
Continuous-Time Estimation for Dynamic Obstacle Tracking

Arash K. Ushani, Nicholas Carlevaris-Bianco,

Alexander G. Cunningham, Enric Galceran, and Ryan M. Eustice

Abstract— This paper reports on a system for dynamic
obstacle tracking for autonomous vehicles. In this work, we
seek to simultaneously estimate both the trajectory of the
obstacle and the obstacle’s shape. These two tasks are inherently
coupled—given only noisy partial views, one cannot accurately
estimate the trajectory of an obstacle if its shape is unknown,
nor can one estimate its shape without knowing its trajectory. To
address this challenge, we note that simultaneous localization
and mapping (SLAM), where a robot must build a map of
the environment while localizing itself within the map, presents
similar challenges. By treating the obstacle’s shape as a “map”
in the obstacle’s moving reference frame, we can formulate
the obstacle tracking and shape estimation similarly to SLAM.
Additionally, we use a continuous time estimation framework
to incorporate sensor data that is collected at a fast rate (e.g.,
light detection and ranging (LIDAR)). Using these methods, we
are able to obtain smooth trajectories and crisp point clouds
for tracked obstacles. We test our proposed tracker on real-
world data collected by our autonomous vehicle platform and
demonstrate that it produces improved results when compared
to a standard centroid-based extended Kalman filter (EKF)
tracker.

I. INTRODUCTION

As autonomous cars continue to develop, one important

challenge is to be able to accurately track dynamic obstacles

in the environment, such as other vehicles, bicycles, or

pedestrians. Accurate estimates of obstacle positions and

velocities are essential to any planning framework that seeks

to create safe trajectories. Not only does a planner need to

avoid obstacles in its environment, but often planners will

also try to predict the future actions of vehicles given an

accurate trajectory history [1, 2]. Additionally, a history of

an obstacle’s pose or its point cloud representation can be

used to classify the obstacle [3, 4].

Obstacle trackers can be prone to errors and biases if

they do not adequately model the shape of the obstacle

being tracked. For example, consider an autonomous vehicle

driving past a parked car while tracking it. At first, only

the rear of the car is observed. As the parked car is passed,

only the side is observed. Afterwards, only the front face

is observed. During this process, if we do not maintain an

estimate for the obstacle model, our tracker may falsely

believe that this parked car has moved due to the change in

our perspective. Errors such as this can have adverse effects

*This work was supported by a grant from Ford Motor Company via the
Ford-UM Alliance under award N015392.

A. Ushani, A. Cunningham, E. Galceran, and R. Eustice are with
the University of Michigan, Ann Arbor, MI 48109, USA {aushani,
alexgc, egalcera, eustice}@umich.edu.

N. Carlevaris-Bianco was with the University of Michigan,
Ann Arbor, MI 48109, USA during the tenure of this work.
nickcarlevaris@gmail.com.

(a) Original point cloud estimate given by the baseline system

(b) Point cloud estimate given by our proposed method

Fig. 1: Our proposed system tracking a car. Points in the point
cloud are colored by the time when they were observed, from blue
to yellow. The crispness of the generated point cloud is reflective
of the tracking accuracy. Best viewed in color.

for a planning system that relies on obstacle tracking to

produce a safe plan for the car. To account for biases such as

this, we can use an estimate of some model or representation

of the obstacle’s structure.

Another challenge is how to incorporate high rate sensor

data. Many current autonomous vehicles rely on one or more

light detection and ranging (LIDAR) laser sensors that are

collecting data at high rates, for example, collecting over

700,000 points per second. Many current trackers make an

implicit assumption that a set of data or a discrete “snapshot”

(i.e., set of LIDAR observations in succession collected from

a single scan of the obstacle) is collected at a single point

in time [5]. While this helps provide some known structure

to the obstacle, this does not account for any movement of

the obstacle while the snapshot is being collected, leaving

these trackers prone to errors. This can be exacerbated when

there are multiple sensors or different sensor modalities

that are not synchronized. However, due to the fast rate of

observations coming from these sensors, it quickly becomes

intractable to try to compute the pose at each time associated

with an observation. One method of handling sensors with

fast data rates is to use continuous time estimation, as

proposed by Furgale et al. [6] and further developed by

Anderson and Barfoot [7] and Anderson et al. [8]. This

allows us to represent the obstacle’s path not as a discrete



set of poses, but as a linear combination of continuous basis

functions, reducing the number of variables by several orders

of magnitude.

