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Abstract—This paper reports on a real-time monocular visual
simultaneous localization and mapping (SLAM) algorithm and
results for its application in the area of autonomous underwater
ship hull inspection. The proposed algorithm overcomes some of
the specific challenges associated with underwater visual SLAM,
namely limited field of view imagery and feature-poor regions.
It does so by exploiting our SLAM navigation prior within
the image registration pipeline and by being selective about
which imagery is considered informative in terms of our visual
SLAM map. A novel online bag-of-words measure for intra-
and inter-image saliency are introduced, and are shown to be
useful for image key-frame selection, information-gain based link
hypothesis, and novelty detection. Results from three real-world
hull inspection experiments evaluate the overall approach—
including one survey comprising a 3.4 hour / 2.7 km long
trajectory.

Index Terms—SLAM, computer vision, marine robotics, visual
saliency, information gain.

I. INTRODUCTION

MANY underwater structures such as dams, ship hulls,
harbors, and pipelines need to be periodically inspected

for assessment, maintenance, and security reasons. Among
these, our interest is in autonomous underwater hull inspection,
which seeks to map and inspect the below-water portion of
a ship in situ while in port or at sea. Typical methods for
port security and ship hull inspection require either deploy-
ing human divers [3], [4], using trained marine mammals
[5], or piloting a remotely operated vehicle (ROV) [6]–[8].
Autonomous vehicles have the potential for better coverage
efficiency, improved survey precision, and overall reduced
need for human intervention, and as early as 1992 there was
an identified need within the Naval community for developing
such systems [9]. In recent times, effort in this area has
resulted in the development of a number of automated hull
inspection platforms [10]–[13].

Underwater navigation feedback in this context is typi-
cally performed using inertial measurement unit (IMU) or
Doppler velocity log (DVL) derived odometry [12], [14],
and/or acoustic beacon time-of-flight ranging [11], [15]. The
main difficulties of these traditional navigation approaches are
that they either suffer from unbounded drift (e.g., odometry),
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Fig. 1. (a) The Bluefin Robotics Hovering Autonomous Underwater Vehicle
(HAUV) used for hull inspection in this project. (b) Depiction of the HAUV’s
size in comparison to a typical large ship, and its camera’s field of view (FOV)
when projected onto the hull at a typical standoff distance of one meter.

or they require external infrastructure that needs to be set up
and calibrated (e.g., acoustic beacons). Both of these scenarios
tend to vitiate the “turn-key” automation capability that is
desirable in hull inspection.

For the past couple of decades now, a significant research
effort within the mobile robotics community has been to
develop a simultaneous localization and mapping (SLAM)
capability. The goal of SLAM algorithms is to bound the
navigational error to the size of the environment by using
perceptually derived spatial information—a key prerequisite
for truly autonomous navigation. For a historical survey of
advancements in this field the reader is referred to [16],
[17]. It is within this paradigm that nontraditional approaches
to hull-relative navigation have generally sought to alleviate
traditional navigation issues.

Negahdaripour and Firoozfam [8] developed underwater
stereo-vision as a means of navigating an ROV near a hull;
they used mosaic-based registration methods and showed
preliminary results for controlled pool and dock trials. Ridao
et al. [18] reported on the closely related task of automated
dam inspection using an autonomous underwater vehicle; their
solution uses ultra-short-baseline (USBL) and DVL-based
navigation in situ during the mapping phase, followed by an
offline image bundle adjustment phase to produce a globally-
optimal photomosaic and vehicle trajectory. Walter, Hover
and Leonard [19] reported the use of an imaging sonar for
feature-based SLAM navigation on a barge and showed re-
sults for offline processing using manually-established feature
correspondence. More recently, this work was significantly
extended by Johannsson et al. [20] to work in real-time and
to perform automatic registration of sonar hull imagery.

In parallel to these efforts we have, since 2007, collaborated
with the authors of [20] and with Bluefin Robotics on an
Office of Naval Research sponsored project for autonomous
hull inspection (Fig. 1). Our part has been to develop a
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Fig. 2. Depiction of the pose-graph SLAM constraint graph. Odometry
constraints (odo) are sequential whereas camera constraints (cam) can be
either sequential or non-sequential. For each node, measurements of roll/pitch
and depth are added as absolute constraints (abs).

real-time visual SLAM capability for hull-relative navigation
in the open areas of the hull. Through collaboration with
our project partners, we have developed an integrated real-
time SLAM system for hull-relative navigation and control
that has been recently demonstrated on the Bluefin Robotics
HAUV (pronounced “H-A-U-V”). Specifications of the current
generation vehicle design are documented in [21], and an
overview of our integrated work in perception, planning and
control is presented in [22].

In this paper, we report on the specific details of our real-
time monocular visual SLAM solution for autonomous hull
inspection. The contributions of this work are fourfold: i)
the dissemination of a principled and field proven approach
for exploiting available navigational and geometrical priors
in the image registration pipeline to overcome the difficulties
of underwater imaging, ii) the introduction of a novel and
quantitative bag-of-words visual saliency metric that can be
used for identifying visually informative key-frames to include
in our SLAM map, iii) the development of a visually robust
link hypothesis algorithm that takes into account geomet-
ric information gain as well as visual plausibility, and iv)
the demonstration of a complete end-to-end real-time visual
SLAM implementation on the HAUV with field results from
three real-world deployments, which experimentally evaluates
the overall approach.

II. SYSTEM OVERVIEW

A. Hovering Autonomous Underwater Vehicle

For the autonomous hull inspection project, we use the
Bluefin Robotics HAUV (Fig. 1) [21]. This vehicle was devel-
oped for explosive ordnance disposal (EOD) inspection, and is
currently in production for the U.S. Navy [23]. For navigation
the standard vehicle is equipped with a hull-looking 1200 kHz
RDI Doppler velocity log (DVL), Honeywell HG1700 IMU,
and Keller pressure sensor for depth, while for inspection the
vehicle is equipped with a 1.8 MHz DIDSON imaging sonar
[22]. Additionally, in collaboration with Bluefin, we have
integrated a 520 nm (i.e., green) LED light source for optical
imaging and a fixed-focus, monochrome, Prosilica GC1380
12-bit digital-still camera.

B. Pose-Graph Visual SLAM using iSAM

In our work, we estimate the vehicle’s full six degree
of freedom (DOF) pose, x = [x, y, z, φ, θ, ψ]>, where the
pose (position and Euler attitude) is defined in a local-level
Cartesian frame referenced with respect to the hull of the ship.
We use a pose-graph SLAM framework for state representation
where the state vector, X , is comprised of a collection of
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Fig. 3. Real-time SLAM publish/subscribe server/client software architecture
using iSAM. The shared estimation server, isam-server, listens for
add node message requests, add_node_t, from the camera-client.
Extracted features, feat_t, are published by the feature thread. The saliency
thread subscribes to these feat_t messages and computes a visual saliency
score, which gets published as a saliency_t message. This score is used
in the link proposal thread to determine node addition as well as link proposal
events. Proposed link candidates are published as plink_t events, which the
two-view thread then attempts to register. If successful, the camera thread then
publishes the 5-DOF camera constraint as a verified link message, vlink_t,
which then gets added to the pose-graph by isam-server.

historical poses. Each node in the graph, xi, corresponds to a
camera event that we wish to include in our view-based map.
Fig. 2 depicts the general topology of our resulting pose-graph,
which consists of nodes linked by either odometry or camera
constraints. For each node, measurements of gravity-based
roll/pitch and pressure depth are added as absolute constraints,
whereas absolute heading measurements are unavailable in our
sensor configuration (note that magnetically-derived compass
heading is useless near a ferrous hull). There exist many
inference algorithms that solve the pose-graph SLAM problem
[24]–[31], and in this paper we employ the open-source
incremental smoothing and mapping (iSAM) algorithm due
to its efficiency for real-time implementation and covariance
recovery [31]–[33].

