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Abstract

This paper reports on an integrated navigation algorithm for the visual simultaneous localization and mapping
(SLAM) robotic area coverage problem. In the robotic area coverage problem, the goal is to explore and map a given
target area within a reasonable amount of time. This goal necessitates the use of minimally redundant overlap tra-
jectories for coverage efficiency; however, visual SLAM’s navigation estimate will inevitably drift over time in the
absence of loop-closures. Therefore, efficient area coverage and good SLAM navigation performance represent com-
peting objectives. To solve this decision-making problem, we introduce perception-driven navigation, an integrated
navigation algorithm that automatically balances between exploration and revisitation using a reward framework.
This framework accounts for SLAM localization uncertainty, area coverage performance, and the identification of
good candidate regions in the environment for visual perception. Results are shown for both a hybrid simulation
and real-world demonstration of a visual SLAM system for autonomous underwater ship hull inspection.

1 Introduction

To enable robotic autonomous navigation over an area
of interest, a robot needs to explore and map the
area, while localizing itself accurately on the map that
it builds. This autonomous navigation capability in-
volves three topics, namely simultaneous localization
and mapping (SLAM), path planning, and control. In a
conventional approach, SLAM is passive and typically
performed on preplanned or human-controlled trajec-
tories; however, it is well known that the robot’s trajec-
tory strongly affects SLAM’s performance. This inter-
woven nature of the navigation problem motivates our
research toward an active SLAM approach. A fully au-
tonomous agent needs the ability to plan a motion given
a high-level command, for example, a task-level com-
mand from a human supervisor to explore a given area.
In this instance, the robot should plan accordingly to
accomplish the given task, and should not require de-
tailed input by a human supervisor. Therefore, plan-
ning should be integral to robot navigation and should
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be considered concurrently with the SLAM problem. To
achieve this integrated navigation framework, this pa-
per presents a decision theoretic algorithm that solves
the SLAM and path planning problems concurrently.

In particular, this paper considers the task of area
coverage (i.e., to cover a certain area of interest) under
the constraint of bounded navigation error. Specifically,
our area coverage objective seeks a balanced control be-
tween exploration and revisiting in order to achieve bet-
ter SLAM performance. Without loop-closure, SLAM
will inevitably accumulate navigation drift over time;
thus, we need to revisit portions of the map to bound
error growth. At the same time we need to pursue ex-
ploration, which is a competing objective that requires
mapping the entire area within a reasonable amount of
time. Furthermore, and more importantly, SLAM, path
planning, and control are interwoven and, thus, insep-
arable problems. For example, imprecise SLAM results
affect the accuracy of the area coverage and, thus, the
planning accuracy, while a misplanned trajectory deteri-
orates SLAM’s performance. In this paper, we introduce
the idea of perception-driven navigation (PDN), a math-
ematical framework that seeks to balance the competing
objectives between SLAM, control, and exploration for
the autonomous robotic area coverage problem.

2 Background

We first briefly summarize studies from topic areas of
SLAM, path planning, exploration and their integrated
approaches in relation to PDN.



2.1 Related Work

Area-Coverage Path Planning: Although the basic
path planning algorithms often consider the problem
of point-to-point path planning with obstacle avoidance
given a map (i.e., find a shortest path between a start
position and a goal position), area-coverage planning
seeks to acquire such a map in the first place. This area-
coverage problem was addressed by Choset (2001), and
is known as the coverage path planning algorithm, which
is also closely related to robotic exploration and sen-
sor deployment (Li and Cassandras, 2005; Batalin and
Sukhatme, 2007). Many studies have tried to find an op-
timal solution to tackle this coverage problem in various
applications, including a robot vacuum cleaner (Baek
et al., 2011), robotic demining (Acar et al., 2003), and
terrain coverage for autonomous underwater vehicles
(Hert et al., 1996). Optimality is defined in terms of the
total amount of area covered with respect to the total
time taken. To efficiently model the area, a grid/cell-
based map representation is often adopted (e.g., an oc-
cupancy grid), so that optimality can be efficiently eval-
uated by the number of cells covered with respect to the
total time taken. However, uncertainty in the localiza-
tion and mapping phase is not considered; these pre-
vious studies focused on generating preplanned paths
without considering localization or mapping error.

Belief Space Path Planning: There have been some
efforts on merging SLAM and path planning into an in-
tegrated framework. The major difficulty in coupling
path planning and SLAM is that path planning assumes
that a map is known a priori while SLAM assumes that a
path is given. Even stochastic path planning algorithms
(LaValle and Kuffner, 1999; Kavraki et al., 1996; Kael-
bling et al., 1995) start with the assumption of a known
map. They focus on how to sample nodes from the
area and then plan a path over them. Recently, some
approaches have evaluated the resulting uncertainty in
optimizing the path, such as the work of Prentice and
Roy (2009) in Belief Roadmaps (BRMs), Valencia et al.
(2011) on planning paths on SLAM constrained maps, or
Levine (2010) on calculating possible information gain
on a planned path using Rapidly-exploring Random
Trees (RRTs). Of these, the BRM approach is closest to
our own in that it considers the state’s uncertainty when
it computes the objective function, though it is different
from us in that the nodes are sampled from a map that is
learned offline. In the work of Valencia et al., the authors
perform SLAM first, then use the resulting pose-graph
to plan a path to a goal position considering information
gain through the graph.

Importantly, exploration was not considered in these
previous studies. Their optimality was evaluated only
by the uncertainty of the robot and the map, not by time
nor area. This is because exploration was excluded in
their evaluation, where the main focus was instead on

point-to-point path planning. Our approach broadens
the optimality definition to take into account area cover-
age together with SLAM performance by including the
area coverage rate in the cost function itself (since our
focus is on area covering navigation).

Active SLAM: The SLAM community has also made
some efforts to add exploration functionality within
SLAM, termed “active SLAM”. Stemming from the
seminal work of active perception by Bajcsy (1988), which
pointed out that control can improve the quality of sen-
sor data, these studies assume that a default exploration
policy exists and then undertake some variations for im-
provements. Active SLAM builds upon that notion and
seeks to find the optimal trajectory that can improve
both map building and localization performance.

Most active SLAM research consists of two parts:
(i) defining a metric to be used as a measure of informa-
tion gain and (ii) optimizing this measure to find con-
trol policies that maximize information gain. This line
of research is found in the work of Feder et al. (1999),
who used Fisher information (FI) as a metric in the ob-
jective function to construct an adaptive control action.
More recently, Sim (2005) and Sim and Roy (2005) used
FI to improve exploration, reporting the need to con-
sider the path in localization and mapping. Their work
pointed out the instability of the update step, which has
been further extended to account for the control action
by Davison et al. (2007). In this work, the authors con-
sidered a discrete set of actions to reduce state uncer-
tainty. Similarly, in Bryson and Sukkarieh (2005), simu-
lation results for unmanned aerial vehicles using a simi-
lar approach for on-line path planning was presented.
Their work determined the proper action and strate-
gies to improve the overall map quality on the basis of
mutual information (MI). Although this approach es-
tablished a basis for combining the control architecture
with SLAM, it only sought the optimal control input
and did not globally solve for path planning. Frintrop
and Jensfelt (2008) presented an active gaze control al-
gorithm for SLAM by defining the usefulness of a land-
mark and tracking these useful landmarks.