In this work, we address the above issues of errors and

biases by noting that the challenges inherent to accurate

obstacle tracking as described above are similar to those in

a typical simultaneous localization and mapping (SLAM)

problem. There are a few differences between obstacle

tracking and SLAM, however. For example, in obstacle

tracking the “map” is in the reference frame of the obstacle.

Additionally, we are estimating the obstacle’s motion, rather

than our own. Nonetheless, we will show that we can solve

the obstacle tracking problem using a formulation similar to

that of state of the art SLAM formulations. Specifically, our

contributions are:

1) Modeling and solving of obstacle tracking using a

formulation similar to SLAM.

2) Incorporating continuous-time estimation tools to han-

dle fast rate sensors.

3) Evaluating this method on a real-world dataset.

We show that this approach leads to more accurate tracks

on obstacle models compared to a standard centroid-based

extended Kalman filter (EKF) tracker. We evaluate the per-

formance in terms of tracking error and point cloud crispness

on a real-world dataset we collected using an autonomous

vehicle.

II. RELATED WORK

A popular approach to LIDAR-based obstacle tracking

is to extract some observation from each LIDAR snapshot

and feed this measurement into a filtering framework such

as a Kalman filter. This is often based on some geometric

property of the observed snapshot, such as a bounding box

[9] or a centroid [10].

Several obstacle trackers make use of some simple ob-

stacle model. There are different ways of estimating this

model. Petrovskaya and Thrun [11] use anchor points (such

as the center or corner of the perceived obstacle) to estimate

a geometric model in order to aid in tracking. Kaestner

et al. [12] use a generative model to extract a bounding

box from the obstacle. Darms et al. [13] model obstacles

as points or as boxes, depending on the situation, and track

the obstacles’ state in a Kalman filter. Vu and Aycard [14]

fit a box model to the obstacle. In the aerospace field, Baum

and Hanebeck [15] approximate an extended object with a

simple geometric shape such as an ellipse and then estimate

the parameters of this shape in the tracking problem. While

these simplistic methods are easy to implement and are often

fast, they make assumptions about the obstacle model that

can lead to tracking errors, which we seek to avoid.

There have been attempts to use iterative closest point

(ICP) for obstacle tracking [16]. Snapshots can be aligned

together and the relative poses can be used as observations

in a Kalman filter. However, this has been shown to be slow

and prone to local minima, especially when there are errors

in correctly segmenting and associating LIDAR observations

with an obstacle [17].

Fig. 2: A high level description of the problem. The obstacle
moves along some path x(t), displayed in blue. The obstacle is
modeled by nm model points, each depicted as a black dot. We have
observations such as zi, each depicted as a red dot. Note that each
snapshot roughly captures the geometric shape of the obstacle, but
is prone to errors due to the obstacle’s motion during its collection.
In this work, we do not make the assumption that the points zi in
a single snapshot correspond to the same obstacle pose x(t).

Other techniques for registering snapshots have been ex-

plored. Held et al. [5] propose a method to search for a

2D translation to register the most recent snapshot with

previously observed snapshots of the obstacle. This can then

be refined for rotation and finally used in a Kalman filter.

However, this makes the implicit assumption that sensor

data is available in snapshots and does not model the true

nature of the timing of the sensor, leaving it prone to errors

due to the obstacle’s movement during the collection of the

snapshot.