We assume standard Gaussian process and observation
models with independent control and measurement noise. The
process model, xi = f(xi−1,ui) + vi, is a stochastic state
transition model linking two sequential poses via control
input ui with noise vi ∼ N (0,Σi). The observation model,
zki,j = h(xi,xj) + wk, is a stochastic measurement model
between two nodes i and j with measurement index k and
noise wk ∼ N (0,Λk).

C. Camera Constraints

In our SLAM framework, we model pairwise monocular im-
age registration as providing a 5-DOF, relative-pose, modulo-
scale constraint between nodes i and j. Here, the 5-DOF
camera measurement is modeled as an observation of the
baseline direction of motion azimuth, αij , and elevation angle,
βij , and the relative Euler angles, φij , θij , ψij , between the
two poses [34],

h5dof(xi,xj) =
[
αij , βij , φij , θij , ψij

]>
. (1)
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Fig. 4. Depiction of the camera-client underwater image registration process for typical hull imagery. (a) Raw images are (b) first radially undistorted
and histogram equalized before extracting features. (c) A pose-constrained correspondence search (PCCS) using our SLAM pose prior is then applied to guide
putative matching. Lines depict sample epipolar geometry induced from the SLAM pose prior with navigation uncertainty projected as 99.9% confidence
ellipsoids in pixel space. (d) Putative correspondences are established within the PCCS search constraint using SIFT descriptors with a threshold on the ratio
to the second best matching to obtain putative matches. (e) Inlier correspondences and motion model are then found from a RANSAC geometric model
selection framework and optimized in a two-view bundle adjustment to determine the 5-DOF camera relative-pose constraint.
For the top row of imagery, because the PCCS search constraint is strong, correct correspondences are established despite the fact that the imagery is feature-
poor. For the middle and bottom rows of imagery, we see two different cases—when the PCCS SLAM prior is weak and the imagery is feature-poor (middle
row), image registration fails due to a dearth of correct putative correspondences. On the other hand, when the PCCS SLAM prior is weak but the imagery
is feature-rich (bottom row), image registration succeeds because enough correct putative correspondences are established using visual similarity measures
alone. Observation of this effect motivates the development of our novel image saliency metrics introduced in Section III.

These camera constraints are generated from a real-time vi-
sual SLAM perception engine, namely the camera-client
process of Fig. 3. Fig. 4 depicts sample results from the
camera-client processing pipeline, which consists of:

1) Images are first radially undistorted and enhanced us-
ing contrast-limited adaptive histogram specification
(CLAHS) [35].

2) For feature extraction and description we use a combi-
nation of scale invariant feature transform (SIFT) [36]
and speeded up robust features (SURF) [37]—real-time
performance is enabled using a graphics processing unit
(GPU) based implementation [38].

3) Correspondences are established using a pose-
constrained correspondence search (PCCS) [34] and
random sample consensus (RANSAC) geometric model
selection framework [1].

4) Inliers are then fed into a two-view bundle adjustment

to yield a 5-DOF bearing-only camera measurement (1),
and a first-order estimate of its covariance [39].

5) This measurement is then added as a constraint to iSAM.

Three cases are interesting to note in Fig. 4. In cases
where we have a strong prior on the relative vehicle motion
(top row), for example due to sequential imagery with good
odometry or when the SLAM prior is tight, then the PCCS
search region provides a tight bound for putative matching
and we can often match what would be otherwise feature-
poor imagery. On the other hand, when we have a weak pose
prior (middle row), for example due to poor odometry or when
closing large loops, then the PCCS search constraint will be
uninformative and registration will likely fail to find enough
matches based upon visual similarity. However, if the hull
imagery is sufficiently feature-rich (bottom row), then images
may be matched even under a poor PCCS prior using purely
appearance-based means. This indicates that image saliency
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(b) SLAM pose-graph result for R/V Oceanus
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(c) Local saliency map (SL) on R/V Oceanus

−16 −14 −12 −10 −8 −6 −4 −2 0

1.2
1.6

Longitudinal [m]

D
ep

th
 [m

]

LG JH KI

0

0.5

1

(d) Global saliency map (SG) on R/V Oceanus

Fig. 5. Motivation for the development of our local and global saliency metrics. Depicted are the hull inspection SLAM results for a survey of the port-side
hull of the R/V Oceanus. (a) Picture of the R/V Oceanus’ stern with the HAUV in view. (b) SLAM trajectory of the HAUV with successful cross-track
camera registrations depicted as red edges. The histogram equalized images shown above are indicative of the type of imagery within that region of the hull.
Qualitatively, note that the density of cross-track links is spatially correlated with what could be described as feature-rich imagery. (c) Our normalized local
saliency measure, SL, which spans from 0 to 1, is overlaid on top of the SLAM graph and correlates well with camera link density. Note that successful
camera measurements typically correspond to nodes with a local saliency score of 0.4 or greater. (d) Our normalized global saliency measure, SG, which also
spans from 0 to 1, is overlaid on top of the SLAM trajectory and indicates image rarity. Global saliency can be used to identify visually rare (i.e., anomalous)
scenes with respect to the rest of the hull. In both (c) and (d), for easier visualization, we have enlarged nodes with saliencies greater than 0.4.

plays a strong role in determining successful registration and
could be exploited if quantified.

D. Software Architecture

Our real-time SLAM implementation is based on a pub-
lish/subscribe software architecture using the open-source
Lightweight Communications and Marshalling (LCM) library
[40] for inter-process communication. We run iSAM as a
shared server process and each sensor client independently
publishes measurement constraints to add to the graph; Fig. 3
depicts an architectural block-diagram. The server process
subscribes to messages from the HAUV vehicle client to add
DVL odometry constraints, absolute roll/pitch attitude mea-
surements (from the IMU), and pressure depth observations.

Five DOF camera constraints are published to the server
from the camera client process. The camera process is multi-
threaded and organized into four main modules: a feature
extraction thread, an image saliency thread, a link proposal
thread, and a two-view image registration thread. The feature
thread extracts robust features to be used for correspondence
detection. The saliency thread then uses these extracted fea-
tures to create a bag-of-words representation for the image and
computes a visual saliency score. The link1 proposal thread

1We call the process of hypothesizing possible loop-closure candidates “link
proposal”, because a measurement will act as a “link” (i.e., constraint) between
two nodes in our pose-graph framework.

uses the visual saliency metric along with a calculation of
geometric information gain to (i) add only salient nodes to
the graph and (ii) to propose visually informative candidates
for registration. The extracted features and proposed links are
then fed to the two-view thread for attempted registration.