Aside from the active SLAM research, an optimal con-
trol strategy-based approach was introduced by Huang
et al. (2005), where the authors optimized over the un-
certainty of the last pose within a finite time window us-
ing a variant of model predictive control. In their work,
they pointed out that the computational cost increases
exponentially with the number of landmarks, the size
of the map, and the size of the time window. In all
of these prior studies, optimality has been defined very
similarly to the belief space path planning in that it has
considered only the localization uncertainty in the cost
function and not area coverage.

Integrated Navigation: Toward addressing the prob-
lem of perception-driven navigation within a fully in-
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tegrated approach, some studies have focused on solv-
ing for exploration strategies that simultaneously con-
sider both navigation and exploration performance. Al-
though not directly addressing the SLAM problem,
Whaite and Ferrie (1997) considered the reduction in
model uncertainty through motion as a way to explore.
Gonzalez-Banos and Latombe (2002) proposed explo-
ration strategies analogous to the next-best-view (NBV)
problem in computer vision. First discussed by Con-
nolly (1985), NBV seeks to find the best view of the scene
that reveals the model details, and thus can be consid-
ered similar to the active exploration problem.

Makarenko et al. (2002) presented an integrated ex-
ploration scheme based on mutual information to pro-
vide a balanced solution to maximize area coverage and
SLAM performance at the same time. Similarly, Bour-
gault et al. (2002) considered these two conflicting ob-
jectives in order to generate an adaptive control action.
Stachniss et al. (2005) pointed out the gist of this un-
solved problem between SLAM and exploration; their
SLAM implementation compares two utilities associ-
ated with the action of exploration and revisit. This
work is most similar to our own, but in their work ev-
ery measurement is considered to be equally available
while in our framework it is not. Importantly, Stachniss
et al. incorporated the cost of detours into the objective
function in evaluating the robot and map uncertainty
results. Recently, Kollar and Roy (2008) presented an
exploration strategy using reinforcement learning. Be-
cause they assume a priori access to the ground truth,
their algorithm is trained to learn the trajectory that
maximizes the accuracy of the map (i.e., minimizes the
error between the estimate and the ground truth). In
their paper, the authors recommended the use of uncer-
tainty in the absence of such true data. For a multi-robot
case, Julian et al. (2012) suggested an exploration strat-
egy using MI. Their work solves for an optimal SLAM
control strategy by evaluating the gradient of MI.

2.2 Our Approach

An attempt at categorizing the assumptions, objective
functions and computational costs of previous studies
are presented in Table 1. As seen, there is a gap be-
tween the areas of SLAM, exploration, and path plan-
ning, which is mainly due to the fact that each approach
makes different assumptions on what priors are avail-
able. Active SLAM only focuses on the robot uncer-
tainty from SLAM, and area coverage planning only
solves for the optimal coverage plan without accounting
for the actual SLAM performance. Unlike these studies,
which are constrained to only one aspect of the naviga-
tion problem, our work pursues a balanced strategy for
both SLAM and area coverage in an integrated frame-
work. Integrating SLAM and planning is also a focus
of belief space planning, however, our approach solves

for an area coverage problem and differs from the belief
space planning in this regard, since belief space plan-
ning is typically only point-to-point. While integrated
active exploration is most similar to our own approach,
they impose an optimistic assumption of obtaining all
measurements predicted in the evaluation phase. This
assumption fails when perceptually-derived measure-
ments are not uniformly available throughout the en-
vironment, which is the case in our underwater visual
SLAM application, for example. Specifically, the nov-
elty of our work is in consideration of the visual per-
ception measurement likelihood within an integrated
framework of SLAM and planning.

3 Visual Saliency

In visual SLAM, not all images are equal. This is es-
pecially true in the underwater environment, where
the spatial distribution of good visual features is not
uniformly abundant. In this work, we adopt the vi-
sual saliency metrics defined earlier by Kim and Eustice
(2011, 2013b), which include a local saliency (SL) and
global saliency (SG) measure. Each measure provides a
normalized image score from 0 to 1, where 1 indicates
highly salient imagery and 0 indicates nonsalient im-
agery. These metrics are computed from a bag-of-words
(BoW) representation of the imagery using a vocabulary
that is built online. We refer readers to Kim and Eustice
(2013b) for more details.

Fig. 1 depicts local and global saliency maps as ap-
plied to a portion of a SLAM survey taken from an
underwater hull inspection mission. As shown, lo-
cal saliency measures the intra-image texture richness
of the scene, which is highly related to the ability to
make successful pairwise keyframe registrations, while
global saliency measures the inter-image rarity of a
keyframe. As depicted, ‘G’ and ‘H’ represent nonsalient
images, ‘A’ to ‘D’ are locally and globally salient images,
and ‘E’ and ‘F’ are locally but not globally salient im-
ages. In our application, the robot measures these two
saliency levels (i.e., local and global) for every keyframe
it inserts into the SLAM pose-graph, and it uses them
within PDN’s reward calculation to determine when
and where to execute loop-closure revisits.

4 Perception-Driven Navigation

Typically, SLAM is formulated as a passive process that
localizes and builds a map using whatever data se-
quence and exploration trajectory it is provided. PDN
is designed to sit one layer above SLAM in that it repre-
sents an integrated framework to evaluate rewards and
execute actions to guide the robot for better SLAM navi-
gation and area coverage performance. In this work, we
have adopted the incremental smoothing and mapping
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Table 1: Summary of related works. The previous studies are summarized with respect to prior knowledge, objective function, consideration
of measurement likelihood, and computational cost. In the calculation of time complexity, algorithms are compared assuming an n element
state vector. Area coverage planning (Hert et al., 1996; Choset, 2001; Baek et al., 2011) focuses on computing an optimal path offline where
the memory complexity scales with the size of the map and the planning parameters, and the major operation and time complexity are not
indicated in the table. In many studies, the EKF has been a popular choice for the SLAM back-end (Bourgault et al., 2002; Bryson and Sukkarieh,
2005; Davison et al., 2007). When the objective function includes MI-based terms, computing MI requires calculation of the covariance matrix
determinant, even when using a sparse information filter (Valencia et al., 2011). In the integrated navigation studies (Bourgault et al., 2002;
Stachniss et al., 2005), which are most similar to PDN, computational cost appears in two terms, one related to the SLAM inference and the
other related to the action path length.

