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Abstract—This paper reports on an integrated navigation
algorithm for the visual simultaneous localization and mapping
(SLAM) robotic area coverage problem. In the robotic area cov-
erage problem, the goal is to explore and map a given target area
in a reasonable amount of time. This goal necessitates the use of
minimally redundant overlap trajectories for coverage efficiency;
however, visual SLAM’s navigation estimate will inevitably drift
over time in the absence of loop-closures. Therefore, efficient
area coverage and good SLAM navigation performance represent
competing objectives. To solve this decision-making problem,
we introduce perception-driven navigation (PDN), an integrated
navigation algorithm that automatically balances between ex-
ploration and revisitation using a reward framework. This
framework accounts for vehicle localization uncertainty, area
coverage performance, and the identification of good candidate
regions in the environment for loop-closure. Results are shown
for a hybrid simulation using synthetic and real imagery from
an autonomous underwater ship hull inspection application.

I. INTRODUCTION

To enable robotic autonomous navigation over an area of
interest, a robot needs to explore and map the target area
while concurrently localizing itself accurately with respect to
the map that it builds. This autonomous navigation capability
involves three topics, namely simultaneous localization and
mapping (SLAM), path planning, and control. There have been
some prior efforts on merging SLAM and path planning into
an integrated framework—the major difficulty being that path
planning typically assumes that a map is known a priori, while
SLAM typically assumes that a path is given.

Recently, some approaches have started to evaluate the
resulting uncertainty in optimizing the path, such as Belief
Roadmaps (BRMs) [1], planning paths on SLAM pose-graphs
[2], and calculating possible information gain on a planned
path using Rapidly-exploring Random Trees (RRTs) [3]. The
BRM approach is closest to our own in that it considers the
state’s uncertainty when it is computing the objective function,
but is different from us as the nodes are sampled from a given
map and are not built online during SLAM. Valencia et al. [2]
perform SLAM first, then use the resulting pose-graph to plan
a path to a goal position considering information gain through
the graph. However, and most importantly, in these previous
studies online exploration was not considered—optimality was
evaluated only by the uncertainty of the robot and the map,
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not by time or area coverage. This is because exploration was
excluded in the evaluation, and the main focus instead was on
point-to-point path planning through a given map.

On the other hand, the SLAM community has also made
some efforts to add exploration functionality to SLAM, termed
“active SLAM”. Stemming from the seminal work of active
perception by Bajcsy [4], which pointed out that control
can improve the quality of sensor data, active SLAM is an
area in SLAM that tries to find the optimal action that can
improve map building and localization performance. Examples
of this line of research are found in [5]-[9]. Although these
approaches established a basis for combining control with
SLAM, they only applied the optimal control input and did
not globally solve for path planning.

In earlier work on autonomous exploration, Whaite and
Ferrie [10] introduced a way to explore considering the
uncertainty of the explored model. Although not directly
addressing the SLAM problem, their work considered the
reduction in model uncertainty through motion as a way to ex-
plore. Gonzalez-Banos and Latombe [11] proposed exploration
strategies analogous to the next-best-view (NBV) problem [12]
in computer vision.

There are some SLAM studies that consider SLAM perfor-
mance in the exploration phase. These integrated studies try
to search for an optimal solution to maximize area coverage
and SLAM performance at the same time. Makarenko and
Williams [13] presented an integrated exploration scheme
based on mutual information. Similarly, Bourgault et al. [14]
considered map coverage and localization accuracy in order
to generate an adaptive control action. Stachniss et al. [15]
pointed out the gist of this unsolved problem between SLAM
and exploration. Their SLAM implementation compares the
utilities associated with the actions of exploration and revisit in
order to determine whether to continue exploring or to revisit
a previous location. This formulation is similar to our own
in this regard, but additionally we consider the plausibility of
measurement availability in evaluating this utility. Recently,
Kollar and Roy [16] presented an exploration strategy using
Reinforcement learning. Because they assume a priori access
to a ground-truth map, their algorithm is trained to learn the
trajectory that maximizes the accuracy of the SLAM-derived
map. Another learning approach is presented in [17], where a
robot starts with initial policy parameters and updates them
through active policy learning with consideration of robot
motion dynamics.