III. VISUAL SALIENCY

In our hull inspection scenario, camera-derived measure-
ments are typically not uniformly available within the en-
vironment. Fig. 5 depicts a representative underwater visual
SLAM result obtained on a clean hull (i.e., a hull with little
or no bio-fouling). Here, successful camera registrations (i.e.,
red links) occur when feature-rich distributions are prevalent—
in visually feature-poor regions, the camera produces few, if
any, constraints. Thus, the distribution of visual features on the
hull dominates the spatial availability of our camera-derived
constraints, and hence, the overall precision of our SLAM
navigation result. This indicates that visual saliency strongly
influences the likelihood of making a successful pairwise
camera measurement. When spatially overlapping image pairs
fail to contain any locally distinctive textures or features—
image registration fails. Hence, having a quantitative ability
to evaluate the registration utility of image key-frames would
greatly aid underwater visual SLAM. Fig. 5(c) and (d) depict
sample results from our novel measures of image saliency,
which are the subject of this section.
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A. Overview of Our Approach

To tackle this problem, we focus on two different mea-
sures of saliency: local saliency (i.e., intra-image) and global
saliency (i.e., inter-image). Both are computed using a bag-of-
words (BoW) model for image representation. Registrability
refers to the intrinsic feature richness of an image. The lack
of image texture, as in the case of mapping an underwater
environment with feature-poor regions (e.g., images A and B
in Fig. 5(b)), prevents image registration from being able to
measure the relative-pose constraint. However, texture is not
the only factor that defines saliency—an easy counterexample
is an image of a checkerboard pattern or a brick wall. Images
of these type of scenes have high texture, but likely will fail
registration due to spatial aliasing of common features. Thus,
we develop local and global saliency as two different measures
of image registrability in this section.

A brief illustration of the overall process is depicted in
Fig. 6. We generate a coarse vocabulary online by projecting
128-dimension SURF descriptors to words using a BoW image
model. Once mapped to a bag-of-words representation, we
examine the intra-image histogram of word occurrence for the
local saliency measure, and score the saliency level by evaluat-
ing its entropy. For global saliency, the inter-image frequency
of word occurrence throughout all previously seen images is
examined. This statistic is used to compute the global saliency
score by measuring the so-called inverse document frequency.

B. Review on Saliency and Bag-of-Words

The term “saliency” refers to a measure of how distinctive
an image is, and is related to seminal works by [41] and
[42]. The authors of [43] extended [42]’s entropy approach to
color images using the hue saturation value (HSV) color-space
representation for detecting image features. Similarly, the
author of [44] combined HSV channel entropy with a Gabor
filter for texture entropy to compute a combined saliency score
for color images. This approach was shown to produce usable
saliency maps derived from down-looking underwater seafloor
imagery; however, its application is limited to color imagery.

Alternatively to the above channel-based methods, several
BoW saliency representations have recently been explored
[45]–[48]. Originally developed for text-based applications,
the general bag-of-words approach was first adapted and
expanded to images by [49], [50], and [47], allowing for
aggregate content assessment and enabling faster search. This
approach has been successfully applied in diverse applications
such as image annotation [51], image classification [52], object
recognition [53], [54] and also appearance-based SLAM [55]–
[59]. In connection to saliency, [47] explored the use of a BoW
image model to selectively extract only “salient” words from
an image and referred to them as a bag-of-keypoints. In [48],
a histogram of the distribution of words was used as a global
signature of an image, and only salient regions were sampled
to solve an object classification problem.

C. BoW Vocabulary Generation

Before defining our BoW saliency metric, we first need to
outline how we construct our vocabulary. Offline methods for
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Fig. 6. Depiction of local and global saliency computation. Given an image
stream, SURF descriptors are extracted and are used to compute local and
global BoW statistics. Entropy from the local histogram (bottom right) detects
intra-image feature richness, while inverse document frequency measures
inter-image rarity (top right). Unlike local saliency, which is computed only
from the current image, global saliency is computed by updating idf over a
series of images.

vocabulary generation typically use a clustering algorithm on
a representative training dataset. An example method using
this type of offline approach is the Fast Appearance-Based
Mapping (FAB-MAP) algorithm, which has shown remarkable
place recognition results using a pre-trained vocabulary [55],
[56]. Other studies have focused on online methods, which
incrementally build the vocabulary during the data collection
phase [57]–[60]. Position Invariant Robust Feature (PIRF)
based navigation [58] used this type of online approach, using
only consistent SIFT descriptors to incrementally build the vo-
cabulary, and showed comparable performance to other state-
of-the-art appearance-based SLAM methods. In [59], in order
to achieve fast and reliable online loop-closure detection, the
authors used locality sensitive hashing to build the vocabulary
in situ. Also, incremental online clustering schemes have been
used by [60] to update the vocabulary clusters incrementally.

One advantage to offline methods is that an optimal distri-
bution of vocabulary words (clusters) in descriptor space can
be guaranteed; however, one disadvantage is that the learned
vocabulary can fail to represent words collected from totally
different datasets [58]. Online construction methods provide
flexibility to adapt the vocabulary to incoming data, though
equidistant words (clusters) are no longer guaranteed.

Two guidelines underpin our vocabulary building procedure:
(i) we do not want to assume any prior appearance knowledge
of the underwater inspection environment, and (ii) the vocab-
ulary must be visually representative. With this in mind, we
have decided to pursue an online construction approach that
initially starts from an empty vocabulary set, similar to the
algorithms in [57], [58]. SURF features are extracted from
the incoming image and are matched to existing words in
the vocabulary based on the Euclidean inner product (SURF
descriptors are unit vectors). Whenever the direction cosine is
larger than a threshold (0.4 in our experiments), we augment
our vocabulary to contain the new word.

In terms of why we chose to use SURF features in our
vocabulary construction, we evaluated the usage of both 128-
dimension SIFT and 128-dimension SURF descriptors and
found that SURF features tend to perform better for our
saliency calculation. The SIFT descriptor is built by calcu-
lating the gradient orientation histogram, whereas the SURF
descriptor is built from a set of Haar wavelet responses. Due
to the noise sensitivity of the gradient orientation calculation,
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Fig. 7. Depiction of the effect of pre-blurring and scale-forced SURF
detection for underwater image saliency. Image (a) shows the contrast-limited
adaptive histogram specification (CLAHS) image on the left half and its
blurred version on the right half. The BoW histogram showing intra-image
word occurrence and its normalized entropy score (i.e., local saliency, SL) are
shown for the (b) CLAHS image (SL=0.76), (c) the blurred image (SL=0.35),
and (d) the scale-forced SURF detection (SL=0.48). Note that (c) and (d) have
comparable entropy.

we found that SIFT’s descriptor tends to assign two similar
texture patches as two distinct words, whereas SURF’s wavelet
descriptor tends to assign them to the same type of word. (This
is similar to what [44] noted when comparing a Gabor filter
for texture detection versus gradient-based methods.)

