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Abstract—To operate reliably in real-world traffic, an au-
tonomous car must evaluate the consequences of its potential
actions by anticipating the uncertain intentions of other traffic
participants. This paper presents an integrated behavioral infer-
ence and decision-making approach that models vehicle behavior
for both our vehicle and nearby vehicles as a discrete set of closed-
loop policies that react to the actions of other agents. Each policy
captures a distinct high-level behavior and intention, such as
driving along a lane or turning at an intersection. We first employ
Bayesian changepoint detection on the observed history of states
of nearby cars to estimate the distribution over potential policies
that each nearby car might be executing. We then sample policies
from these distributions to obtain high-likelihood actions for each
participating vehicle. Through closed-loop forward simulation of
these samples, we can evaluate the outcomes of the interaction
of our vehicle with other participants (e.g., a merging vehicle
accelerates and we slow down to make room for it, or the
vehicle in front of ours suddenly slows down and we decide
to pass it). Based on those samples, our vehicle then executes
the policy with the maximum expected reward value. Thus, our
system is able to make decisions based on coupled interactions
between cars in a tractable manner. This work extends our
previous multipolicy system [11] by incorporating behavioral
anticipation into decision-making to evaluate sampled potential
vehicle interactions. We evaluate our approach using real-world
traffic-tracking data from our autonomous vehicle platform, and
present decision-making results in simulation involving highway
traffic scenarios.

I. INTRODUCTION

Decision-making for autonomous driving is hard due to

uncertainty on the continuous state of nearby vehicles and,

in particular, due to uncertainty over their discrete potential

intentions (such as turning at an intersection or changing

lanes).

Previous approaches have employed hand-tuned heuris-

tics [28, 29, 41] and numerical optimization [17, 21, 42], but

these methods fail to capture the coupled dynamic effects of

interacting traffic agents. Partially observable Markov deci-

sion process (POMDP) solvers [2, 26, 35] offer a theoretically-

grounded framework to capture these interactions, but have

difficulty scaling up to real-world scenarios. In addition,

current approaches for anticipating future intentions of other

traffic agents [1, 22, 24, 25] either consider only the current

state of the target vehicle, ignoring the history of its past

actions, or rather require expensive collection of training data.

In this paper, we present an integrated behavioral anticipa-

tion and decision-making system that models behavior for both

our vehicle and nearby vehicles as the result of closed-loop

Fig. 1. Our multipolicy approach allows us to sample from the likely coupled
interactions between traffic agents. In this simulation at a four-way stop-
sign-regulated intersection (§VI-D), we evaluate the outcomes of the possible
intentions of other cars to make a decision for our car. The bottom and
right cars proceed through the intersection, while the other two cars yield.
This experiment shows that our multipolicy sampling strategy generates high-
likelihood samples over the coupled interactions of vehicles, and that is orders
of magnitude faster than uninformed sampling strategies commonly used in the
literature (§VI-D). Legend: human-driven trajectories (red); rollouts from our
multipolicy sampling strategy (purple); high-likelihood trajectories obtained
by an uninformed sampling strategy (dark blue); trajectories sampled by the
uninformed strategy before finding a high-likelihood sample (light blue).

policies. This approach is made tractable by considering only

a finite set of a priori known policies. Each policy is designed

to capture a different high-level behavior, such as following a

lane, changing lanes, or turning at an intersection. Our system

proceeds in a sequence of two interleaved stages of behavioral

prediction and decision-making. In the first stage, we estimate

the probability distribution over the potential policies other

traffic agents may be executing. To this aim, we leverage

Bayesian changepoint detection to estimate which policy a

given vehicle was executing at each point in its history of

actions, and then infer the likelihood of each potential intention

of the vehicle. Furthermore, we propose a statistical test based

on changepoint detection to identify anomalous behavior of

other vehicles, such as driving in the wrong direction or

swerving out of lanes. Individual policies can therefore adjust

their behavior to react to anomalous cars.

In the second stage, we use this distribution to sample

over permutations of other vehicle policies and the policies

available for our car, with forward-simulation of these sam-

pled intentions to evaluate their outcomes via a user-defined



reward function. Our vehicle finally executes the policy that

maximizes the expected reward given the sampled outcomes.

Thus, our system is able to make decisions based on closed-

loop interactions between cars in a tractable manner.

We evaluate our behavioral prediction system using a real-

world autonomous vehicle, and present decision-making re-

sults in simulation involving highway traffic scenarios.

The central contributions of this paper are:

• A changepoint-based behavioral prediction approach that

leverages the history of actions of a target vehicle to infer

the likelihood of its possible future actions and detect

anomalous behavior online.

• A decision-making algorithm that evaluates the outcomes

of modeled interactions between vehicles, being able to

account for the effect of its actions on the future reactions

of other participants.

• An evaluation of the proposed system using both traffic

data obtained from a real-world autonomous vehicle and

simulated traffic scenarios.

This work extends our earlier work [11], where we proposed

the strategy of selecting between multiple policies for our car

by evaluating them via forward simulation, and demonstrated

passing maneuvers using a real-world autonomous vehicle.

However, that work did not address anticipation of policies for

other cars. In contrast, this paper presents a fully integrated

behavioral anticipation and decision-making approach.

II. RELATED WORK

A. Related Work on Behavioral Prediction

Despite the probabilistic nature of the anticipation problem,

some approaches in the literature assume no uncertainty on

the future states of other participants [10, 31, 33]. Such

an approach could be justified in a scenario where vehicles

broadcast their intentions over some communications channel,

but it is an unrealistic assumption otherwise.