Some obstacle trackers take a somewhat different approach

and use an occupancy grid. Tanzmeister et al. [18] and

Danescu et al. [19] use a grid-based method where every cell

maintains a particle filter and is classified as being a static

or dynamic obstacle based on the statistics of the particles

in it.

Our proposed obstacle tracker seeks to leverage a gener-

alized obstacle model that can be used to track any kind

of obstacle (e.g., car, motorcycle, bicycle, or pedestrian).

Additionally, we are interested in leveraging continuous time

estimation, as proposed by Furgale et al. [6], in order to

properly handle the fast rate sensors commonly used in

this area, accounting for the obstacle’s motion during the

collection of a snapshot. This technique has been shown to

be a successful approach to SLAM problems with high rate

sensors [7] as is the case in our domain.

III. PROBLEM STATEMENT

Let x(t) be the state of the obstacle at time t, and let

z1:nz
be our nz observations, with each zi ∈ R

3 and each

associated with a time ti. Each observation is in the world

frame, and we assume that the vehicle has a good localization

system such that uncertainty in the world frame position

of these observations is negligible over the time scale of

tracking.

Let om1:nm
be a point cloud representation of the obstacle,

consisting of nm points expressed in the obstacle frame. (We

represent a point in the obstacle frame as op. Points are in



the world frame otherwise.) We explore the parameter nm

in §V. This is depicted in Fig. 2.

We seek to find the maximum of the joint posterior

density:

x(t)⋆, om⋆
1:nm

= argmax
x(t),om1:nm

p(x(t), om1:nm
| z1:nz

), (1)

solving for the obstacle pose over time x(t) and model m.

Note that we have framed the problem as a maximum a

posteriori estimation problem, similar to the formulation that

is used in [6].

We define the obstacle state at time t as x(t) =
[

x, y, z, φ, v, vz, φ̇
]⊤

, where the 3D position of the obstacle

in the world frame is given by (x, y, z), φ and v are,

respectively, the current heading of the obstacle and its

forward speed, vz is the speed in the vertical direction, and φ̇
is the rate of turning. We assume that the obstacle’s roll and

pitch are negligible for performance reasons, as any typical

obstacle in our environment would be constrained to a small

roll and pitch. However, if desired, roll and pitch could be

added to the state vector.

The front end to our system is similar to that of Leonard

et al. [20]. It segments LIDAR observations according to

which obstacle they belong to. These segments are then

linked through time to provide obstacle tracks. The state of

these tracks is then estimated by using the centroid of each

segment as a measurement for an EKF. This serves as our

baseline tracker in §V.

We use this EKF estimate to initialize our proposed track-

ing method. Similar to other trackers such as [5], we assume

that we have good segmentation of the LIDAR observations

and data association of the segments through time.

IV. METHOD

Our method simultaneously optimizes for obstacle state

over time x(t) as well as the point cloud model for the

obstacle om1:nm
through an iterative batch optimization

process. The following sections describe the formulation for

the models used, followed by the optimization procedure.

A. Formulation

Starting from (1) and applying Bayes’ rule, we have:

p
(

x(t), om1:nm
|z1:nz

)

=

ηp
(

x(t), om1:nm

)

p
(

z1:nz
|x(t), om1:nm

)

, (2)

where η is a normalization constant. We make the assumption

that the obstacle trajectory and the obstacle model are

independent:

p
(

x(t), om1:nm

)

≈ p
(

x(t)
)

p
(

om1:nm

)

, (3)

and thus we arrive at:

p
(

x(t), om1:nm
|z1:nz

)

≈

ηp
(

x(t)
)

p
(

om1:nm

)

p
(

z1:nz
|x(t), om1:nm

)

. (4)

We now describe the three terms.

Fig. 3: An illustration of our measurement model. The observation,
the red point, is associated with the closest model point, the green
point. The black points represent other points that make up the
obstacle model.