An additional point worth noting is that we pre-blur imagery
before running SURF. This is done to gently force it to return
larger scale features. As shown in Fig. 7, we conducted a test
to see the effect of this pre-blurring on underwater imagery.
The depicted histogram-equalized sample image is “noisy”
due to its accentuation of particulates in the water column
and the effect of back-scattering. Processing the image at
full scale makes the SURF descriptor sensitive to this high-
frequency noise and, thus, its descriptors distinctive to each
other. While this distinctiveness can be beneficial for putative
correspondence matching, it is detrimental in vocabulary gen-
eration for the purpose of saliency detection. When the image
contains particles and noise as in the sample image, these
distinctive feature descriptors get mapped to different words,
which artificially increases the entropy in our BoW histogram
(Fig. 7(b)). However, this undesirable effect can be reduced
by either pre-blurring the image (Fig. 7(c)), or (equivalently)
by forcing SURF to return larger scale features (Fig. 7(d)). In
practice, we found it easier to use the pre-blurring approach
so that we could employ commonly available SURF libraries
without modification.2

Typical BoW vocabulary sizes using our approach are
relatively small—in our experience less than a couple of
hundred words. This is in contrast to visual place recognition
techniques, which typically have vocabulary sizes in the 4k to

2We use OpenCV’s SURF implementation [61], which does not support
direct scale-space thresholding.
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Fig. 8. Online vocabulary size over the course of a hull inspection mission.
The vocabulary size is plotted for two different vessels versus elapsed mission
time in minutes. Because of the pre-blurring and coarse clustering, the
resulting vocabulary size is small: 22 for the R/V Oceanus (a), and 210 for
the SS Curtiss (b).

11k range or more [50], [55]–[58]. We note that the task of
place recognition requires finer grain visual distinction than
saliency detection does because vocabulary words are being
used to uniquely index similar appearance imagery, whereas
the goal of saliency detection is only to assess the visual
variety of the scene. The pre-blurring and coarse clustering
of our approach lead to small vocabulary sizes whose rate of
growth plateaus in time as the vehicle collects enough visual
variety to describe the inspection environment. Fig. 8 depicts
the vocabulary sizes for two of the hull inspection missions
reported in this paper.

D. Local Saliency

One of the original uses of BoW is for texture recognition
[62], [63]. In these studies, an element of texture, a texton, can
be expressed in terms of visual words using a BoW represen-
tation. These previous works mainly focused on recognition
of texture using a texton representation, whereas the local
saliency we develop here examines the diversity of the textures
to assess image content richness. We define local saliency as
an intra-image measure of feature diversity. We assess the
diversity of words occurring within image Ii by examining
the entropy of its BoW histogram:

Hi = −
W (t)∑
k=1

p(wk) log2 p(wk). (2)

Here, p(w) is the empirical BoW distribution within the
image computed over the set of vocabulary words, W(t) =

{wk}W (t)
k=1 , where W (t) is the size of the vocabulary, which

grows with time since we build the vocabulary online. We
normalize the entropy measure with respect to the vocabulary
size by taking the ratio of Hi to the maximum possible entropy
to yield a normalized entropy measure, SLi

∈ [0, 1], which we
call local saliency:3

SLi =
Hi

log2W (t)
. (3)

This entropy-derived measure captures the diversity of words
(descriptors) appearing within an image.

Fig. 9 shows sample results for color and grayscale under-
water hull imagery. For comparison, following [44], we also
compute the hue channel histogram as an alternative measure
of saliency. The results show that our normalized BoW entropy

3The maximum entropy, log2 W (t), corresponds to a uniform distribution
over a vocabulary of W (t) words.
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Feature-rich gray image Intensity histogram
Entropy=6.79

BoW histogram
Entropy=4.61, SL=0.81

Feature-poor gray image Intensity histogram
Entropy=6.58

BoW histogram
Entropy=1.58, SL=0.28

Fig. 9. Local saliency example for color and grayscale ship hull imagery
of varying levels of feature content. In each result, the leftmost plot depicts
the source image, the middle plot depicts the image intensity histogram (hue
channel for color images and grayscale for monochrome images), and the
rightmost plot depicts the bag-of-words histogram. For the color images,
note that the hue channel histogram and the BoW histogram are both able
to distinguish the feature richness of the scene. However, for the grayscale
imagery, note that the image intensity histogram fails to detect feature
richness, whereas the BoW histogram still works well.

score yields comparable results to [44] in terms of discrim-
inating image saliency for color images, but moreover, our
measure works equally well for grayscale imagery too (where
no hue channel is available).

As a further example, Fig. 5(c) depicts the result of applying
our local saliency score to the R/V Oceanus dataset. Note how
our local saliency score shows good (predictive) agreement
where the SLAM pairwise image registration engine was
actually able to add cross-track camera constraints.

E. Global Saliency

We define global saliency as an inter-image measure of the
uniqueness or rarity of features occurring within an image.
The purpose of this measure is to identify unique regions
of the hull that could be useful for guiding where the robot
should revisit for attempting large scale loop-closure. In this
scenario our SLAM prior will typically be weak and we will,
therefore, have to rely upon visual appearance information
only for successful pairwise image registration. Image D in
Fig. 5 (same image as Fig. 4 bottom row) depicts such a case.

To tackle this problem, we were motivated by a metric
called inverse document frequency (idf), which is a classic
and widely used metric in information retrieval [64]–[66], and
has a higher value for words seen less frequently throughout

a history. In other words, we expect high idf for words
(descriptors) that are rare in the dataset. In computer vision,
Jegou et al. [67] used a variation of idf to detect “burstiness” of
a scene, noting idf’s ability to capture word frequency. Similar
use is found in [68], where the authors used idf as a weighting
factor in the definition of their min-Hash similarity metric.

In this paper, we use a sum of idf within an image, Ii, to
score its inter-image rarity:

Ri(t) =
∑
k∈Wi

log2

N(t)

nwk
(t)
. (4)

Here, Wi ⊆ W(t) represents the subset of vocabulary words
occurring within image Ii, nwk

(t) is the number of images in
the vocabulary database containing word wk, and N(t) is the
total number of images comprising the vocabulary database.
The sum of idf in (4) makes the implicit independence
assumption that words occur independently, similar to other
BoW algorithms such as [50], [57], [58]. In cases where word
occurrence is correlated (i.e., frequently occur together in the
same images), this measure will overestimate the saliency of
their combination, as denoted by [69]. In our application,
we examined the co-occurrence of words in our vocabularies
and found no significant correlation to exist between the
appearance of words. To obtain independent sample statistics
used in our idf database calculation, only spatially distinct
images (i.e., non-overlapping) are used to update nwk

(t) and
N(t).

Since even a common word would be considered “rare”
in (4) the first time it is observed (i.e., nwk

= 1 on first
occurrence in the database),Ri(t) needs to be updated through
time. We use an inverted index update scheme combined
with periodic batch updates to maintain R(t) for all images
in the graph. The inverted index scheme [70] uses sparse
bookkeeping for fast updates on the subset of R(t) who are
impacted when changes in the statistics of nwk

(t) occur, and
periodic batch updates that revise R(t) for all nodes in the
graph when changes in the number of documents, N(t), occur.
At worst case this batch update is linear in complexity with the
number of image nodes. Lastly, as was the case with our local
saliency measure, we normalize the rarity measure for image
Ii to have a normalized global saliency score SGi

∈ [0, 1]:

SGi
(t) =

Ri(t)

Rmax
, (5)

where the normalizer, Rmax, is the maximum summed idf
score encountered thus far.