Literature Prior
Objective function Measurement

Major operation Complexity
Uncertainty Area Likelihood Type

Area-Coverage
Hert et al. (1996) map no yes no camera/sonar – –
Baek et al. (2011) map no yes no laser – –
Choset (2001) map no yes no general – –

Active SLAM

Feder et al. (1999) no yes no no sonar determinant of covariance matrix O(n3)a

Sim and Roy (2005) no yes no no range sensor EKF update and m candidate states O(n2
·m)b

Bryson and Sukkarieh (2005) landmarks yes no no laser/vision determinant of covariance matrix O(n3)

Davison et al. (2007) no yes no no camera determinant of covariance matrix O(n3)

Belief Space
Prentice and Roy (2009) map yes no no beacon EKF process and update for k edges each of length l O(kl) c

Valencia et al. (2011) SLAM map yes no no laser inversion of information matrix O(n3) d

Integrated
Navigation

Bourgault et al. (2002) no yes yes no laser determinant of covariance matrix O(n3)
Stachniss et al. (2005) no yes yes no laser N particles and action path length l O(l ·N)
PDN (this paper) no yes yes yes camera covariance recovery cost S(n) and action path length l O(S(n) · l) e

an indicates state vector dimension.
bm is the candidate state space where the path is planned. Since no nodes are used twice, m will be decreasing.
cFrom pre-sampled nodes, the algorithm considers k edges between nodes each of length l.
dThis inversion happens once before planning. With pre-computed inversion, the online time complexity is O(e log2n) where e is the

number of edges. Note that if we were to use their planning scheme concurrently with SLAM, the inversion needs to be performed in every
evaluation step.

eS(n) is the cost for covariance recovery in the reward computation.
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(d) Waypoint generation

Fig. 1: Depiction of local and global saliency maps for a underwater hull inspection survey of the SS Curtiss conducted in 2011 (Kim and
Eustice, 2013b) and how they relate to PDN. Shown is a top-down view of the robot’s xy trajectory. Nodes are color-coded by their saliency
level, where 0 indicates nonsalient and 1 is salient. (a) ‘A’ to ‘H’ depict representative sample images from the hull—labels correspond to
denoted locations. (b) Successful pairwise image links are shown as gray edges, which spatially correlate well with local saliency. (c) The node
size is scaled with the global saliency level for easier visualization. (d) A depiction of the waypoint generation process. Gray dots represent
a set of locally salient nodes in the graph. Each cluster is denoted by a different color and shape (red stars, blue diamonds, green crosses,
magenta circles, and cyan triangles). The resulting waypoint for each cluster is shown as a red dot determined from global saliency.
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(iSAM) algorithm by Kaess et al. (2008, 2010) as the
SLAM back-end. In our application, constraints from
odometry, monocular camera, attitude, and pressure
depth are fused within iSAM (Kim and Eustice, 2013b;
Hover et al., 2012).

While the normal SLAM process passively localizes
itself and builds a map, PDN represents an active ap-
proach to SLAM that (i) clusters salient nodes into a
set of candidate revisit waypoints, (ii) plans a point-
to-point path for each candidate revisit waypoint, and
(iii) computes a reward for revisiting each waypoint
candidate. As depicted in Fig. 2, the calculated re-
ward measures the utility of revisiting that waypoint
(i.e., loop-closure) versus continuing exploration for
area coverage. If the revisit action is selected to be the
next best control, the robot will revisit the selected way-
point and then return to the release point to resume the
nominal mission. By comparing the maximal reward for
revisiting versus exploring, the robot is able to choose
the next best control step.

For the derivation of PDN, we start with the following
assumptions and problem definitions:

1. The boundaries of the target coverage area are
given.

2. The vehicle nominally executes a default explo-
ration policy.

3. The desired target navigation uncertainty is de-
fined by the user, and will be used to trigger PDN’s
revisit decision.

4. No other prior information on the environment is
provided. Planning and evaluation will be per-
formed online while the SLAM pose-graph is built.

Given the above assumptions, PDN solves for an intel-
ligent solution to the area coverage planning problem
while considering SLAM’s navigation performance. In
this work, the vehicle’s default exploration policy is a
typical boustrophedon pattern that provides nominal
area coverage of the ship hull exterior (Vaganay et al.,
2009).

4.1 Waypoint Generation

Although all nodes in the pose-graph could be consid-
ered as possible waypoints, evaluating the outcome for
all possible revisits is impractical. Moreover, due to the
uneven spatial distribution of feature-rich areas in the
environment, not all nodes are visually plausible can-
didates for registration anyway. Therefore, PDN com-
putes expected rewards for only a subset of candidate
nodes selected for their visual saliency level, resulting
in only a subset of locally and globally salient nodes be-
ing identified as candidate waypoints.

First, we threshold acquired keyframes based upon
their local saliency level to generate a set of candidate
nodes with strong local saliency scores. In PDN, a
local saliency threshold of S

wp

L = 0.5 is used. Next,
an online clustering algorithm, Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Es-
ter et al., 1996; Daszykowski et al., 2001), groups lo-
cally salient nodes into local neighborhoods, forming
clusters. Finally, within each cluster, we select a repre-
sentative waypoint node by considering both its visual
uniqueness (i.e., high global saliency level) and useful-
ness for loop-closure (i.e., lowest pose uncertainty). This
process allows us to compute the Nwp best candidate
waypoints for revisitation.

Fig. 1(d) shows a typical result. Within each cluster
of locally salient nodes, the node with the lowest pose
uncertainty among the globally salient nodes is selected
as the representative waypoint. For example, ‘C’, ‘D’
and ‘B’ belong to a cluster while ‘D’ has been selected as
the waypoint for this cluster. The clustered waypoints
are then sorted by time and assigned with a waypoint
number from 1 to Nwp, where waypoint number 0 is re-
served for the exploration action.

4.2 Path Generation

Using this set of waypoints, PDN evaluates the reward
that can be obtained by revisiting versus exploring. The
robot computes a shortest path from its current pose to
each waypoint in order to evaluate the expected reward
along that path. In our application, finding the short-
est path can be viewed as a traditional point-to-point
path planning problem. We use the global A* algorithm
(Russell and Norvig, 2003), but with the heuristic func-
tion weighted by local saliency:

d(xi,xk) =

w(Sk
L) ·

√

(xi − xk)2 + (yi − yk)2 + (zi − zk)2.
(1)

The weight term, w(Sk
L), is modeled in such a way as

to double the Euclidean distance to nodes with zero
saliency while preserving the original distance to nodes
with full saliency (recall that SL ∈ [0, 1]),

w(Sk
L) = 2− Sk

L. (2)

Repeated bisection of sample nodes in the pose-graph
yields a sequence of intermediate nodes, called mile-
stones. During the generation of these milestones, we
interpolate between milestones if necessary to complete

a path, P = {xp} = {xi}
p−1
i=0 , which represents a can-

didate loop-closure action. Fig. 3 depicts sample point-
to-point paths for two different synthetic local saliency
maps. Using the current robot node as the starting
point, the computed paths reach the waypoint as the
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SLAM