1) Process Model: p
(

x(t)
)

is the process model of the

obstacle. Our method is generic for any motion model. In our

application, we will use a constant velocity unicycle model

ẋ(t) = f
(

x(t)
)

+w(t) where:

f
(

x(t)
)

=





















v cosφ
v sinφ
vz
φ̇
0
0
0





















, (5)

and w(t) is zero-mean Gaussian noise with covariance

Quδ(t − t′), where δ(t) is the Dirac delta function. This

yields [21]:

p
(

x(t)
)

∝ exp

{∫ tf

t0

eu(τ)
⊤Q−1

u eu(τ)dτ

}

, (6)

where

eu(τ) = ẋ(τ)− f(x(τ)), (7)

and t0 to tf represents the timespan over which we wish to

compute p
(

x(t)
)

.

2) Obstacle Model: p(om1:nm
) is our prior on the obsta-

cle model. We use this prior to enforce that obstacles be of

a reasonable size, and do so by weakly constraining each

model point to be near the origin:

p(om1:nm
) =

nm
∏

i=1

N (omi;0,Rm), (8)

where Rm = diag(σ2
x, σ

2
y, σ

2
z), modeling the largest expected

length, width, and height of obstacle we wish to track.

3) Measurement Model: p(z1:nz
|x(t), om1:nm

) is our

measurement model. We treat our measurements z1:nz
as

being conditionally independent given the state x(t) and

the model om1:nm
. For each zi, we first associate our

observation with a point in the model m. We do this by

projecting zi from the world frame into the obstacle frame

at time ti to find ozi. Then, we find the nearest neighbor of
ozi in om1:nm

to find omzi
. Thus, our measurement model

becomes:

ozi =
omzi

+ ni, (9)

ezi =
ozi −

omzi
, (10)



where ni ∼ N (0,Rz) and ozi is the measurement zi
projected into the obstacle frame according to x(ti), as

shown in Fig. 3.

B. Continuous Time

In a discrete-time setting, we would instantiate discrete

variables representing the obstacle state at x(t0), . . . ,x(tnz
).

However, we treat each observation from our LIDAR sensor

to be a separate measurement (as opposed to a snapshot

of observations all assumed to have been taken at the

same time). Creating a state variable for each one of these

observations can quickly become intractable.

To address this issue, we use continuous time estimation

[6] where we model the state of the car as a linear combi-

nation of temporal basis functions:

x(t) = [φ1(t), φ2(t), . . . , φn(t)] c (11)

= Φ(t)c. (12)

As our basis functions, we select B-splines of degree 4

[22]. Each B-spline function has limited support, which helps

make the problem sparse.

Thus, instead of solving for a large number of state

variables, the variables we are solving for are reduced to just

the vector of weights c that operates on the basis functions.

The number of variables is reduced by several orders of

magnitude, depending on the resolution of B-splines desired.

We thus define the full set of variables that we are solving

for as:

θ =

[

c
om1:nm

]

. (13)

C. Gauss-Newton

We formulate a cost function for optimization by taking

the negative log-probability of (1), yielding:

− log (p(x(t), om1:nm
|z1:nz

)) = k + Jm + Ju + Jz , (14)

where

Jm =

nm
∑

i=1

1

2
m⊤

i Rmmi, (15)

Ju =

∫ tf

t0

eu(τ)
⊤Q−1

u eu(τ)dτ , (16)

Jz =

nz
∑

i=1

e⊤ziRze
⊤

zi
, (17)

and k is a constant.

To solve for θ, we start with an initial guess θ̄, we linearize

each of Jm, Ju, and Jz about θ̄. For each, we find δJ
δθ

⊤

,

which is of the form Aδθ+b. We take Am+Au+Az = A
and bm + bu + bz = b. Thus, we have the Gauss-Newton

update step Aδθ = −b, by which we iteratively update θ

until convergence.

When solving, we compute a full batch update using all of

the data for the obstacle, recomputing the data associations

for the measurement model for each iteration. Note that the

matrix A is sparse due to the limited support of the splines,

Fig. 4: Our autonomous platform, a Ford Fusion, which we used
in our experiments. There are four spinning Velodyne HDL-32E
3D LIDAR scanners on the roof. Additional sensors, such as an
Applanix POS-LV 420 INS, and compute resources are in the trunk
of the car.

which allows the use of sparse linear solvers that scale to

larger numbers of points.