Fig. 10 shows an example of applying global saliency to
categorize sample underwater and indoor office imagery. As
can be seen, the global saliency score, SG, fires on the
visual rarity of vocabulary words occurring within the image,
whereas the local saliency score, SL, fires on vocabulary
diversity only. For example, the two rightmost figure columns
(i.e., (c),(d) and (g),(h)) show that global saliency can be low
even for locally salient imagery. This is because several of the
vocabulary words (e.g., weld lines, bricks) occur frequently
throughout the environment—lowering their overall idf score.
As a further example, Fig. 5(d) depicts the result of applying
our global saliency score to the R/V Oceanus dataset. Note
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SG=0.84, SL=0.79
(a)

SG=0.49, SL=0.67
(b)

SG=0.29, SL=0.67
(c)

SG=0.13, SL=0.54
(d)

SG=0.85, SL=0.78
(e)

SG=0.60, SL=0.73
(f)

SG=0.11, SL=0.58
(g)

SG=0.02, SL=0.58
(h)

Fig. 10. Global saliency example for underwater (a)–(d) and indoor (e)–(h)
images. Extracted features are marked with green circles. The global saliency
score (SG) and local saliency score (SL) are provided below each image. In
both datasets, images are arranged from left to right in order of decreasing
global saliency. Note that the global saliency score can be low even for texture
rich scenes (e.g., (c),(d) and (g),(h)), indicating that the vocabulary words
appearing in those images are common in the environment and, therefore, not
visually distinctive.

how the global saliency score identifies visually distinctive
(i.e., rare) regions on the hull.

In separate work, we have reported the use of global
saliency’s rarity detection within an active SLAM paradigm
for guiding the robot toward distinctive regions on the hull
for attempting loop-closure [71], [72]—this represents one
possible use of global saliency. Another possible application
is anomaly detection on the hull, as supported later in the
results of Fig. 19, which shows automatically identified for-
eign objects present on the hull. We present global saliency’s
formulation and evaluative results in conjunction with local
saliency because it shares all of the same BoW vocabulary
machinery and the two are fundamentally interrelated mea-
sures. Algorithm 1 provides a pseudo code description for the
online vocabulary construction, and local and global saliency
calculations.

IV. SALIENCY-INFORMED VISUAL SLAM

One of the most important and difficult problems in SLAM
is determining loop-closure events—in our visual SLAM
framework this amounts to registering previously viewed
scenes. Necessarily, this task involves intelligently choosing
loop-closure candidates because (i) the computational cost of
attempting the camera-derived relative-pose constraint (1) is
not insignificant, and (ii) adding unnecessary/redundant edges
to the SLAM pose-graph increases inference complexity and
can also lead to overconfidence [73]. Using our previously de-
fined local saliency measure, we can improve the performance
of visual SLAM in two key ways:

1) We can sparsify the pose-graph by retaining only visu-
ally salient key-frames;

2) We can make link proposal within the graph more
efficient and robust by combining visual saliency with
geometric measures of information gain.

In the first step, we can decide whether or not a node
should be added at all by evaluating its local saliency level—
this allows us to decimate visually homogeneous key-frames,

Require: image Ii
Require: BoW vocabulary W(t) {∅ on first use}
Require: idf statistics N(t), nw(t)

Preblur and extract SURF features from Ii:
Fi ← [f1, f2, · · · , fnf ]

{compute intra-image BoW statistics}
initialize BoW histogram: Hi ← ∅
for each feature fj ∈ Fi do

find best vocabulary match wk ∈ W(t)
if projection fj ·wk > threshold then {augment vocab.}
W(t)← [W(t), fj ], wk ← fj , nwk (t)← 1

end if
increment histogram: Hi(wk)←Hi(wk) + 1

end for

{update inter-image idf statistics}
if Ii does not overlap with images already in N(t) then

increment the document database: N(t)← N(t) + 1
for each wk ∈ W(t) and Hi(wk) > 0 do

increment word occurrence: nwk (t)← nwk (t) + 1
end for

end if

{local saliency calculation}
Compute image Ii BoW distribution: pi(w)←Hi/nf

Compute image Ii BoW entropy: Hi ← Eqn. (2)
Compute image Ii local saliency: SLi

← Eqn. (3)
if W(t) was updated then {vocab. was augmented}

Update SL for all previous images
end if

{global saliency calculation}
Compute image Ii rarity: Ri(t)← Eqn. (4)
Compute image Ii global saliency: SGi

← Eqn. (5)
if N(t) or nw(t) were updated then {idf statistics changed}

Update R(t) for all affected images
Update maximum rarity Rmax

Update SG for affected images
end if

Algorithm 1: Online vocabulary and saliency calculation.

which results in a graph that is more sparse and visually
informative. This improves the overall efficiency of graph
inference and eliminates nodes that would otherwise have low
utility in underwater visual perception.

In the second step, we can improve the efficiency of
link proposal by making it “salient-aware”. For efficient link
proposal, the authors of [73] used expected information gain to
prioritize which edges to add to the graph—thereby retaining
only informative links. However, when considering the case
of visual perception, not all camera-derived measurements
are equally obtainable. Pairwise registration of low saliency
images will fail unless there is a strong prior to guide the
putative correspondence search (e.g., Fig. 4 top row), whereas
pairwise registration of highly salient image pairs often suc-
ceeds even with a weak or uninformative prior (e.g., Fig. 4
bottom row). Hence, when evaluating the expected information
gain of proposed links, we should take into account their visual
saliency, as this is a good overall indicator of whether or
not the expected information gain (i.e., image registration) is
actually obtainable. By doing so, we can propose the addition
of links that are not only geometrically informative, but also
visually plausible.
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(a) Scatter plot of relative-pose uncertainty vs. local saliency

Smin
L 0.2 0.3 0.4 0.5 0.6 0.7 0.8

successful & retained [%] 100 98 95 82 55 22 5
failed & discarded [%] 5 15 32 51 70 88 99

(b) Effect of thresholding on local saliency

Fig. 11. Local saliency of image pairs that result in successful pairwise
image registration for the R/V Oceanus dataset. (a) A scatter plot of relative-
pose uncertainty versus local saliency for candidate image pairs satisfying a
minimum overlap criteria. Blue dots represent all attempted pairs whereas red
circles indicate those which were successfully registered. (b) Tabulated data
showing what fraction of failed registrations are pruned and what fraction
of successful registrations are retained when thresholding on different values
for the minimum local saliency threshold, Smin

L . For example, by using a
threshold of Smin

L = 0.4, we retain 95% of successful registrations, yet are
able to prune 32% of failed match attempts.

