled

Fig. 7. Ground-truth SLAM graph comprised of all sessions (a). Links include odometry (blue) and 3D lidar scan matching (green).

Close up views in (b) and (c) show the graph at two commonly-visited intersections. An oblique view scaled by time in the z-axis is

shown in (d). Each layer along the z-axis represents a mapping session.
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Table 7: GPS CSV File Format

Field Description Units

1 UTIME of the GPS fix µs
2 Fix mode, as reported by the GPS unit:

0 means that the mode update is not yet seen,

1 means that there is no GPS fix,

2 means that the fix is good for longitude and latitude,

3 means that the fix is also good for altitude.

–

3 The number of satellites used in the fix –

4 Latitude rad
5 Longitude rad
6 Altitude m
7 Track m
8 Speed m/s

Table 8: Microstrain IMU CSV File Format

Field Description Units

1 UTIME of the measurements µs
2–4 3-DOF magnetic field strength vector Gauss

5–7 3-DOF acceleration vector m/s2

8–10 3-DOF angular rotation rate for roll, pitch, and heading rad/s

7. Directory structure and file formats

In this section we describe the directory structure of the NCLT dataset and the file formats. We use the placeholders

“YYYY-MM-DD” to represent the date format used to differentiate each of the 27 runs and “UTIME” to represent the 16

digit integer timestamp (microseconds since the UNIX epoch).

7.1. Images directory

The images directory contains a tar file for each run, YYYY-MM-DD_lb3.tar.gz, that contains the imagery from the

Ladybug3 camera system. Within each tar file there are six camera folders, one for each camera in the Ladybug3 system,

labeled Cam0 through Cam5. The images collected for each camera are stored in the TIFF file format and are labeled using

the timestamp when they were collected (UTIME.tiff).

7.2. Sensor data directory

The sensor_data directory contains a tar file for each run, YYYY-MM-DD_sen.tar.gz, that contains the sensor

data (excluding Velodyne data). Within each tar file there are a number of comma-separated values (CSV) files, described

below.

• gps.csv and gps_rtk.csv are CSV files that contain the sensor data from the consumer grade GPS and the RTK

GPS, respectively. The fields are described in Table 7. Additionally, we provide a file, gps_rtk_err.csv, that

contains the error between the RTK GPS fix and the SLAM ground-truth solution, as described in Section 6. Each line

contains the UTIME of the RTK GPS fix followed by the error in meters to the ground-truth.

• ms25.csv is a CSV file that contains the sensor data from the Microstrain IMU. These values use the Microstrain’s

internal filter and are described in Table 8. Additionally, ms25_euler.csv contains the Euler angles read from the
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Table 9: Velodyne Packet Header Binary Format

Byte Description Units

1–8 Magic Sequence (9C AD 9C AD 9C AD 9C AD) –

9–12 Number of hits in packet –

13–20 UTIME associated with packet µs
21–24 Padding –

Microstrain IMU, these values are the instantaneous readings. Each line of the CSV file contains the UTIME associated

with the measurement, followed by the three Euler angles in radians (roll, pitch, and heading).

• odometry_mu_100hz.csv is a CSV file that contains 6-DOF odometry measurements calculated from the starting

position of each run. These measurements are computed at about 100 Hz. Each line of the CSV file contains the

UTIME associated with the measurement, followed by the 6-DOF odometry (x, y, z in meters, φ, θ, ψ in radians). The

accompanying file, odometry_cov_100hz.csv, is a CSV file that contains the covariance of the measurements

in odometry_mu_100hz.csv. We record the upper diagonal of the covariance matrix. Each line of the CSV file

contains the UTIME associated with the measurement, followed by the upper diagonal of the covariance matrix (row

major).

• odometry_mu.csv and odometry_cov.csv are CSV files that contain 6-DOF odometry measurements and

covariances, respectively, synchronized with each image event as described in Section 4. This is calculated relative to

the previous image event and follows the same format as above.

7.3. Velodyne data directory

The velodyne_data directory contains the sensor data from the Velodyne lidar. Within each tar file, there is a file

that contains all of the observed points and a folder that contains the Velodyne scans associated with each image. As a

convenience to the user, the raw range measurements are reported directly as (x, y, z) Cartesian positions within the sensor

frame using the Velodyne intrinsics. Due to file size considerations, we encode this data in a binary format—all values are

in little-endian. For each point, we scale each of x, y, z, to an integer between 0 and 40 000 by adding 100 m and discretize

the result at 5 mm. For example, −90 m gets scaled to 2000. This scaled value is written out for each of x, y, z as a 2 byte

integer. Hits that have a measurement out of range due to sensor error are set to (0, 0, 0) in the sensor frame.