- add nodes

- add odometry

- add camera meas

PDN

- update waypoints (wps)

- plan a path to each wp

- compute reward (R   )

 revisit wp   = argmax R

Compute

 saliency

Revisit 

the k th 

waypoint

Return

to the 

release

point

k > 0 ?
yes

no

k=0: explorationcontinue on the nominal path

continue on the nominal path

k

k

k

Fig. 2: A block-diagram of the PDN framework. Given access to the current SLAM pose-graph and saliency map, PDN selects a set of candidate
waypoints, plans paths to these waypoints, and computes the rewards associated with these revisit paths. The reward, Rk , is computed for
each waypoint k, where k = 0 corresponds to the reward from exploration (i.e., Rexp = R0). Lastly, either a revisiting or exploration action is
executed to yield the maximum reward.
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Fig. 3: Point-to-point path planning example using a synthetic
saliency map for illustration. Cyan dots (light gray in black and white
print) represent nonsalient nodes in the graph and salient regions are
marked red (dark gray in black and white print). The planned paths
are depicted with a sequence of green circles linking the start and goal
positions. (a) and (b) are sample point-to-point paths for two different
local saliency distributions. Note that saliency weighted A* results in
paths biased toward the salient regions in the environment.

goal node. Note that the resulting paths are biased to-
ward passing through salient regions in the environ-
ment due to the saliency weighted heuristic function
(1). Because local minima may occur with the saliency
weighting heuristic, we detect and avoid these using
a perturbation action (Kavraki and LaValle, 2008) that
tests using a pure Euclidean distance heuristic.

4.3 Reward for a Path

Reward for a path is defined in terms of the robot’s nav-
igation uncertainty and achieved area coverage. For the
navigation uncertainty, we use the terminating pose co-
variance, and for the achieved area coverage, we use an
area coverage ratio as the performance measure.

4.3.1 Saliency-based Measurement Probability

For each point-to-point candidate path, we solve for the
estimated round-trip robot pose uncertainty. Using ex-
pected odometry and camera measurements along the
path, the robot can estimate the final terminating pose
covariance along that trajectory. However, estimating
the amount of information gained from future camera
measurements is not exact, and we need to develop a

way of approximating the camera measurement likeli-
hood. Camera measurements are binary, either success
(one) or failure (zero), with the camera link event, L, be-
ing a Bernoulli random variable. When adding a set of
expected camera measurements, we use local saliency
to empirically model the probability of successful pair-
wise image registration. This probability is in turn used
to compute the expected camera measurement informa-
tion gain along the candidate path. The observation is
that we can model this probability using statistics from
prior SLAM and saliency results.

For the Bernoulli random variable, L, we seek to
model its probability of success, PL. Because each link
is associated with two local saliency levels—the current
node saliency, SLc

, and the target node saliency, SLt
—

we can build a probability of link success parameterized
by these two saliency levels:

PL = PL(l = 1;SLc
, SLt

) ∼ Bernoulli. (3)

To empirically measure this probability, we generate a
scatter plot from prior data and divide it into a set of
bins with bin size of δ = 0.1 (Fig. 4(a)–(b)). The empirical
probability of link success is then calculated by counting
the number of proposed links versus the number of ver-
ified links in each bin, which builds up a coarse model
(Fig. 4(c)) as a function of the two associated saliency
values (the current node saliency and the target node
saliency). Then, this coarse model is smoothed using
surface fitting (Fig. 4(d)–(e)).

4.3.2 Robot Uncertainty Term Uk
robot

We use Fisher information for evaluating the resulting
covariance matrix for integrated SLAM and path plan-
ning. Because camera measurements are not certain, we
compute the expected information gain along a path,
from which we evaluate the expected terminating co-
variance matrix. We use the determinant of this covari-
ance matrix as a measure of navigation uncertainty.

The process of evaluating this terminating covariance
is illustrated in Fig. 5. Note that only the outbound
portion of the revisit action is depicted for visual clar-
ity (PDN computes the information for the round-trip).
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Fig. 4: Empirical probability of link success, PL, as computed from prior data. The model is generated as a function of pairwise saliency levels
(SLc

and SLt
). To model this, we use a scatter plot of link trials, (a) and (b), using data from previous missions from three different vessels

(the R/V Oceanus, the USCGC Venturous, and the USCGC Seneca) each of different vessel size and visual feature distribution (Kim and Eustice,
2013b). A coarse distribution for PL(l = 1;SLc

, SLt
) is then built by calculating the ratio of verified links to the number of proposed links in

each bin of the scatter plot (c). Then, surface-fitting to this coarse result yields the final smooth distribution (d) and (e).

The approach is to construct a small SLAM instance by
adding a set of odometry constraints and a set of ex-
pected camera measurements in the form of delta infor-
mation to the current information matrix, Λ0. In the toy
example shown, a robot starts from node A and moves
along the thick line, reaching the current node, denoted
0, at time t. To evaluate the terminating covariance of
revisiting node A, two sources of delta information are
added: one from odometry, Λodo, and the other repre-
senting camera constraints, Λcam. Summing these three
information matrices builds PDN’s expected informa-
tion matrix:

Λpdn = Λ0 + Λodo + Λcam. (4)

The expected delta information from odometry mea-
surements, Λodo, is built from a sequence of virtual
nodes. Starting from the current node, x0, the odom-

etry noise covariance, Q, and path, P = {xi}
p−1
i=0 , are

summed for all expected odometry measurements for
the round-trip travel to the waypoint along the revisit

path,

Λodo =

p−1
∑

i=0

H⊤
odoi+1,i

·Q−1
i+1,i ·Hodoi+1,i

Outbound

+

1
∑

i=p

H⊤
odoi−1,i

·Q−1
i−1,i ·Hodoi−1,i

Inbound. (5)

The noise, Qj,i, for the odometry constraint is scaled
with the travel distance between nodes xi and xj . The
odometry measurement model is the relative-pose be-
tween two sequential nodes and can be represented
using the tail-to-tail operation by Smith et al. (1990).
The resulting Jacobian, Hodoj,i

, is sparse with nonzero

block matrices on the ith and (i + 1)th elements. Hence,
summing all odometry information results in a block-
tridiagonal matrix (Fig. 5).