A. Salient Key-Frame Selection

During SLAM exploration, image saliency can be used to
pre-evaluate whether or not it would be beneficial to add a key-
frame to the graph. Naively adding nodes to the graph can
introduce a large number of meaningless variables, thereby
making SLAM inference computationally expensive. When
we have a measure of usefulness of the node, however, we
can intelligently choose which set of nodes to include in the
graph—only adding key-frames with high local saliency. For
this purpose, we use a minimum threshold on local saliency,
Smin
L , as a criteria for adding key-frames to the graph.
To determine this threshold, we examined the local saliency

score of underwater image pairs that resulted in successful
pairwise image registration, while simultaneously examining
the relative-pose certainty associated with their PCCS search
prior. Fig. 11 displays a scatter plot from this analysis using
data from the R/V Oceanus dataset (depicted earlier in Fig. 5).
Plotted as dots are all attempted pairwise image registra-
tions between nodes satisfying a minimum overlap criteria.
Out of this set, those pairs which resulted in a successful
pairwise image registration are circled. The results show a
strong correlation between image registration success and local
saliency. For those pairs which fall below a local saliency
level of SL < 0.4, we see that only a small fraction result in
registration success, and for those that do, they have a strong
PCCS search prior (i.e., low relative-pose uncertainty). Hence,
by discarding images with low local saliency, we see that we
can eliminate a large fraction of failed candidate pairs. In fact,
the empirical evidence shows that we can eliminate 30–70%
of the failed attempts by using a minimum saliency threshold
somewhere between Smin

L = 0.4–0.6.

B. Saliency Incorporated Link Hypothesis

One formal approach to hypothesizing link candidates is
to examine the utility of future expected measurements—also

known as information gain. For example, Ila et al. [73] use a
measure of information gain to add only informative links (i.e.,
measurements) to the SLAM pose-graph. Other example uses
can be found in control [74]–[76], where the control scheme
evaluates the information gain of possible future measurements
and leads the robot on trajectories that reduce the overall
SLAM localization and map uncertainty.

Following [73], we express the information gain of a
measurement update between nodes i and j as

I = H(X)−H(X|zij), (6)

where H(X) and H(X|zij) are the entropy before and after
measurement, zij , respectively. For a Gaussian distribution, Ila
et al. showed that this calculation simplifies to

I =
1

2
ln
|S|
|R|

, (7)

where R and S are the measurement and innovation co-
variance, respectively. In the case of our 5-DOF camera
observation model (1), the calculation of innovation covariance
becomes

S = R +
[
Hi Hj

] [Σii Σij

Σji Σjj

] [
Hi Hj

]>
, (8)

where Hi and Hj are the non-zero blocks of (1)’s Jacobian
and

[
Σii Σij

Σji Σjj

]
is the marginal joint covariance between nodes

i and j, which is efficiently recoverable within iSAM [33]. The
utility of evaluating (7) is that it can be used to assess which
edges are the most informative to add to the pose-graph—
before actually attempting image registration.

In the approach outlined above, an equal likelihood of
measurement availability is assumed. In other words, (7) as-
sesses the geometric value of adding the perceptual constraint
without regard to if, in fact, the constraint can be made. As
evident in our work, not all camera-derived constraints are
equally obtainable, and are in fact largely influenced by the
visual content within the scene. Candidate links with high
information gain may not be the most plausible camera-derived
links due to a lack of visual saliency. We argue that the act of
perception should play an equal role in determining candidate
image pairs.

Based upon the local saliency metric developed earlier,
and noting that SL ∈ [0, 1], we combine visual saliency
with expected information gain to arrive at a combined vi-
sual/geometric measure that accounts for perception:

IL =

{
I ·SL if SL ≥ Smin

L and I ≥ Imin

0 o.w.
(9)

Strictly speaking, (9) is no longer a direct measure of infor-
mation gain in the mutual information sense; however, it is
a scaled version according to visual saliency. This allows us
to prioritize candidate image pairs based upon their geometric
informativeness as well as their visual registrability.

Presumably two images that have high saliency but low
similarity have low probability of matching, so a similarity
measure (which depends on the pair of images) seems like it
would be better than just saliency, SL, in (9), which depends
only on one image. However, we found that implementing
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Fig. 12. Sample result for link proposal using saliency incorporated
information gain on the R/V Oceanus. Numbers in nodes indicate the relative
ordering of how informative links are (i.e., 1 for the most informative link).

similarity scores in (9), such as those reported by [50], [55]
and [57], does not produce the desired result in our application
for two main reasons:

1) Since our vocabularies are orders of magnitude smaller
than place recognition methods (O(100) vs. O(10k)),
we do not have enough visual variety in our quanti-
zation to accurately index imagery and support place
recognition similarity measures.

2) Spatial overlap between neighboring imagery is small
in our application—typically between 20% to 50%. We
tested term frequency-inverse document frequency (tf-
idf) similarity scoring as reported in [57], but found
that our small overlap results in very low tf-idf scores
due to common words occurring everywhere on the
hull. Alternatively, when testing with the cosine distance
between two BoW histograms, we found this yielded a
large distance measure due to the histograms having in-
adequate intersection, also because of the small overlap.

In our hull inspection application, we found that the com-
bined approach in (9) results in better link hypothesis than
(7) alone—forcing the link proposal scheme to lean toward
visually salient nodes among those that are equally informa-
tive. Fig. 12 depicts a sample result from the R/V Oceanus
dataset. The color of a proposed link indicates how informative
the link is (i.e., I), while the color of a node represents
how salient the imagery is (i.e., SL). In the first case, only
the geometry of the constraint is taken into account through
the calculation of information gain. In the second case, the
combined measure (9) guides the selection toward feature-
rich image pairs, rather than processing visually uninformative
images with high geometric gain. In doing so, it proposes
realistically achievable camera-derived candidate links.

V. RESULTS

This section reports experimental results evaluating our real-
time visual SLAM algorithm. The first dataset is from a Febru-
ary 2011 survey of the SS Curtiss (Fig. 13) using the HAUV.
The SS Curtiss is a 183 m long single-screw roll-on/roll-off
container ship currently stationed at the U.S. Naval Station
in San Diego, California. The hull survey mission consisted
of vertical tracklines, extending from the waterline to the
keel, spaced approximately 0.5 m apart laterally. The survey
started near the bow and continued toward the stern while
maintaining a vehicle standoff distance of approximately 1 m
from the hull using DVL measured range. This configuration

(a) SS Curtiss (b) USCGC Venturous

Fig. 13. Underwater hull inspection experiments conducted using the Bluefin
Robotics HAUV on the hulls of the SS Curtiss and the USCGC Venturous.

resulted in approximately 30% cross-track image overlap for a
∼45◦ horizontal camera field of view (in water). Occasionally
the vehicle was commanded to swim back toward the bow,
orthogonal to its nominal trackline trajectory, so as to obtain
image data useful for time-elapsed loop-closure constraints.
The total survey area comprised a swath of approximately
45 m along-hull by 25 m athwart hull for a total path length of
2.7 km and 3.4 hr mission duration. The camera was operated
at a fixed sample rate of 2 Hz, which resulted in a dataset of
24,773 source images. The dataset was logged using the LCM
publish/subscribe software framework [40], which supports a
real-time playback capability useful for post-mission software
development and benchmark analysis. Results presented here
are for post-process real-time playback using the visual SLAM
algorithm implementation as described in this paper.