An overarching assumption that our work makes is to start
from very little prior information on the area of interest.
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Fig. 1: Depiction of local/global saliency maps for a underwater hull
inspection survey of the SS Curtiss. Shown is a top-down view of the
zy trajectory. Nodes are color-coded by their saliency level, where 0
indicates non-salient and 1 is salient. A, B and C depict representative
sample imagery from the hull. In (c) the node size is scaled with the
global saliency level for easier visualization, and in (b) successful
pairwise image links are shown as gray edges.

Starting from no prior knowledge on the environment, our al-
gorithm, called perception-driven navigation (PDN), performs
SLAM online to build a map for localizing the robot in the
target area, while simultaneously planning paths to bound
navigation error, subject to efficient area-coverage in terms
of the total path length.

II. VISUAL SALIENCY

In visual SLAM, not all images are equal in terms of their
utility for keyframe registration. This is especially true in the
underwater environment, where the spatial distribution of good
visual features is not uniformly abundant. In this paper, we
adopt the visual saliency metrics defined earlier by Kim and
Eustice [18], [19]: local saliency (S1) and global saliency
(S¢). Each measure provides a normalized score from O to
1, where 1 indicates highly salient imagery and O indicates
non-salient imagery. These metrics are computed from a bag-
of-words (BoW) representation of the imagery where the
vocabulary is built online.

Fig. 1 depicts local and global saliency maps as applied
to a portion of a SLAM survey taken from an underwater
hull inspection mission. As shown, local saliency measures
the intra-image texture richness of the scene, which is highly
related to the ability to make successful pairwise keyframe
registrations, while global saliency measures the inter-image
rarity of a keyframe. As depicted, ‘A’ represents a non-salient
image, ‘B’ is a locally and globally salient image, and ‘C’ is a
locally but not globally salient image. In our application, the
robot measures these two saliency levels for every keyframe it
inserts into the SLAM pose-graph; as it proceeds on a mission,
it uses them in PDN’s reward calculation, discussed next.

III. PERCEPTION-DRIVEN NAVIGATION

Typically, SLAM is formulated as a passive process that
localizes and builds a map using whatever data sequence and
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Fig. 2: PDN’s block-diagram. Given access to the current SLAM
pose-graph and saliency map, PDN selects a set of candidate way-
points, plans a path to these waypoints, and compute rewards for
each of these waypoints. The reward, R”, is computed for each
waypoint k, where k = 0 corresponds to the reward from exploration
(.., Rexp = RY). Lastly, either a revisiting or exploration action is
executed to yield the maximum reward.

exploration trajectory it is provided. PDN is designed to sit one
layer above SLAM in that it represents an integrated frame-
work to evaluate rewards and execute actions to guide the robot
for better SLAM navigation and area coverage performance.
In this work, we have adopted the incremental smoothing
and mapping (iISAM) algorithm by Kaess et al. [20], [21]
as the SLAM back-end. In our application, constraints from
odometry, monocular camera, attitude, and pressure depth are
fused within iSAM [22].

PDN consists of three modules (Fig. 2) that will be pre-
sented in detail in the following subsections. While the normal
SLAM process passively localizes itself and builds a map,
PDN (i) clusters salient nodes into a set of candidate revisit
waypoints, (i) plans a point-to-point path for each candidate
revisit waypoint, and (iii) computes a reward for revisiting
each waypoint candidate. The calculated reward measures the
utility of revisiting that waypoint (i.e., loop-closure) versus
continuing exploration for area coverage. If the revisit action
is selected to be the next best control, the robot will revisit the
selected waypoint then return to the release point to resume
the nominal mission. By comparing the maximum reward for
revisiting or exploring, the robot is able to choose the next
best control step.

For the derivation of PDN, we start with the following
assumptions and problem definitions:

1) The boundaries of the target coverage area are given.

2) An initial reference trajectory is preplanned using this
information and covers the target area in efficient time.

3) The maximum allowable navigation uncertainty is de-
fined by the user, and will be used to trigger PDN’s
revisit decision.

4) No other prior information on the environment is pro-
vided. Planning and evaluation will be performed online
while the SLAM pose-graph is built.

Given the above assumptions, PDN solves for an intelligent
solution to the area coverage planning problem while consid-
ering SLAM’s navigation performance.