For the camera measurements, we similarly add all
expected camera measurements along the revisit path.
Because PDN proposes the same number of link hy-
potheses, nplink, as in the normal SLAM process, there
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Fig. 5: Robot pose uncertainty propagation in PDN. Only the out-
bound revisit action is illustrated for simplicity (PDN computes the
information for the round-trip). The robot starts from node A moving
along the thick line, and reaches the current node 0 at time t. This illus-
tration shows construction of the PDN information matrix when the
robot executes a revisit action from the current node 0 to a revisit point
A (nonzero information is depicted by the gray matrix elements). The
revisit action is marked with a thin line linking 0 and A with virtual
nodes 1, 2, 3, and 4 along the revisit path to A. Nodes A, B, C, and D
are existing nodes in the pose-graph, and also are the candidate nodes
that these virtual nodes make camera measurements with. The ex-
pected camera measurements are marked with a dotted line between
1–4 and A–D.

are multiple expected camera measurements per each
virtual node along the path. When a virtual node is
xi and the candidate paired for camera measurement is
node xc, the first-order expected information gain from
camera measurements is calculated as

Λcam =

p−1
∑

i=0

∑

c∈Li

PL ·H⊤
camc,i

R−1Hcamc,i
Outbound

+

1
∑

i=p

∑

c∈Li

PL ·H⊤
camc,i

R−1Hcamc,i
Inbound, (6)

where Hcamc,i
is the camera measurement Jacobian (Kim

and Eustice, 2009), R is the (fixed) camera measurement
noise covariance, Li is the index set of camera measure-
ment candidates associated with virtual node xi, and
PL = PL(l = 1;SLc

, SLt
) is the empirical probability (3)

of the link to be successful. Unlike odometry measure-
ments, not all expected camera measurements result in
registration success, which depends greatly upon the vi-
sual feature distribution in the environment, this effect
is captured by PL.

Finally, adding these three information matrices as in
equation (4) yields the expected information matrix for
pursuing a virtual path to the waypoint. For the reward
calculation, we present two possible ways to efficiently
obtain the terminating covariance. The first is to use an

exactly sparse delayed-state filter (Eustice et al., 2006a)
to evaluate Σk

nn, from the expected information matrix
by recovering the nth block-column of the covariance
matrix, Σk

∗n, as per Eustice et al. (2006b),

ΛpdnΣ
k
∗n = I∗n, (7)

where I∗n is the nth block-column of the n × n block
identity matrix. This formulation is computationally ef-
ficient and avoids inverting the entire information ma-
trix to recover the round-trip pose covariance for the k

candidate waypoints.
Alternatively, the terminating covariance can be effi-

ciently recovered from the square root information ma-
trix when available (e.g., this is accessible in iSAM).
Since we use iSAM as our SLAM back-end, we evaluate
this covariance in an efficient way by directly adding ex-
pected measurement information to a copy of the square
root information matrix using the same Givens rotation
mechanism as described in Kaess et al. (2008). Using
iSAM’s efficient covariance recovery (Kaess and Del-
laert, 2009), the terminating covariance can be evaluated
with constant time complexity O(1) (assuming that the
virtual nodes have been appended onto the information
matrix).

Next, the terminating covariance for exploration is
computed by propagating forward the current SLAM
pose covariance by one step. From the current SLAM
node, we compute the resulting covariance,

Σexp = Σr+1,r+1 = Hodor+1,rΣrrH
⊤
odor+1,r

. (8)

Here, index r refers to the current robot node, which is
also the last node in the existing pose-graph (all nodes
later than r are virtual). Assuming a zero order hold on
the previous odometry measurement, xr−1,r, then

xr+1,r = xr ⊕ xr−1,r, (9)

and Hodor+1,r is its head-to-tail Jacobian.
Lastly, the penalty term for robot uncertainty, Uk

robot, is
computed as the ratio of the localization uncertainty for
the next-best-action to the user-defined target naviga-
tion uncertainty, Σtarget. For the kth waypoint, the robot
uncertainty is defined as

Uk=0
robot =







0, if
|Σexp|

|Σtarget|
< 1

|Σexp|
1
6

|Σtarget|
1
6
, otherwise

Uk>0
robot =

|Σk
nn|

1
6

|Σtarget|
1
6

, k = 1, · · · , Nwp

, (10)

where the sixth root of the 6-degree of freedom (DOF)
pose determinant is used (Carrillo et al., 2012; Kiefer,
1974) to yield a measure with SI units of m · rad.

Essentially, PDN compares the two propagated un-
certainties from revisiting and exploring, and then
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chooses the smaller one whenever the exploration un-
certainty exceeds the desired target uncertainty. When
the revisit action has the same or less value than pur-
suing exploration, the revisit does not produce enough
loop-closures to overcome the increased navigation un-
certainty from detouring. Note that in the previous
studies by Bourgault et al. (2002), Makarenko et al.
(2002), and Stachniss et al. (2005), revisiting is always
expected to be beneficial since there is no consideration
for the actual likelihood of obtaining the loop-closure.
In our approach, however, PDN has a realistic expec-
tation for the likelihood of camera loop-closures based
upon visual saliency.

4.3.3 Area Coverage Term Ak
map

As a final step in the PDN evaluation, we evaluate an
area coverage term to promote efficient coverage. Our
purpose is to cover a target area in a timely manner
while considering SLAM’s navigation performance. In
other words, without an area coverage term, there will
be a trivial solution to this problem—to repeatedly re-
visit to keep the localization uncertainty small. To pre-
vent this, the area coverage term for the kth waypoint is
defined as the ratio of area-to-cover with respect to the
target-coverage-area,

Ak
map =

Ato cover

Atarget
=

Atarget −Acovered +Ak
redundant

Atarget
. (11)

where the target coverage area is provided by the user.
Here, Atarget is the target coverage area, Acovered is the
survey area already explored, and Aredundant is the ex-
pected redundant area coverage produced by a revisit-
ing action. This additional area is proportional to the
round-trip revisit path length and sensor field of view
width. Its effect is to penalize long revisit actions.

4.3.4 Combined PDN Reward Function

To fuse the two penalty terms, we introduce a weight α
that controls the balance between the pose uncertainty
and area coverage terms. The uncertainty increase term
corresponds to the penalty for SLAM, where the action
with minimal uncertainty increase is preferred. The area
coverage metric is the penalty in area coverage when
performing an action. By taking a weighted sum of
these two penalties, we can evaluate the total cost, Ck,
for each waypoint k. Reward is defined as negative cost,
and PDN selects an action with the largest reward, or in
other words, the one with minimal cost/penalty:

Ck = α · Uk
robot + (1− α) · Ak

map, (12)

Rk = −Ck. (13)

By adjusting α, we can change the emphasis on
robot navigation uncertainty versus area coverage per-
formance in the reward evaluation. When α = 0, no

weight is imposed on the pose uncertainty and the al-
gorithm tries to cover the area as fast as possible. This
corresponds to an open-loop survey over the target area.
On the other hand, when α = 1, full weight is on the
pose uncertainty and the robot will revisit whenever
it exceeds the target navigation uncertainty. In other
words, the value α controls the softness of the desirable
uncertainty constraint. With α = 1, the desirable uncer-
tainty acts as a hard constraint on the system whereas
the desirable uncertainty has no constraints on perfor-
mance when it is zero. Our approach allows intuitive
selection of weight as it balances between two normal-
ized terms, whereas weighting factors are experimen-
tally determined in other works (Du et al., 2011). The
effect of α’s selection is explored in §5.1.2.