A. Saliency-Ignored SLAM Baseline Results

For these experiments we ran the visual SLAM algorithm
in a “perceptually naive” mode to benchmark its performance
in the absence of saliency-based key-frame selection and
saliency-incorporated link hypothesis. For these tests we added
image key-frames at a fixed spatial sample rate resulting in
approximately 70% sequential image overlap, and used geo-
metric information gain only (i.e., not saliency incorporated)
for link hypothesis. We ran with three different levels of
link hypothesis: nplink = 3, nplink = 10, and nplink = 30,
where nplink represents the maximum number of proposed
hypotheses per node. We refer to the nplink = 30 case as the
“exhaustive SLAM result”, as all nominal nodes were added
and all geometrically informative links where tried. This brute
force result serves as a baseline for the number of successfully
registered camera links that can be obtained in this dataset.

The resulting 3D trajectory for the exhaustive SLAM case
is depicted in Fig. 14(a). It contains 17,207 camera nodes,
29,426 5-DOF camera constraints, and required a cumulative
processing time of 10.70 hours (this includes image regis-
tration and iSAM inference). Fig. 14(c) shows a top-down
view of the successful pairwise camera links (hypotheses),
illustrating where they spatially occurred in the 3D pose-graph.

Using this exhaustive SLAM result as a baseline, we eval-
uate the performance of our saliency metrics by applying our
local and global saliency algorithms to the exhaustive SLAM
graph and then overlay their result. In particular, Fig. 14(d)
shows that local saliency, SL, correlates well where successful
camera-edges occurred in the exhaustive SLAM graph. The
bottom of the hull had a high concentration of marine growth
(e.g., images A to F in Fig. 14(b)), making it visually feature-
rich for pairwise image registration—it also independently
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Fig. 14. Exhaustive, non real-time, baseline SLAM result for the SS Curtiss dataset for benchmark comparison. No saliency aiding is used in image key-frame
selection nor in link hypothesis; camera nodes are uniformly added to the pose-graph based upon distance traveled. (a) The exhaustive SLAM graph consists
of 17,207 nodes and 29,426 camera-derived edges (this includes along-track and cross-track edges); a link hypothesis factor of nplink = 30 per node is used.
(b) Sample imagery from along the hull—labels correspond to denoted locations in (d) and (e). (c) A top-down view of the pose-graph depicting where the
successful pairwise camera-derived edges occur. (d) A top-down view of the pose-graph with our local saliency metric, SL, overlaid. Note how SL predicts
well where successful camera registrations actually occur. (e) A top-down view of the pose-graph with our global saliency metric, SG, overlaid. In addition to
the colormap overlay, node size has been scaled by its saliency level for visual clarity. Note how SG’s character is distinctly different from the local saliency
graph. Global saliency highlights only a handful of regions as being visually novel relative to the rest of the hull.
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Fig. 15. Scatter plot depicting all attempted pairwise image hypotheses for
the exhaustive SLAM result as viewed in saliency space. Each dot represents
a single link hypothesis and indicates the (SLi

, SLj
) local saliency value for

the image pair; successfully registered image pairs are circled. Note the strong
positive correlation that exists between successfully registered pairs and their
local saliency values. For reference, hypotheses that would be eliminated by
a local saliency threshold of Smin

L = 0.4 lie outside the demarcated region.

received a high local saliency score; this is where the majority
of cross-track image registrations occurred. The vertical side
of the hull was relatively clean and thus feature empty (e.g.,
images G and H in Fig. 14(b)), so relatively few pairwise
registrations occurred in those regions—it also independently
received a low local saliency score.

More quantitatively, Fig. 15 depicts a scatter plot, in local
saliency space, of all proposed pairwise link hypotheses that
were attempted by the exhaustive SLAM result. Each dot
in the plot represents an attempted link registration between
camera nodes xi (candidate node) and xj (current node), while
each circle represents those pairs which resulted in image
registration success. Each axis in the graph represents the
individual local saliency levels (SLi

and SLj
) for the two

images. The plot shows a positively correlated distribution in

local saliency for registered links (i.e., circles). Successfully
registered links are concentrated in the top-right corner of
saliency space where both nodes have a high score. This dis-
tribution reveals that a large number of non-visually-plausible
links could in fact be pruned from the SLAM process by
incorporating local saliency into the key-frame selection and
link hypothesis generation.

B. Saliency-Informed SLAM Result

For this experiment we ran the visual SLAM algorithm
with saliency-based key-frame selection and saliency-informed
information gain enabled. Based upon our earlier tests with the
R/V Oceanus dataset (Fig. 11), we used a minimum saliency
threshold of Smin

L = 0.4 for both image key-frame selection
(demarcated region in Fig. 15) and link hypothesis. In non-
salient regions, we used a minimum time threshold to add
poses to the graph every 1 s for smoothed trajectory visual-
ization. The resulting saliency-informed SLAM trajectory is
depicted in Fig. 16. Using the saliency-based front-end, we
reduced the total number of image key-frames from 17,207
(in the exhaustive set), to only 8,728—a 49.3% reduction by
culling visually uninformative nodes from the graph. More-
over, the total processing time is only 1.31 hr, which is
2.6x faster than real-time. The tabulated values in Fig. 16(d)
and Fig. 17(b) summarize the overall computational efficiency
improvement.

In terms of saliency’s effect on SLAM performance, we
note that even with far less nodes in the graph (just 8,728
versus saliency-ignored’s 17,207), we were still able to achieve
almost the same performance as the baseline exhaustive SLAM
result in terms of estimated trajectory (Fig. 18), and better
than saliency-ignored SLAM with a similar or comparable
number of link proposals (i.e., nplink = 10 and nplink = 3). In
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(c) 2D top-down view of SLAM versus DR

Saliency-
No. of Saliency-ignored informed
Image key-frames 17,207 17,207 17,207 8,728
Hypoth. per node 30 10 3 3
iSAM CPU time (hr) 8.70 3.37 1.64 0.52
Image CPU time (hr) 2.00 1.05 1.31 0.79
Total CPU time (hr) 10.70 4.42 2.95 1.31
Speed up over real-time 0.3x 0.8x 1.1x 2.6x

(d) SLAM inference summary

Fig. 16. Real-time visual SLAM result for the SS Curtiss dataset using saliency driven image key-frame selection and saliency incorporated information
gain for link hypothesis. The saliency-informed SLAM graph consists of 8,728 image nodes and used nplink = 3 per node. The cumulative iSAM inference
time in this case is 0.52 hours, and when accounting for image processing time, the entire SLAM result can be computed in less than 1.31 hours, which is
2.6x faster than the actual mission duration time of 3.4 hours. (a) The blue dotted trajectory represents the iSAM estimate with camera constraints depicted
as red edges, while the gray trajectory represents dead-reckoned (DR). (b) The xy component of the SLAM trajectory estimate is plotted versus time, where
the vertical axis represents mission time. This depiction makes it easier to visualize the elapsed duration between loop-closure camera measurements. (c) A
top-down view of the SLAM estimate versus DR. The positions marked ‘A’ and ‘B’ are two examples of where large loop-closure events take place. The
images on the right depict the key-frames and registered loop-closure event, verifying the overall consistency of the metric SLAM solution. For visual clarity,
the yellow boxes indicate the common overlap between the two registered images. (d) A tabulated summary of the SLAM inference statistics. The actual
mission duration was 3.40 hr and totaled 24,773 images at 2 Hz.

fact, Fig. 17(a) shows that saliency-informed SLAM’s image
registration success rate was nearly 60% out of links that it
proposed whereas the saliency-ignored SLAM results were
all less than 20%. Moreover, when comparing the amount
of elapsed-time occurring between successful loop-closures
(Fig. 17(b)) we see that in the case of image pairs with more
than 1 hour of elapsed time between them that the saliency-
informed SLAM result obtained 1275% more links than the
comparable nplink = 3 case of saliency-ignored SLAM.