A. Waypoint Generation

Although all nodes in the pose-graph could be considered
as possible waypoints, evaluating the outcome for all possible
revisits is impractical. Moreover, due to the uneven spatial
distribution of feature-rich areas in the environment, not all
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Fig. 3: A depiction of waypoint generation. (a) Globally salient nodes
are shown overlaid on the thresholded locally salient nodes (gray).
Each cluster is roughly marked with a dotted ellipse for visualization.
Globally salient nodes are color-coded by their global saliency level,
and enlarged in size for visualization. (b) The resulting waypoints
for each cluster are shown (red dots). Each cluster is denoted by a
different color (red, blue, green, magenta and cyan).

nodes are visually plausible for loop-closure. Therefore, PDN
computes expected rewards for only a subset of candidate
nodes selected for their visual saliency level, resulting in only
a subset of locally and globally salient nodes being identified
as candidate waypoints.

First, we threshold acquired keyframes based upon their
local saliency level to generate a set of candidate nodes with
strong local saliency scores. In PDN, a local saliency threshold
of S7® = 0.5 is used. Next, an online clustering algorithm,
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [23], [24], groups locally salient nodes into local
neighborhoods, forming clusters. Finally, within each cluster,
we select a representative waypoint node by considering both
its visual uniqueness (i.e., high global saliency level) and
usefulness for loop-closure (i.e., lowest pose uncertainty).
This process allows us to compute the N, best candidate
waypoints for revisitation.

Fig. 3 shows a typical result. Plot (a) depicts globally salient
nodes overlaid on the thresholded locally salient nodes—a
dotted ellipse denotes the extent of each cluster. Within each
cluster, the node with the lowest pose uncertainty among
the globally salient nodes is selected as the representative
waypoint. The clustered waypoints, plot (b), are then sorted
by time and assigned with a waypoint number from 1 to
Nyp, where waypoint number 0 is reserved for the exploration
action.

B. Path Generation

Using this set of waypoints, the robot evaluates the reward
that can be obtained by revisiting versus exploring. In this
procedure, prior to the reward evaluation the robot computes
a shortest path from its current pose to each waypoint in
order to evaluate the expected reward along that path. In
our application, finding the shortest path can be viewed as
a traditional point-to-point path planning problem. We use
the global A* algorithm [25], but with the heuristic function
weighted by local saliency:

d(xi,x) = w(SE) /(i —xk)2 + (Y — ye)? + (21 — 21)2.
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Fig. 4: Point-to-point path planning example using a synthetic
saliency map for illustration. Blue dots represent non-salient nodes
in the graph and salient regions are marked red. The planned paths
are depicted with a sequence of green circles linking the start and
goal positions. (a) and (b) are sample point-to-point paths for two
different local saliency distributions. Note that saliency weighted A*
results in paths biased toward the salient regions in the environment.

The weight term, w(Sf), is modeled in such a way as to
double the Euclidean distance to nodes with zero saliency and
to preserve the original distance to nodes with full saliency,
w(SF) =2 — Sk.

Repeated bisection of sample nodes in the pose-graph yields
a sequence of nodes, called milestones, denoted {x,, }. During
the generation of these milestones, we interpolate between
milestones if necessary to complete a path, P = {x,}, that
a vehicle can follow during a revisit action. Fig. 4 shows
sample point-to-point paths for two different local saliency
maps. Using the current robot node as the starting point, the
computed paths reach the waypoint as the goal node. Note
that the resulting paths are biased toward passing through
salient regions in the environment due to the saliency weighted
heuristic function. Because local minima may occur with the
saliency weighting heuristic, we detect and avoid these using
a perturbation action [26] that tests using a pure Euclidean
distance heuristic.

C. Reward for a Path

Reward for a path is defined in terms of the robot’s
navigation uncertainty and achieved area coverage. For the
robot uncertainty, we use the terminating pose covariance, and
for the area coverage, we use the area coverage ratio as the
performance measure.

1) Saliency-based Measurement Probability: For each
point-to-point candidate path, we solve for the estimated
final robot uncertainty using an exactly sparse delayed-state
filter (ESDF) [27]. Using expected odometry and camera
measurements along the path, the robot can estimate the
final terminating covariance along that trajectory. However,
estimating the amount of information gained from future
camera measurements is not exact, and we need to develop
a way of approximating the camera measurement likelihood.
Camera measurements are binary, either success (1) or failure
(0), with the camera link event, L, being a Bernoulli random
variable. When adding a set of expected camera measurements,
we use local saliency to empirically model the likelihood
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Fig. 5: Construction of empirical probability of link success, Pr,
using prior data. The model is generated as a function of pairwise
saliency levels (St and Sr,). To model this, we use a scatter plot
of link trials, (a) and (b), using data from previous missions from
three different vessels (the R/V Oceanus, the USCGC Venturous, and
the USCGC Seneca). A coarse distribution for Pr(l = 1; S, St,)
is then built by calculating the ratio of verified links to the number
proposed links in each bin of the scatter plot (c). Then, surface-fitting
to this coarse result yields the final smooth distribution (d) and (e).

of successful registration in order to compute the expected
information gain along the path. The observation is that we
can model this probability using statistics from prior SLAM
and saliency results.