The revisiting waypoint, k∗, is determined by maxi-
mizing the reward,

k∗ = argmax
k

Rk = argmin
k

Ck, (14)

where k ∈ {0, 1, 2, · · ·Nwp} and k = 0 corresponds to
the exploration action.

5 Results

In this section, we present an evaluation of PDN as ap-
plied to a hybrid simulation and a real-world ship hull
inspection experiment.

5.1 Hybrid Simulation

For the hybrid simulation, we use a dataset collected
from a survey of the SS Curtiss conducted in Febru-
ary 2011 using the Hovering Autonomous Underwa-
ter Vehicle (HAUV) (Kim and Eustice, 2013b). A dense
SLAM result (Fig. 6) was built from this dataset and is
used in the hybrid simulation. Using this densely sam-
pled SLAM result as a baseline, we plan a simulated
mission by subsampling from it a set of nominal trajec-
tory nodes—unused nodes are reserved for PDN to sim-
ulate revisit actions. In the first set of tests, we impose
a synthetic saliency distribution on the mapping area to
evaluate the performance of PDN using known ground-
truth. In the second set of tests, we conduct a hybrid
simulation using the actual recorded hull imagery.

In all cases of evaluation PDN is compared against
two typical survey patterns: “open-loop survey (OPL)”
and “deterministic revisit (DET)”. OPL follows a nom-
inal boustrophedon area-coverage exploration policy
without any revisiting, while DET does the same but
with additional deterministic revisit actions to achieve
loop-closures. This deterministic revisit strategy is typ-
ical of underwater vehicle operations, is usually pas-
sively preplanned or executed by a human pilot, and
serves as a practical real-world benchmark. In the re-
ported simulation, DET commands the vehicle to return
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L

W
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(b) Target coverage area

Fig. 7: Target coverage area calculation. The area of interest is approx-
imated by a bounding box where the target coverage area is computed
using the vessel’s length L, width (half beam) W , and draft H .

back to the first trackline on every other survey leg, re-
gardless of the actual feature distribution along the re-
visit trajectory.

In our application, the SLAM navigation uncertainty
is dominated by xy positional uncertainty because
depth, z, is bounded with absolute pressure-depth mea-
surements. For a given desired allowable positional
uncertainty, the overall target navigation covariance
bound used in equation (10) is set as

|Σtarget| = σ2
x,target ·σ

2
y,target ·σ

2
z ·σ

2
r ·σ

2
p ·σ

2
h, (15)

where in this evaluation we used positional uncertainty
σx,target = σy,target = 0.25 m, depth uncertainty σz =
0.01 m, and attitude uncertainty σr = σp = σh = 0.1◦

(roll, pitch and heading), which evaluates to |Σtarget|
1
6 =

1.49× 10−4 m · rad. The target coverage area (Fig. 7)
was computed using the desired survey longitudinal
length L, survey width (ship half-beam) W , and survey
depth (ship draft) H , which for this experiment was set
as Atarget = L × (W + H) = 40 m × (20 m + 10 m) =
1200 m2.

5.1.1 PDN with Synthetic Saliency Map

The first set of tests are with a synthetic saliency map
imposed over the area. We set α = 1 so that full weight
is given to the pose uncertainty. The PDN action is eval-
uated for two different types of saliency distributions,
distributed and concentrated, for which we compare
the results of PDN to DET and OPL exploration poli-
cies. For DET, the robot is commanded to revisit a point
on the first trackline in every other survey leg. In this
setup, the revisit happens on a path along the bottom
of the hull (i.e., the keel). Because in practice this re-
visit path is typically preplanned without knowledge of
the actual feature distribution in the environment, we
use the same deterministic revisit path for both the dis-
tributed and concentrated saliency simulations.

Fig. 8 shows the SLAM navigation results for the two
different saliency scenarios. When we have a biased fea-
ture distribution, as in our simulation, the determinis-
tic revisit path can either be always on the salient re-
gions, Fig. 8(c), or never pass through the salient re-
gions, Fig. 8(g). A measure of the robot’s pose uncer-

tainty, |Σrr|
1
6 , is plotted in Fig. 8(a) and (e). Fig. 8(b) and

(f) plot the ratio of the remaining area to cover with re-
spect to the path length, where the black dots indicate
instances when revisits occurred.

When all of the deterministic revisit paths land on the
salient region, the likelihood of obtaining loop-closures
during the revisit is higher, and DET achieves tightly
bounded uncertainty for the robot pose. On the other
hand, when none of the revisit paths are on salient re-
gions, as in the case of Fig. 8(g), DET basically performs
worse than OPL. Without meaningful loop-closures, the
revisit excursion just increases path length and slows
the overall coverage rate, as can be seen in Fig. 8(e) and
(f)—in practice, the visual saliency distribution cannot
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Fig. 8: Simulation results for synthetic saliency maps that result in either a good or poor visual feature distribution for deterministic revisit
strategies. The performance of DET strongly depends upon the spatial distribution of feature-rich regions in the target area and their inter-
section with the preplanned revisit path, while for PDN it is able to automatically adapt to the saliency distribution in an intelligent way
to maintain consistent SLAM navigation performance. (a), (b), (e), (f) Pose uncertainty and area coverage performance are compared for
OPL (green), DET (blue), and PDN (red). (c), (d), (g), (h) Trajectory of the robot with nodes color-coded by their saliency level—red/salient,
cyan/nonsalient—black dots indicate revisit trajectories.

be known in advance. Note that for both cases (con-
centrated and distributed saliency), the total path length
and area coverage rate stay the same for DET since it is
preplanned. On the other hand, PDN shows even per-
formance over both saliency cases since it is able to au-
tomatically adapt its revisit actions to the environment,
yielding consistent navigation and area coverage per-
formance under both scenarios.

5.1.2 Effect of α in PDN

Next, we examine the effect of the parameter α on
PDN’s performance. The parameter α controls how
much weight is given to the pose uncertainty versus
area coverage. When α= 0, PDN does not assign impor-
tance to the pose uncertainty, and the framework works
the same as OPL. When α = 1, full weight is given to
the pose uncertainty, and PDN tries to reduce the uncer-
tainty once it reaches the target uncertainty threshold.
In other words, the effect of α is to delay the execution
of revisiting by PDN.

The effect of α can be seen in Fig. 9, which presents
several SLAM trajectories with different α weight fac-
tors. The uncertainty is most well bounded when α =
1, and relaxes as α decreases. For area coverage, α =
0 shows the fastest coverage rate, which is slowed as α

increases (i.e., weights pose uncertainty more). As the
weight on pose uncertainty increases (from 0 to 1 in 0.25
increments), PDN tends to revisit the furthest waypoint
more often to result in larger loop-closures. When the

weight is small, however, PDN allows the pose uncer-
tainty to increase in order to cover the area faster. In this
case, revisit waypoints are likely to be nearby positions
so as not to delay area coverage performance.