For easier loop-closure visualization, Fig. 16(b) depicts
a time elevation graph of camera registration constraints—
here the vertical axis indicates elapsed mission time. Camera
measurements with large time differences indicate large loop-
closure events—for example, the SLAM estimate was accurate
enough to register image pairs with over three hours of elapsed
time difference (events A and B in Fig. 16(c)). As Fig. 16(a)
and Fig. 16(c) show, this is a significant improvement over
the dead-reckoned odometry result. While saliency-ignored
SLAM also shows reduced error over DR, saliency-informed
SLAM substantially outperforms it by resulting in more ver-
ified links and less error relative to the baseline exhaustive
SLAM result—despite cases where it used a lesser number
of link proposals (e.g., nplinks = 3 versus nplink = 10). This

is because the saliency-informed result actively takes into
account the visual plausibility of imagery when considering
its utility for SLAM.

C. Global Saliency Results

Unlike the local saliency metric, the global saliency met-
ric reacts to rare or anomalous features. For evaluation,
three different hull data sets were tested: the R/V Oceanus
(Fig. 5(a)), the SS Curtiss (Fig. 13(a)), and the USCGC Ven-
turous (Fig. 13(b)).

1) R/V Oceanus: Fig. 5(d) shows that the global saliency
map on the hull of the R/V Oceanus can have low scores
even for locally salient imagery (e.g., weld lines). This is
because several of the vocabulary words (e.g., weld lines)
occur frequently throughout the environment—lowering their
overall idf score.

2) SS Curtiss: Fig. 14(e) shows that the global saliency
map, SG, has a macro scale character on the SS Curtiss
distinctly different from local saliency, SL. Global saliency’s
normalized idf score down-weights the inter-image occurrence
of visually prevalent features and marks only a few regions as
being globally rare relative to the rest of the hull (e.g., images
A, B, C, and D in Fig. 14(b)). These images correspond to
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Saliency-ignored Saliency-informed
nplink = 30 nplink = 10 nplink = 3 nplink = 3

∆t No. of pct. No. of pct. No. of pct. No. of
1 min plink 457,165 3% 124,653 12% 12,524 124% 15,553

vlink 23,125 18% 7,772 56% 829 524% 4,348
% success 3.6% 472% 1.9% 895% 6.6% 258% 17.0%

10 min plink 133,282 3% 25,182 18% 2,848 160% 4,565
vlink 16,476 16% 2,353 112% 293 902% 2,644
% success 12.4% 469% 9.3% 620% 10.2% 568% 57.9%

1 hour plink 38,701 6% 11,300 21% 1,001 239% 2,397
vlink 8,348 18% 527 281% 116 1,275% 1,479
% success 21.5% 286% 4.6% 1,324% 11.6% 532% 61.7%

(b) Tabulated success rate for a minimal elapsed time between key-frames of 1, 10, and 60 minutes

Fig. 17. Comparison of the link hypothesis success rate for the different SLAM results. Note that temporally sequential links are excluded from this analysis
as we start the time difference at greater than 1 minute (i.e., at least 120 images apart at 2 Hz image sample rate). (a) Plot of the image registration success
rate, defined as the number of verified links over the number of proposed links, for saliency-informed and saliency-ignored SLAM. The abscissa represents
the amount of elapsed time occurring between the proposed image pairs (i.e., dt = 30 means 30 minutes of elapsed mission time between the two key-frames
being attempted for registration). Links with a large time difference correspond to large loop-closure events. As can be seen, the saliency-informed link
proposal yields a higher success rate as compared to the saliency-ignored results, which is because the saliency-informed SLAM link proposal takes into
account the visual plausibility of attempted nodes. (b) A tabular comparison of proposed links (i.e., plink), verified links (i.e., vlink), and their resulting success
rate for the different SLAM results. The column “pct.” represents the percentage obtained by the saliency-informed result.
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Fig. 18. A plot of the Euclidean distance between the different trajectory
estimates relative to the baseline exhaustive SLAM result. The max difference
between saliency-informed and exhaustive SLAM is 1.10 m, whereas the DR
trajectory shows significantly larger discrepancy (21.39 m) due to navigation
drift. The other two saliency-ignored SLAM results also show larger discrep-
ancy relative to the exhaustive SLAM result throughout the mission.

regions of the hull where the scene content is distinct relative
to the rest of the hull.

3) USCGC Venturous: Fig. 19 shows results for the
USCGC Venturous survey, whose hull is covered with bar-
nacles, yielding a high local saliency score everywhere on the
hull (e.g., images B and E are representative of this barnacle
growth). In two distinct locations there were artificial targets
(inert mines) attached to the hull by divers for the inspection
experiment. These regions scored a high global saliency score
(i.e., images C and F) since they are rare relative to the rest
of barnacle imagery seen on the hull. Moreover, other visually
uncommon scenes, such as images A and D, also scored high
due to their absence of full barnacle cover.

In all three different hull evaluations, R/V Oceanus, SS Cur-
tiss, and USCGC Venturous, we see that global saliency
identifies anomalous (i.e., rare) scenes with respect to the rest
of the hull. For example, these visually distinctive regions
can serve as useful locations for planning paths within an
active SLAM framework for attempting loop-closure on the
hull, as reported separately in [71], [72]. One observation
worth noting is that global saliency does not necessarily imply
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Fig. 19. Local and global saliency maps for a survey on the hull of
the USCGC Venturous. (a) Most of the hull is covered in texture-rich
barnacles making the scene everywhere locally salient. In this case, camera
measurements and locally salient nodes are evenly distributed everywhere on
the hull. (b) Since the surface of the vessel is covered with marine growth
(e.g., imagery B and E) the globally saliency score is low those regions. On the
other hand, two artificial targets (images C and F), and distinguished scenes
where there are no barnacles (images A and D), score high global saliency
and are correctly denoted as rare areas on the hull.

texture-rich scenes, as demonstrated by images A and D of the
USCGC Venturous. In those images, note that it is the absence
of barnacle texture that designates those images as rare relative
to the rest of the hull environment.

VI. CONCLUSION

This paper reported on a real-time 6-DOF monocular vi-
sual SLAM algorithm for autonomous underwater ship hull
inspection. Two types of novel visual saliency measures were
introduced: local saliency and global saliency. Local saliency
was shown to provide a normalized measure of intra-image
feature diversity, while global saliency was shown to provide a
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normalized measure of inter-image rarity. Using three distinct
hull inspection datasets we showed how local saliency can be
used to guide key-frame selection, as well as how it can be
combined with information gain to propose visually plausible
links, and that global saliency can be used to identify visually
rare regions on the hull.
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