For the Bernoulli random variable, L, we seek to model
its probability of success, Pr. Because each link is associated
with two local saliency levels—the current node saliency, Sy,
and the target node saliency, Sy,,—we can build a probability
of link success as a function of these two saliency levels:

PL:PL(lzl;SLC,SLt)NBemoulli. (1)

To empirically measure this probability, we generate a scatter
plot from prior data and divide it into a set of bins with bin size
of § = 0.1 (Fig. 5(a)—(b)). The empirical probability of link
success is then calculated by counting the number of proposed
links versus the number of verified links in each bin, which
builds up a coarse model (Fig. 5(c)) as a function of the two
associated saliency values (the current node saliency and the
target node saliency). Then, this coarse model is smoothed
using surface fitting (Fig. 5(d)—(e)).

2) Robot Uncertainty (Uropot): For PDN, we use Fisher
information for evaluating the resulting covariance matrix for
integrated SLAM and path planning. Because the camera
measurement is not certain, we compute the expected informa-
tion gain from a path, and evaluate the expected terminating
covariance matrix. We use the determinant of the covariance
matrix as a measure of navigation uncertainty.

The process of constructing the information matrix using
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Fig. 6: Robot pose uncertainty propagation in PDN. Only the out-
bound revisit action is illustrated for simplicity (PDN computes the
information for the round-trip). The robot starts from node A moving
along the thick line, and reaches the current node 0 at time t. This
illustration shows construction of the PDN information matrix when
the robot executes a revisit action from the current node 0 to a revisit
point A. The revisit action is marked with a thin line linking 0 and
A with virtual nodes 1,2,3, and 4 along the revisit path to A. Nodes
A,B,C, and D are existing nodes in the pose-graph, and also are the
candidate nodes that these virtual nodes make camera measurements
with. The expected camera measurements are marked with a dotted
line between 1-4 and A-D.

an ESDF is illustrated in Fig. 6. Note that only the outbound
portion of the revisit action is shown for visual clarity (PDN
computes the information for the round-trip). The ESDF-based
approach is to construct a small extended information filter
(EIF) problem by adding a set of odometry constraints and
a set of expected camera measurements in the form of delta
information to the current information matrix, Ag. In the toy
example of Fig. 6, a robot starts from node A and moves along
the thick line, reaching the current node, denoted 0, at time .
To evaluate the terminating covariance from revisiting the A
node, two sources of delta information are added: one from
odometry, A.q4., and the other representing camera constraints,
Acan. Summing these three information matrices builds PDN’s
expected information matrix:

Apdn = A0 + Aodo + Acam- (2)

The expected delta information from odometry measure-
ments, Aqo, is built from a sequence of virtual nodes. Starting
from the current node, xg, the odometry noise covariance, Q,
and path, P = {x;,---,x,}, are summed for all expected
odometry measurements for the round-trip travel to the way-
point along the revisit path.

p—1
— T -1
AOdO - Z HOdO{,’i+1 ' Q1)1+1 . HOdOi"H»l Outbound
1=0

1
+ > Hly., Q' Hog,, , Inbound (3)
i=p



The noise for the odometry constraint, Q;;4+1, is scaled
with the travel distance between nodes x; and x;;;. The
odometry measurement model is the relative-pose between two
sequential nodes (x; and x;4;) and can be represented using
the tail-to-tail operation by Smith et al. [28]. The resulting
Jacobian, Heqo, ;. is sparse with nonzero block matrices on
the i and (i + 1)™ element. Hence, summing all odometry
information results in a block-tridiagonal matrix (Fig. 6).