5.1.3 PDN with Hybrid Simulation

In this experiment, we evaluate PDN’s performance us-
ing the actual recorded underwater imagery from the
2011 SS Curtiss dataset, the images are used for both
saliency generation and actual image registration. This
time a weighting factor of α = 0.75 is used so that navi-
gation uncertainty is only given a mild preference over
area coverage performance.

Like in the previous synthetic saliency map exper-
iment, the uncertainty and area coverage graph for
PDN are compared with OPL and DET. Based upon
our knowledge of the actual resulting saliency distri-
bution obtained in the baseline SLAM result, we pre-
planned the DET revisit path to be over a visually
salient region on the hull to provide the best possible
case for comparison with PDN. Because the DET re-
visit is intentionally planned over the salient region,
the resulting graph for DET shows an optimistic SLAM
performance—maintaining low uncertainty, but pro-
ducing a large number of revisits (twelve) and longer
path length (867.53 m).

Fig. 10(a) and (b) show the uncertainty change and
area coverage rate, respectively, for OPL, DET, and
PDN. As shown in Fig. 10(e), PDN adapted its trajec-
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(f) Trajectory (α = 1.00)

Fig. 9: Simulation results comparing PDN’s performance for different values of the α weighting factor when given a spatially distributed
saliency distribution. When α = 0, PDN performs open-loop control; when α = 1, PDN reacts instantly once the pose uncertainty exceeds the
target uncertainty level. (a) The change in pose uncertainty with respect to α. (b) Area coverage rate in terms of α. (c)–(f) PDN-aided SLAM
trajectories for the different values of α.
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Fig. 10: Hybrid simulation results using actual real imagery from the February 2011 SS Curtiss dataset. Similar to the synthetic saliency case, (a)
and (b) show the pose uncertainty and area coverage performance, respectively, with respect to the path length—annotated black dots indicate
the revisit trajectories. In surveys (c) and (e), nodes are color-coded by their measured visual saliency from the real imagery; for visual clarity,
nodes included in the revisit path are shown as black dots. The deterministic revisit was purposely preplanned over the salient region, note
that PDN is able to automatically find this same optimal path to follow (e). In the time elevation graphs (d) and (f), PDN shows a similar
number of successful loop-closures to DET.

tory to obtain visual loop-closures to reduce the uncer-
tainty whenever it exceeds the target covariance bound.
Note that the number of revisits by PDN (five) is sub-
stantially smaller than DET (twelve)—PDN uses a fewer
number of revisits while still maintaining full control
over the navigation uncertainty level. The loop-closing
camera measurements are clearly illustrated in the time
elevation graph of Fig. 10(d) and (f). The red lines in
the graph depict the camera measurements made by
the loop-closures. Because the inter-trackline spacing is
wide, there is no image overlap between adjacent track-

lines, and all of the camera measurements in the graph
are from revisit actions. As can be seen in the time ele-
vation graphs, PDN obtained a similar number of loop-
closures as compared to DET. A detailed depiction of
PDN operating during the hybrid simulation is avail-
able as multimedia attachment Extension 1.

For statistical significance, we repeated this experi-
ment over 10 trials of the hybrid simulation to evalu-
ate the performance of PDN. To conduct this test we
sampled 10 nominal seed trajectories from the base-
line SLAM result, along with two different deterministic
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are shown) and DET favorable and nonfavorable revisit paths used in
the 10-run multi-trial hybrid simulation.

cases. The first deterministic case, “DET-FAV”, results in
a favorable revisit plan over visually salient regions in
the environment, like previously depicted in Fig. 10(c).
The second deterministic case, “DET-NFV”, results in a
nonfavorable revisit path and arbitrarily crosses along
the nonsalient region located alongside the hull. Fig. 11
depicts two trials from this multi-trial experiment along
with the two deterministic plans used.

Fig. 12 summarizes the 10-run multi-trial results. In
Fig. 12(a) and (b) we see the pose uncertainty and area
coverage rate, respectively, versus mission path length
(only five of the available ten sample trajectories are
shown for visual clarity). In Table 2 we see a tabu-
lated comparison of PDN’s performance versus OPL
and DET for all 10 trials. Overall, PDN outperforms
OPL and DET in all sample trajectories, especially in the
case of DET-NFV, which is preplanned over an unfavor-
able (feature-poor) visual region. Coverage-wise, all of
PDN’s sample trajectories are able to complete the area
coverage task faster than either of the DET cases, using
anywhere from five to eight automatically selected re-
visits versus DET’s twelve. Fig. 13 depicts the round-
trip revisit actions for trial 2 of the multi-trial results
and clearly shows PDN’s adaptive revisit behavior as
opposed to DET’s nonadaptive behavior, which revis-
its regularly without regard to navigation uncertainty
or visual saliency.

5.2 PDN with Real-World Evaluation

In February 2013 the SS Curtiss was again surveyed
by the HAUV, but this time with PDN running in
real-time during the experiments. Similar to the sur-
vey in 2011 (Kim and Eustice, 2013b), the HAUV was
equipped with a monocular camera running at 2 Hz,
1200 kHz Doppler velocity log (DVL) for odometry, and
performed PDN on top of a default boustrophedon ex-
ploration policy. Following this default mission policy,
PDN clustered salient nodes to generate target revisit
points (§4.1), calculated paths to each target revisit way-
point (§4.2), and proposed the revisit path with the high-
est reward. When a proposed revisit was requested, the
HAUV executed the round-trip revisit path using the
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Fig. 13: A plot of DET and PDN revisit travel distances versus per-
centage survey area completion, sample results are shown for trial 2
of the multi-run hybrid simulation. Each bar represents a loop-closure
revisit detour where the height of each bar indicates the round-trip
distance traveled to accomplish the revisit. Notice that DET makes
12 revisits, which occur with a regular cadence (i.e., DET revisits on
every other trackline) whereas PDN makes only 5 revisits, which oc-
cur adaptively based upon the target navigation uncertainty. Over-
all, PDN completes the survey in a shorter total mission path length
(663 m) as compared to DET (879 m).

waypoint navigation method described by Hover et al.
(2012).

In this set of experiments, we compare the actual real-
time results from PDN versus an actual preplanned de-
terministic revisit mission and an actual open-loop sur-
vey mission, just like in the hybrid simulation case. A
value of α = 0.75 and target coverage area of Atarget =
1200 m2 were used in generating PDN’s real-time per-
formance, just like in the simulation, however for this
experiment we reduced the target xy positional uncer-
tainty from 0.25 m to 0.075 m for more precise localiza-
tion, which resulted in a target navigational uncertainty

of |Σtarget|
1
6 = 6.69× 10−5 m · rad.