To initialize θ, we use the centroid-based EKF tracker

described in §III. Specifically, we first fit B-splines to the

pose estimate history given by the EKF tracker to generate

our initial guess for c. Then, we project the measurements

z1:nz
into the obstacle frame and subsample these points

linearly in time to generate our initial guess for om1:nm
.

V. EXPERIMENTAL RESULTS

A. Setup

Our proposed method was evaluated using a Ford Fusion

autonomous platform, as shown in Fig. 4. Among other

sensors, this autonomous car has four Velodyne HDL-32E

3D LIDAR scanners spinning at roughly 10 Hz. An Applanix

POS-LV 420 INS is used for our vehicle’s pose estimation.

A global localization system similar to [23] allows us to

leverage prior maps of the ground plane to improve the

performance of the baseline tracker described in §III. Ex-

periments were run on a 2.80 GHz Intel Core i7-3840QM

CPU.

We replicate the experimental methodology used by Held

et al. [5] by looking at tracking error and point cloud crisp-

ness. We evaluated our method on a dataset collected around

the University of Michigan, Ann Arbor North Campus.

We evaluate our method in two ways. First, to evaluate

the quality of the positional tracking, we identify parked cars

in our dataset and evaluate the performance of our tracker

on these obstacles. The tracking system does not know that

these obstacles are not moving, and thus it tracks them

over time. Because we know these obstacles are stationary,

we essentially have a ground truth we can use to evaluate

our tracker. We call this the stationary set, containing 52

obstacles each observed for an average of 6.05 s. Then, we

look at the crispness of the point cloud created by dynamic

obstacle tracks. If we are properly tracking the obstacle, then

we would expect to see a clear, crisp point cloud view of it.

We call this the dynamic set, containing 52 obstacles each

observed for an average of 6.28 s. In both cases, we have



TABLE I: The tracking performance of our proposed tracker (for
two values of nm) as compared to the baseline EKF centroid tracker
over the stationary set.

Tracker Error Baseline EKF
Proposed

nm = 300

Proposed

nm = 3000

Pos. RMSE 0.388 m 0.162 m 0.183 m

Vel. RMSE 0.543 m/s 0.314 m/s 0.328 m/s
φ RMSE 0.527 rad 0.071 rad 0.090 rad

φ̇ RMSE 0.139 rad/s 0.026 rad/s 0.027 rad/s

manually discarded obstacles that are a result of errors in

segmentation.

B. Parameter Selection

We find that a relatively sparse representation of the

obstacle’s point cloud model om1:nm
can still produce good

results while greatly improving the runtime performance,

even when the model consists of just a few hundred points.

For these results, we set nm to 300 points. In fact, often

if we set nm too large, the model can tend to overfit any

inaccuracies in the initialization from the baseline system,

leading to poorer results, as reflected in Table I. Note that

after optimizing for x(t), we can then reproject all of our

observations z1:nz
according to x(t) into the obstacle’s

reference frame. Thus, we can recreate the full, dense, point

cloud.

The number of measurements nz that we have grows

quickly. Even if we only observe an obstacle for a

few seconds, we quickly accumulate hundreds of thou-

sands of observations. We downsample our observations

to 5000 observations per obstacle track when computing

p(z1:nz
|x(t), om1:nm

).
For the process model, we set Qu according to the

maximum accelerations and turning rates we expect a vehicle

to undertake. Therefore, we set:

Qu = diag
(

0.012 m2, 0.012 m2, 0.012 m2, 0.0012 rad2,

0.92 (m/s)2, 0.12 (m/s)2, 0.081652 (rad/s)2
)

.

For the obstacle model, we considered the largest size of

the obstacles we wish to track, and thus set σx = σy = σz =
10 m.