For the camera measurements, we similarly add all expected
camera measurements along the revisit path. Because PDN
proposes the same number of link hypotheses, npink, as in
the normal SLAM process, there are multiple expected camera
measurements per each virtual node along the path. When
a virtual node is x; and the candidate paired for camera
measurement is node X, the first-order expected information
gain from camera measurements is calculated as

p—1
Acam = Z Z Pr, -H;ramc R 'Hcan,, Outbound
i=0 ceL;

1
+ >3 pp-HL, R 'Heu,, Inbound, (4)

i=p ceL;

where Hean, , is the camera measurement Jacobian [29], R
is the fixed camera measurement noise covariance, £; is the
index set of camera measurement candidates associated with
virtual node x;, and P;, = Pr(l = 1;5y,,SL,) is the empir-
ical probability of the link to be successful. Unlike odometry
measurements, not all expected camera measurements result
in registration success, which depends greatly upon the visual
feature distribution in the environment.

Finally, adding these three information matrices (2) yields
the expected information matrix for pursuing a virtual path
to the waypoint. For the reward calculation, we efficiently
obtain the terminating covariance, XX . from the expected
information matrix by computing the n'™ block-column of the
covariance matrix, 2 | as per [30],

*n2

Apdnzljn = I*na (5)

where 1., is the n®™ block-column of the n x n block

identity matrix. This formulation is computationally efficient
and avoids inverting the entire information matrix to recover
the round-trip pose covariance for the £ candidate waypoints.
Next, the terminating covariance for exploration is com-
puted by propagating the current SLAM pose covariance one
step forward. From the current SLAM node, we compute
the resulting covariance assuming that the previous odometry
holds for this one-step propagation too. Index r refers to the
current robot node, which is also the last node in the existing
pose-graph, and all nodes later than r are virtual.

Eexp = E7"—&-1,r-‘,—1 Hodorﬁr_*_l EW’HIdoT,T+1 (6)
Xrr+1 = Xp @ Xr—1,r (7)

o T
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r

Lastly, the reward term for robot uncertainty, Z/Ifobot, is
computed as the ratio of the localization uncertainty for
the next-best-action to the user-defined allowable navigation
uncertainty, > ,0w. For the Eth waypoint, the robot uncertainty

is defined as

e | e
0, if Zeol
k=0 1 |Eal]ow‘
u’r'obot = [Eexp| & .
— - otherwise
[Zattow | 6 > 9)
e
k>0 __ |2nn|6 k=1---.N
robot — 1 - b s LVwp
|Eallow| 6

where the sixth root of the 6-degree of freedom (DOF) pose
determinant is used [31], [32] to yield a measure with SI units
of m-rad.

Essentially, PDN compares the two propagated uncertainties
from revisiting and exploring, and then chooses the smaller
one whenever the exploration uncertainty exceeds the refer-
ence allowable uncertainty. When the revisit action has the
same or less value than pursuing exploration, the revisit does
not produce enough loop-closures to overcome the increased
navigation uncertainty from detouring. Note that in the previ-
ous studies by Bourgault et al. [14], Makarenko et al. [13],
and Stachniss et al. [15], revisiting is always expected to
be beneficial since there is no consideration for the actual
likelihood of obtaining the loop-closure. In our approach,
however, PDN has a realistic expectation for the likelihood
of camera loop-closures based upon visual saliency.

3) Area Coverage (Apqp): As a final step in the reward
calculation, we add a bias term for area coverage. Our purpose
is to cover a target area in a timely manner while considering
SLAM’s navigation performance. In other words, without
an area coverage term, there will be a trivial solution to
this problem—to repeatedly revisit to keep the localization
uncertainty small. To prevent this, the area coverage term for
the k™ waypoint is defined as the ratio of area-to-cover with
respect to the target-coverage-area, where the target coverage
area is provided by the user,

k
Ak o Ato_cover Atarget - Acovered + Aredundant 10
map ~ - . ( )

-Alarget Atargel

Here, Aqurge is the target coverage area, Acoverea iS the survey
area already explored, and Ajequndan 18 the expected redundant
area coverage produced by a revisiting action. This additional
area is the result of multiplication of the revisit path length
with the sensor field of view width and has nonzero value to
penalize the revisit action—it is zero for exploration.