Because in the 2011 survey the feature distribution
was mostly concentrated at the bottom of the SS Cur-
tiss’ hull (see Fig. 10(c)/(e)), we preplanned our 2013
DET revisit path to follow along the bottom of the
hull, assuming that a similar visual feature distribution
would be available as seen in 2011. However, unbe-
knownst to us, the SS Curtiss was dry-docked and its
hull cleaned sometime during the two year interval be-
tween 2011 and 2013, resulting in a drastically differ-
ent visual feature distribution on the hull. In the 2013
experiments, visual features were mostly concentrated
along the side of the hull, with few to any appearing
at the bottom of the hull. As a result of this, the pre-
planned DET path was unfavorable and yielded very
few loop-closures. Fig. 14(a) illustrates the resulting un-
bounded uncertainty caused by DET’s unsuccessful re-
visits. In fact, the HAUV was able to reduce pose un-
certainty only once with one of the DET revisit paths,
which highlights the practical real-time need for in-situ
active SLAM trajectory planning.

In comparison, PDN was able to detect and prop-
erly adapt its revisit trajectory to the actual visual fea-
ture distribution that it learned online from the visual
saliency map. PDN attempted three loop-closure revis-
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Fig. 12: Hybrid simulation results for the 10-run multi-trial experiment. As visualized in Fig. 11, the favorable deterministic case, “DET-FAV”,
has a preplanned revisit path over the visually feature-rich region while the nonfavorable deterministic case, “DET-NFV”, has an arbitrarily
preplanned revisit path over a feature-poor region. (a) and (b) show the pose uncertainty and area coverage performance with respect to the
mission path length; the legend is common between the two plots. Only five of the available 10 trials are depicted for visual clarity.

Table 2: Hybrid simulation results for the 10-run multi-trial experiment. The average (AVG), maximum (MAX), and minimum (MIN) value
obtained during the 10 trials are provided for total path length, maximum pose uncertainty, and total number of revisits. The ratio to open-loop

path length and the ratio to the target navigation uncertainty (i.e., |Σtarget|
1
6 ) are given in the parentheses. Positional error in xy-direction is

given below. AVG (90%) indicates the mean excluding 5% of the highest and 5% of lowest values.

OPL DET-NFV DET-FAV PDN

AVG 392.77 872.55 (222.15%) 875.29 (222.85%) 796.37 (202.76%)
Path length [m] MAX 393.75 898.35 (228.16%) 882.05 (224.02%) 992.63 (252.10%)

MIN 391.32 737.41 (188.44%) 866.81 (221.51%) 663.65 (169.59%)
AVG 3.23E-4 (216.8%) 6.63E-4 (444.0%) 1.47E-4 (98.2%) 1.87E-4 (125.3%)

|Σrr,max|
1
6 [m · rad] MAX 3.25E-4 (217.9%) 7.25E-4 (485.8%) 1.80E-4 (120.5%) 2.72E-4 (182.4%)

MIN 3.22E-4 (215.5%) 5.55E-4 (317.6%) 1.33E-4 (89.2%) 1.66E-4 (111.3%)
AVG 0 12 12 6.5

Revisits [#] MAX 0 12 12 8
MIN 0 12 12 5
AVG 0.0 0.1 198.5 102.2

Loop-closures [#] MAX 0.0 1.0 307.0 199.0
MIN 0.0 0.0 149.0 36.0

xy positional error [m] AVG (90%) 1.28 1.23 0.38 0.55
MAX 2.59 5.29 1.08 1.47

its during the area-coverage mission based upon our
preset target navigation uncertainty. Even in the case
where PDN’s second planned revisit could not result in
a significant uncertainty drop, PDN properly scheduled
a third revisit in order to keep the navigation uncer-
tainty bounded. Although PDN and DET show a simi-
lar overall mission path length (PDN 306.24 m and DET
297.73 m), only PDN was able to maintain a bounded
pose uncertainty within the target navigation uncer-
tainty threshold (Fig. 14(a)). Table 3 summarizes the
real-world implementation result in terms of total path
length, maximum pose uncertainty, and the number of
revisits. A video depicting PDN’s real-world perfor-
mance versus DET is provided in Extension 2.

Table 3: Real-world results for the February 2013 experiments on the
SS Curtiss. Shown are the total path length, maximum pose uncer-
tainty, and total number of revisits for OPL, DET, and PDN. Like
Table 2, the ratio to open-loop path length and the ratio to the target

navigation uncertainty (i.e., |Σtarget|
1
6 ) are given in the parentheses.

OPL DET PDN

Path length [m] 189.8 297.7 306.2
(100.0%) (156.8%) (161.3%)

|Σrr,max|
1
6 [m · rad] 1.07E-4 1.03E-4 0.72E-4

(160.6%) (155.0%) (107.6%)
Revisits [#] 0 12 7

6 Conclusion

This paper presented perception-driven navigation, an
active visual SLAM algorithm that takes into account
area coverage and navigation uncertainty performance
to efficiently explore a target area of interest. A weight-
ing factor, α, provides control over this balance. A hy-
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Fig. 14: Real-world results for the real-time PDN implementation used during a February 2013 survey of the SS Curtiss with the HAUV. (a)
and (b) depict the pose uncertainty and area coverage performance, respectively, with respect to the path length. Consistent with other figures,
the same color code scheme is used (i.e., OPL-green, DET-blue, and PDN-red). (c) and (e) are trajectories of the robot with nodes color coded
by their visual local saliency level. For visual clarity, nodes included in revisit paths are marked with black dots. The revisit waypoints (wp)
are denoted on the trajectory and their associated image keyframes are depicted above. (d) and (f) depict time elevation graphs highlighting
successful camera loop-closures. Unlike the very small number of successful loop-closures in the deterministic revisit case, PDN proves its
ability to automatically plan a feasible path to achieve visual loop-closures effectively.
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brid simulation using trajectories with both synthetic
and real underwater images were tested to evaluate
PDN’s performance. We also presented results from
the first-ever, real-time, real-world implementation of
PDN on a underwater ship hull inspection application,
showing its ability to autonomously plan visually plau-
sible revisit paths for loop-closure while controlling the
navigation uncertainty level and achieving efficient area
coverage rates.

PDN is a greedy approach in that it evaluates only
one-step forward exploration versus revisit actions. Ex-
tending the look-ahead horizon further into the future
could improve the overall strategy by allowing the al-
gorithm to delay the revisitation action for more oppor-
tunistic revisits. In the current PDN framework, the
saliency value for not-yet-mapped areas is linearly in-
terpolated in our calculation of expected information
gain. In order to extend the look-ahead horizon beyond
one-step, the algorithm must be modified to predict the
feature distribution and measurement likelihood into
yet-unknown areas of the horizon. Machine learning
(Rasmussen and Williams, 2005), sparse representation
(Rubinstein et al., 2010), and compressive sensing (Bara-
niuk, 2007) approaches shed some light toward this di-
rection of study.
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A Index to Multimedia Extensions

The multimedia extensions to this article are at:
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Hybrid simulation of perception-
driven navigation (PDN) using
the SS Curtiss 2011 dataset.

2 Video Real-world PDN implementation
on the SS Curtiss 2013.
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