• velodyne_hits.bin contains all of the recorded points collected during the session. The points are grouped into

“packets” consistent with one Ethernet packet as reported by the Velodyne sensor. For each packet, we begin with a

24 byte header described in Table 9. Following this 24 byte header, each point within the packet is recorded by its

(x, y, z) Cartesian location in the sensor frame (0–40 000, 2 bytes), the intensity of the return (0–255, 1 byte), as well

as the laser id number (0–31, 1 byte), for a total of 8 bytes per point. Each packet comprises at most a collection of

384 points where 384 is the result of 12 groups of 32-laser firings; however, our upside-down Velodyne mounting

causes many lasers to point into the sky yielding no measured range return—these no-return points are not recorded

in the packet. The total time to collect one packet is 552.96 µs, which at 1 m/s max velocity of the Segway results in

(at most) a negligible 0.5 mm of motion blur—hence the laser returns within a packet, for all practical purposes, can

be treated as near instantaneous within the NCLT dataset. The reported UTIME in the header is the timestamp of the

last laser fired within the packet; further details of the Velodyne laser timing can be found in the product manual (Vel

2012, Appendix E).

• The velodyne_sync directory contains a list of files, one associated with each image. Each file is named according

to the image with which it is associated (UTIME.bin). Each file contains one revolution’s worth of Velodyne hits
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(corresponding to the previous 0.1 seconds), these points are motion compensated for the Segway’s egomotion during

the scan and then recorded in the Segway body frame. Each point is written using the 8 byte format described above.

We include two sample python scripts to demonstrate reading these binary files and how to perform the scal-

ing and discretization. In read_vel_hits.py, we read all of the hits in the velodyne_hits.bin file. In

vel_sync_to_csv.py, we show how to convert a velodyne_sync/UTIME.bin file to a CSV format. Addi-

tionally, we also provide a file, laser_angles.csv, that contains the angles, in radians, of the 32 laser beams of the

Velodyne with respect to the horizontal plane.

7.4. Hokuyo data directory

The hokuyo_data directory contains the sensor data from the two Hokuyo lidar sensors. Within each tar file, there

are two binary files that contain the observations for each sensor: hokuyo_30m.bin contains the observations for the

Hokuyo UTM-30LX lidar, and hokuyo_4m.bin contains the observations for the Hokuyo URG-04LX lidar.

Each file contains the data associated with all of the scans recorded by each sensor, respectively. The format is as

follows. First, four bytes are used to represent the timestamp at which the scan was collected. Then, all of the observations

for the scan are recorded sequentially by the angle of the laser beam. For the Hokuyo UTM-30LX lidar, there are 1081

observations, starting at an angle of −135◦ with a step of 0.25◦ per observation. For the Hokuyo URG-04LX, there are 726

observations, starting from an angle of −119.5312◦ with a step of 0.3516◦ per observation. Each observation is recorded

using two bytes. Distances are scaled to an integer between 0 and 40 000 by adding 100 m to each distance and discretizing

the result at 5 mm. (Hits that have an out of range measurement are set to 0.) All scans are recorded sequentially in the

binary file as described above. Note that in each scan (i.e., array of ranges), all of the ranges share the same timestamp.

We include two sample python scripts to demonstrate reading these binary files. In read_hokuyo_30m.py, we read

all of the hits collected by the Hokuyo UTM-30LX lidar scan by scan and plot each scan. In read_hokuyo_4m.py, we

do the same for the Hokuyo URG-04LX lidar.

7.5. ROSbag

In addition to providing the sensor data in CSV format, we provide support for ROS. We pro-

vide several python scripts to generate ROSbags from the CSV files we provide. These are:

gps_to_rosbag.py, ms25_to_rosbag.py, ms25_euler_to_rosbag.py, vel_to_rosbag.py,

hokuyo_30m_to_rosbag.py, hokuyo_4m_to_rosbag.py, and sensordata_to_rosbag.py. Fur-

thermore, these can be used in conjuction with the coordinate transform package in ROS to apply the coordinate frames

discussed in Section 3.

7.6. Ladybug3 calibration directory

The ladybug3_calib directory contains the lens distortion mappings for the individual cameras.

U2D_Cam[0-5]_1616X1232.txt provides the undistort maps for each of the Ladybug3 cameras. The first

line is a header that gives the image size. All subsequent lines contain four space-delimited fields. The first two fields are

the pixel coordinates in the source image while the second two fields are the pixel coordinates in the destination image.

The D2U_Cam[0-5]_1616X1232.txt files describe the inverse transform, which distorts the images, in the same

format.
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7.7. CAD Model

We provide a computer aided design (CAD) model of the Segway robot in segway_cad.tar.gz, which contains a

directory of SolidWorks parts and assemblies for the Segway robot.

8. Conclusions

In this paper we have presented a large-scale, long-term vision and lidar dataset. This dataset captures a wide variety of

temporal changes in the environment, and provides the opportunity to explore many important topics in robotics research,

including long-term localization, mapping, and navigation. We have made this dataset available to the community in the

hopes that it will be of value to others working in this area.
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