For the measurement model, we set Rz = σzI. When

choosing σz , we must consider both error due to the noise

of the LIDAR sensor and error due to the relative sparsity

of our model points. We chose σz = 0.50 m.

For the B-splines, we have a choice of how many B-spline

basis functions to use in representing our state. Using more

splines would allow us to more finely represent our state over

time; on the other hand, the more splines we use, the larger

θ will be, taking longer to solve. Thus, there is a tradeoff

to consider between accurate representation of state versus

computation time. We use a basis function per dimension for

every 0.5 s that the obstacle is tracked.

C. Pose Results

We report on the tracking error of the stationary set. We

compute position error and heading error by comparing the

TABLE II: The entropy of the point cloud of our proposed system
as compared to the baseline EKF centroid tracker. Ground Truth is
available for the stationary set by taking the LIDAR observations
in the world frame.

Tracker Entropy Ground Truth Baseline EKF
Proposed

nm = 300

Stationary Set 1.920 2.237 2.103
Dynamic Set — 2.860 2.756

(x, y, z) and φ estimate over time to the mean position and

heading, respectively. We compute velocity and rate of turn-

ing error by comparing the velocity and heading estimate to

an expected value of 0 m/s and 0 rad/s, respectively. These

results are shown in Table I. We see a clear improvement in

tracking performance over the baseline EKF centroid tracker

as described earlier, particularly in heading. Additionally,

note that the performance of the proposed tracker is better

with nm = 300 than nm = 3000, as explained above.

D. Point Cloud Crispness

In the general case, with obstacles that are not known to

be stationary, we evaluate the performance of our proposed

tracker with regards to the quality of the generated point

could. We want a crisp point cloud, or equivalently one with

low entropy. A crisper point cloud is indicative of better

tracking performance. We evaluate our proposed tracker by

using the point cloud entropy as defined by Sheehan et al.

[24]:

H[oz1:nz
] = − log





1

n2
z

nz
∑

i=1

nz
∑

j=1

N (ozi −
ozj ;0, 2σ

2I)



 .

The parameter σ allows us to tune the resolution at which

we evaluate crispness. We set σ = 5 cm.

The results are shown in Table II for both the stationary

set and the dynamic set. Note the improvement in both

cases of our proposed method over the baseline. To compute

the ground truth entropy of the stationary set, we project

all of the LIDAR observations into the world frame using

the known trajectory of our platform. As the obstacles in

the stationary set are not moving in the world frame, this

represents the best point cloud we can construct and thus is

the lowest entropy we should expect from an ideal tracker.

We can see that our proposed method reduces the entropy of

the point cloud by about 42 % relative to the ground truth

entropy as compared to the baseline tracker.

The stationary set has less entropy (i.e., it is more crisp)

in general when compared to the dynamic set. This is due to

the fact that in the stationary set, we commonly traveled

close to cars parked on the side of the road, creating a

denser point cloud. This is opposed to the dynamic set,

where obstacles are often being tracked from a distance

(for example, following a car on the road) or in different

lanes. Regardless, the improvement in point cloud crispness

is evident in both the stationary set and the dynamic set.



Fig. 5: The average residual after each iteration over the stationary
and dynamic set (log scale). The decreasing residuals are indicative
of better agreement in the process, measurement, and obstacle
models. Note how our proposed method converges quickly.

(a) Baseline (b) Proposed

Fig. 6: Our proposed method tracking a person riding a bicycle.
Points are colored by the time when they were observed, from blue
to yellow. Best viewed in color.

E. Convergence

We determine how well our method converges by consid-

ering the residual of the Gauss-Newton step at each iteration.

As can be seen in Fig. 5, the error converges consistently on

the tracking scenarios that we have evaluated. The decreasing

residuals are indicative of better agreement in the process

model, measurement model, and obstacle model. In our

experiments, the Gauss-Newton process is stopped when

convergence is reached or after a maximum of 10 iterations.