4) Combined Reward: To fuse the two reward terms, we
introduce a weight, «, that controls the balance between the
pose uncertainty and area coverage terms. Although we seek
to maximize the reward, the formulation can be more intu-
itively understood when we consider each term as a penalty.
The uncertainty increase term corresponds to the penalty for
SLAM, where the action with minimal uncertainty increase
is preferred. The area coverage metric is the penalty in area
coverage when performing an action. By taking a weighted
sum of these two costs, we can evaluate the total penalty, ck,



for each waypoint k. The reward is the minus of this penalty,
and PDN selects an action with the largest reward, or in other
words, the one with minimal penalty:

¢t =
RN =

«Q 'ufobot + (1 - CK) : Aﬁlapv
—Cc*.

Y
(12)

By adjusting «, we can change the emphasis on robot
navigation uncertainty versus area coverage performance in
the reward evaluation. When oo = 0 no weight is imposed on
the pose uncertainty and the algorithm tries to cover the area
as fast as possible. This corresponds to an open-loop survey
over the target area. On the other hand, when o = 1 full
weight is on the pose uncertainty and the robot will revisit
whenever it exceeds the allowable navigation uncertainty.
Our approach allows intuitive selection of weight [33] as it
balances between two normalized terms, whereas weighting
factors are experimentally determined in other works [34].

The revisiting waypoint, k*, is determined by maximizing
the reward,

k* = argmax R* = argmin C*, (13)

where k£ € {0,1,2,--- Nyp} and k£ = 0 corresponds to the
exploration action.

IV. RESULTS

In this section, we present an evaluation of PDN as applied
to a hybrid simulation generated from real ship hull inspection
data. We surveyed the SS Curtiss in February 2011 using
the Hovering Autonomous Underwater Vehicle (HAUV) [19]
and built a dense SLAM result as shown in Fig. 7. Using
this densely sampled SLAM result as a baseline, we plan a
simulated mission by subsampling from it a set of nominal
trajectory nodes—unused nodes are reserved for PDN to
simulate revisit actions. In the first set of tests, we provide a
synthetic saliency distribution on the mapping area to evaluate
the performance of PDN using known ground-truth. In the
second set of tests, we present hybrid simulation results
from PDN using the real underwater hull imagery. In all
cases of evaluation the PDN result is compared against two
typical survey patterns: “open-loop survey” and ‘“‘exhaustive
revisit”. Open-loop survey follows the preplanned nominal
trajectory without any revisiting, while exhaustive revisit uses
deterministic revisit actions to achieve loop-closures.

In our application, the SLAM navigation uncertainty is
dominated by xy positional uncertainty because depth is
bounded with absolute pressure-depth measurements. For a
given desired positional uncertainty bound, oy aiiow, the
overall allowable navigation covariance bound is computed as

2 2 2 2 2
Ozy,allow " 9d " Or "Op " Oh;

|Zallow‘ = U%y,allow '

where depth uncertainty o5 = 0.01 m and attitude uncertainty
o, = op = oy, = 0.1° (roll, pitch and heading) are used. In
this evaluation, we specify 0.y aliow = 0.25 m. The target
coverage area is computed using the vessel’s longitudinal
length ¢, width (half-beam) w, and draft h. In this evaluation,

seed nodes from baseline result

Subsampled nominal trajectory

Depth [m]
oA NO

Longitudinal [m]

Ll
SS Curtiss

HAUV

Fig. 7: Setup of the hybrid simulation for PDN’s evaluation. Gray
dots are nodes from the baseline SLAM result. The sampled nominal
trajectory in blue mimics a simulated mission by sub-sampling from
the baseline SLAM result. The nodes not used in the nominal
trajectory planning will be used as seed nodes in the simulated
control phase. Note that each seed node is associated with a real
underwater image. Thumbnails show the HAUV, the vessel we
surveyed (SS Curtiss), and sample imagery from its hull.

the target coverage area is A;grger = £ X (w + h) = 40 m X
(20 m + 10 m) = 1200 m?.

A. PDN with Synthetic Saliency Map

The first set of tests are with a synthetic saliency map
imposed over the area. We set a = 1 so that full weight
is on the pose uncertainty. The PDN action is verified for
two different types of saliency distributions—distributed and
concentrated, which we compare to exhaustive revisit control
and open-loop survey.

For the exhaustive revisit, the robot is commanded to revisit
a point on the first trackline in every other survey leg. In this
setup, the exhaustive revisit happens on a line along the bottom
of the hull (i.e., the keel). Because in practice this revisit
path is typically preplanned without knowledge of the actual
feature distribution in the environment, we use the same ex-
haustive revisit path for both the distributed and concentrated
saliency simulations. Hence, when we have a biased feature
distribution, as in our simulation, the exhaustive revisit path
can either be always on the salient regions (Fig. 8(a)) or never
pass through the salient regions (Fig. 8(e)).