F. Runtime

We find that our proposed method takes an average of

42.9 ms per iteration for our choice of parameters. This was

measured on an 2.80 GHz Intel Core i7-3840QM CPU. Note

that the matrix A in the Gauss-Newton step is sparse, as only

about 2 % of the elements are non-zero.

VI. DISCUSSION

We find that our system generally works well under

nominal conditions. The tracking error for position, velocity,

heading, and rate of heading are all improved with respect

to the baseline EKF tracker. Additionally, the resulting point

cloud is crisper.

Unlike other obstacle trackers that rely on certain models

(such as a bounding box), we are able to track any object. For

example, see Fig. 6 for our tracker working on a bicyclist.

Fig. 7: A comparison of the estimated velocity and heading profiles
for the bus displayed in Fig. 8.

We find that heading and lateral position (i.e., perpendicu-

lar to the direction of travel) have particularly low error, even

when initialized poorly. For example, in Fig. 8, we see that

our proposed tracker has managed to develop a crisp model

of a bus despite a significant amount of heading error in

the baseline method. As can be seen in Fig. 7, our proposed

tracker creates a smoother velocity and heading estimate,

which is much more realistic for a bus that cannot change

its velocity or heading as abruptly as the baseline tracker

would suggest.

Certain situations are known to be troublesome. For exam-

ple, sometimes we encounter the situation shown in Fig. 9

where we might have multiple slightly translated views of

the car, which is indicative of tracking error. While this

is still a significant improvement over the EKF centroid

tracker, our proposed tracker has some trouble resolving the

discrepancy along the direction of travel. This is likely due

to bad initialization, leading the tracker to create an obstacle

model that has two translated instances of the rear face of

the car. Even though this is incorrect, this obstacle model is

consistent with the measurements and the tracker will believe

that it has correctly tracked and modeled the obstacle. We

believe that these issues can be addressed with a better prior

on the obstacle model, better initialization, or explicit ray

casting.

VII. CONCLUSIONS

We have demonstrated how tools from SLAM and

continuous-time estimation can be applied to obstacle track-

ing. We showed how this approach yields improved results

when compared to a baseline EKF centroid-based tracking

system. Future work will consider better priors and models,

such as a mesh obstacle model, and also tradeoffs between

improved error functions and runtime. Additionally, we will

consider better modeling the relationship between the obsta-

cle trajectory and the corresponding point cloud model.

REFERENCES

[1] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson., “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction,” in Proc. Robot.: Sci. & Syst. Conf., Rome, Italy,
July 2015.

[2] W. Xu, J. Pan, J. Wei, and J. Dolan, “Motion planning under un-
certainty for on-road autonomous driving,” in Proc. IEEE Int. Conf.

Robot. and Automation, Hong Kong, China, 2014, pp. 2507–2512.
[3] A. Teichman and S. Thrun, “Tracking-based semi-supervised learn-

ing,” Int. J. Robot. Res., vol. 31, no. 7, pp. 804–818, 2012.
[4] B. Douillard, D. Fox, F. Ramos, and H. Durrant-Whyte, “Classification

and semantic mapping of urban environments,” Int. J. Robot. Res.,
vol. 30, no. 1, 2010.



(a) Baseline (b) Proposed

Fig. 8: Our proposed method tracking a bus, top-down view. Points are colored by the time when they were observed, from blue to yellow.
Best viewed in color.

(a) Baseline (b) Proposed

Fig. 9: A fault case of our proposed tracker. While the tracking performance is improved, there is still error in the direction of travel.
Points are colored by the time when they were observed, from blue to yellow. Best viewed in color.

[5] D. Held, J. Levinson, S. Thrun, and S. Savarese, “Combining 3d shape,
color, and motion for robust anytime tracking,” in Proc. Robot.: Sci.

& Syst. Conf., Berkeley, CA, USA, 2014, pp. 1–8.
[6] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch

estimation using temporal basis functions,” in Proc. IEEE Int. Conf.