Fig. 8 shows results for where the visual feature distribution
is biased, this is to show how the preplanned exhaustive revisit
either succeeds and fails depending on the saliency distribu-
tion. A measure of the robot’s pose uncertainty, v/|%..|, is
plotted in Fig. 8(c) and (g). Fig. 8(d) and (h) plot the ratio of
the remaining area to cover with respect to the path length,
where the black dots indicate points when revisit occurred.

When all of the exhaustive revisit paths land on the salient
region, the likelihood of obtaining loop-closure during the
revisit is higher, and the exhaustive revisit achieves tightly
bounded uncertainty for the robot pose. On the other hand,
when none of the revisit paths are on salient regions, as in the
case of Fig. 8(e), exhaustive revisit basically performs worse
than open-loop. Without meaningful loop-closures on the re-
visit, the control just increases path length and slows coverage
rate, as can be seen in Fig. 8(g) and (h). Unfortunately, the
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Fig. 8: PDN results for synthetic saliency maps. (a), (b), (e), (f) Trajectory of the robot with nodes color-coded by their saliency level. The
same color scheme as in Fig. 4 is used, while the black dots indicate points when revisit occurred. (c), (d), (g), (h) Pose uncertainty and
area coverage performance are compared for open-loop (green), exhaustive revisit (blue), and PDN (red). The performance of exhaustive
revisit strongly depends upon the spatial distribution of feature-rich regions in the target area and their intersection with the preplanned
revisit path, while for PDN it is able to automatically adapt to the saliency distribution in an intelligent way to maintain consistent navigation

performance.

salient region distribution cannot be known a priori when the
survey preplanning takes place. Note that for both cases, the
total path length and the area coverage rate stays the same for
the exhaustive revisit since it is preplanned. On the other hand,
from PDN’s point of view there is no difference between the
two saliency cases, since PDN is able to automatically adapt
its revisit actions to the environment, resulting in consistent
navigation performance and area coverage.

B. PDN with Real Image Data

We now evaluate PDN’s performance using real underwater
images from the same dataset. This time a weight factor of
a = 0.75 is used so that navigation uncertainty is only given
a mild preference over area coverage performance.

Similar to the synthetic images case, the uncertainty and
area coverage graph for PDN are compared with open-loop
and exhaustive revisit. Based upon our knowledge of the actual
resulting saliency distribution obtained in the baseline SLAM
result, we preplanned the exhaustive revisit path to be over
a visually salient region to provide the best possible case for
comparison with PDN. Because the exhaustive revisit is in-
tentionally planned over the salient region, the resulting graph
for exhaustive revisit shows the maximum obtainable SLAM
performance—maintaining low uncertainty, but producing an
exceeding number of revisits (12) and longer path length
(866.28 m).

Fig. 9(a)-(b) show the uncertainty change and area coverage
rate for open-loop, exhaustive revisit, and PDN. As shown in
Fig. 9(e), PDN adapted its trajectories to obtain visual loop-
closures to reduce the uncertainty whenever it exceeds the
allowable covariance bound. Note that the number of revisits
by PDN (five) is substantially smaller than the exhaustive

revisit case (twelve). PDN’s result uses a less number of
revisits while still maintaining full control over the navigation
uncertainty level. The loop-closing camera measurements are
clearly illustrated in the time elevation graph of Fig. 9(d)-(f).
The red lines in the graph depict the camera measurements
made by the loop-closures. Because the trackline spacing is
wide, there is no image overlap between adjacent tracklines,
and all of the camera measurements in the graph are from
revisit actions. As can be seen in the time elevation graphs,
PDN obtained a similar number of loop-closures as compared
to the exhaustive revisit case. A video showing the PDN
process on this hybrid simulation is available as multimedia
attachment pnd.mp4.

V. CONCLUSION

This paper presented perception-driven navigation, an active
SLAM approach that takes into account area coverage and
navigation uncertainty performance to efficiently explore a
target area of interest. A weighting factor, «, provides control
over this balance. A hybrid simulation using trajectories with
both synthetic and real underwater images were tested to
evaluate PDN’s performance. Results show PDN’s ability to
plan visually plausible revisit paths for loop-closure while
controlling the navigation uncertainty level and achieving
efficient area coverage rates.
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