Robot. and Automation, St. Paul, MN, USA, 2012, pp. 2088–2095.
[7] S. Anderson and T. Barfoot, “Towards relative continuous-time

SLAM,” in Proc. IEEE Int. Conf. Robot. and Automation, Karlsruhe,
Germany, 2013, pp. 1033–1040.

[8] S. Anderson, F. Dellaert, and T. D. Barfoot, “A hierarchical wavelet
decomposition for continuous-time SLAM,” in Proc. IEEE Int. Conf.

Robot. and Automation, Hong Kong, China, 2014, pp. 373–380.
[9] A. Azim and O. Aycard, “Detection, classification and tracking of

moving objects in a 3d environment,” in Proc. IEEE Intell. Veh. Symp.,
Madrid, Spain, 2012, pp. 802–807.

[10] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully
autonomous driving: Systems and algorithms,” in Proc. IEEE Intell.

Veh. Symp., Baden-Baden, Germany, 2011, pp. 163–168.
[11] A. Petrovskaya and S. Thrun, “Model based vehicle detection and

tracking for autonomous urban driving,” Auton. Robot., vol. 26, no.
2-3, pp. 123–139, 2009.

[12] R. Kaestner, J. Maye, Y. Pilat, and R. Siegwart, “Generative object
detection and tracking in 3d range data,” in Proc. IEEE Int. Conf.

Robot. and Automation, St. Paul, MN, USA, 2012, pp. 3075–3081.
[13] M. Darms, P. Rybski, and C. Urmson, “Classification and tracking

of dynamic objects with multiple sensors for autonomous driving in
urban environments,” in Proc. IEEE Intell. Veh. Symp., Eindhoven,
Netherlands, 2008, pp. 1197–1202.

[14] T.-D. Vu and O. Aycard, “Laser-based detection and tracking moving
objects using data-driven markov chain monte carlo,” in Proc. IEEE

Int. Conf. Robot. and Automation, Kobe, Japan, 2009, pp. 3800–3806.
[15] M. Baum and U. D. Hanebeck, “Extended Object Tracking with

Random Hypersurface Models,” IEEE Trans. on Aero. and Elec. Sys.,
vol. 50, pp. 149–159, 2014.

[16] A. Feldman, M. Hybinette, and T. Balch, “The multi-iterative closest
point tracker: An online algorithm for tracking multiple interacting
targets,” J. Field Robot., vol. 29, no. 2, pp. 258–276, 2012.

[17] D. Held, J. Levinson, and S. Thrun, “Precision tracking with sparse
3d and dense color 2d data,” in Proc. IEEE Int. Conf. Robot. and

Automation, Karlsruhe, Germany, 2013, pp. 1138–1145.
[18] G. Tanzmeister, J. Thomas, D. Wollherr, and M. Buss, “Grid-based

mapping and tracking in dynamic environments using a uniform
evidential environment representation,” in Proc. IEEE Int. Conf. Robot.

and Automation, Hong Kong, China, 2014, pp. 6090–6095.
[19] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking

the driving environment with a particle-based occupancy grid,” IEEE

Trans. Intell. Transp. Sys., vol. 12, no. 4, pp. 1331–1342, 2011.
[20] J. Leonard et al., “Team MIT Urban Challenge technical report,”

Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory, Cambridge, Massachusetts, Tech. Rep. MIT-
CSAIL-TR-2007-058, 2007.

[21] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Aca-
demic Press, Inc., 1970.

[22] C. de Boor, A Practical Guide to Splines. Springer Verlag (New
York), 1978.

[23] J. Levinson and S. Thrun, “Robust vehicle localization in urban
environments using probabilistic maps,” in Proc. IEEE Int. Conf.

Robot. and Automation, Anchorage, AK, USA, 2010, pp. 4372–4378.
[24] M. Sheehan, A. Harrison, and P. Newman, “Self-calibration for a 3d

laser,” Int. J. Robot. Res., vol. 31, no. 5, 2012.