Some approaches assume a dynamic model of the obstacle

and propagate its state using standard filtering techniques

such as the extended Kalman filter [13, 18]. Despite provid-

ing rigorous probabilistic estimates over an obstacle’s future

states, these methods often perform poorly when dealing

with nonlinearities in the assumed dynamics model and the

multimodalities induced by discrete decisions (e.g. continuing

straight, merging, or passing). Some researchers have explored

using Gaussian mixture models (GMMs) [14, 22] and context-

sensitive models [19, 20] to account for nonlinearities and

multiple discrete decisions. However, this approach does not

consider the history of previous states of the target object,

assigning an equal likelihood to each discrete hypothesis and

leading to a conservative estimate.

A common anticipation strategy in autonomous driving [7,

16, 21] consists in computing the possible goals of a target

vehicle by planning from its standpoint, accounting for its

current state. This strategy is similar to our factorization of

potential driving behavior into a set of policies, but lacks our

closed-loop simulation of vehicle interactions.

Recent work uses Gaussian process (GP) regression to learn

typical motion patterns for classification and prediction of

agent trajectories [24, 25, 40], particularly in autonomous driv-

ing [1, 38, 39]. Nonetheless, these methods require collecting

training data to reflect all possible motion patterns the system

may encounter, which can be time consuming. For instance,

a lane change motion pattern learned in urban roads will not

be representative of the same maneuver performed at higher

speeds on the highway.

B. Related Work on Decision Making

The first instances of decision making systems for au-

tonomous vehicles capable of handling urban traffic situations

stem from the 2007 DARPA Urban Challenge [12]. In that

event, participants tackled decision making using a variety

of solutions ranging from finite state machines (FSMs) [29]

and decision trees [28] to several heuristics [41]. However,

these approaches were tailored for very specific and simplified

situations and were, even according to their authors, “not

robust to a varied world” [41].

More recent approaches have addressed the decision making

problem for autonomous driving through the lens of trajectory

optimization [17, 21, 42]. However, these methods do not

model the closed-loop interactions between vehicles, failing

to reason about their potential outcomes.

The POMDP model provides a mathematically rigorous

formulation of the decision making problem in dynamic, un-

certain scenarios such as autonomous driving. Unfortunately,

finding an optimal solution to most POMDPs is intractable [27,

32]. A variety of general [2, 5, 26, 35, 37] and domain-

specific [8] POMDP solvers exist in the literature that seek to

approximate the solution. Nonetheless, online application of

POMDP solvers [6] remains challenging because they often

explore unlikely regions of the belief space.

The idea of assuming finite sets of policies to speed up

planning has appeared before in the POMDP literature [3, 23,

36]. However, these approaches dedicate significant resources

to compute their sets of policies, and as a result they are

limited to short planning horizons and relatively small state,

observation, and action spaces. In contrast, we propose to

exploit domain knowledge to design a set of policies that are

readily available at planning time.

III. PROBLEM FORMULATION

We first formulate the problem of decision making in

dynamic, uncertain environments with tightly coupled inter-

actions between multiple agents as a multiagent POMDP. We

then show how we exploit autonomous driving domain knowl-

edge to make approximations to the POMDP formulation, thus

enabling principled decisions in a tractable manner.

A. General Decision Process

Let V denote the set of vehicles interacting in a local

neighborhood of our vehicle, including our controlled vehicle.

At time t, a vehicle v ∈ V can take an action avt ∈ A
v to

transition from state xvt ∈ X
v to xvt+1. In our system, a state



xvt is a tuple of the pose, velocity, and acceleration and an

action avt is a tuple of controls for steering, throttle, brake,

shifter, and directionals. As a notational convenience, let xt
include all state variables xvt for all vehicles at time t, and

similarly let at ∈ A be the actions of all vehicles.

We model the vehicle dynamics with a conditional prob-

ability function T (xt, at, xt+1) = p(xt+1|xt, at). Similarly,

we model observation uncertainty as Z(xt, z
v
t ) = p(zvt |xt),

where zvt ∈ Z
v is the observation made by vehicle v at time

t, and zt ∈ Z is the vector of all sensor observations made

by all vehicles. In our system, an observation zvt is a tuple

including the estimated poses and velocities of nearby vehicles

and an occupancy grid of static obstacles. Further, we model

uncertainty on the behavior of other agents with the following

driver model: D(xt, z
v
t , a

v
t ) = p(avt |xt, z

v
t ), where avt ∈ A is a

latent variable that must be inferred from sensor observations.

Our vehicle’s goal is to find an optimal policy π∗ that

maximizes the expected reward over a given decision horizon

H , where a policy is a mapping π : X × Zv → Av that

yields an action from the current maximum a posteriori (MAP)

estimate of the state and an observation:

π∗ = argmax
π

E

[

H
∑

t=t0

∫

X

R(xt)p(xt) dxt

]

, (1)

where R(xt) is a real-valued reward function R : X → R.

The evolution of p(xt) over time is governed by

p(xt+1) =

∫∫∫

X Z A

p(xt+1|xt, at)p(zt|xt)

p(at|xt, zt)p(xt) dat dzt dxt.

(2)

The driver model D(xt, z
v
t , a

v
t ) implicitly assumes that the

instantaneous actions of each vehicle are independent of each

other, since avt is conditioned only on xt and zvt . However,

modeled agents can still react to the observed states of

nearby vehicles via zvt . That is to say that vehicles do not

collaborate with each other, as would be implied by an action

avt dependent on at. Thus, the joint density for a single vehicle

v can be written as

pv(xvt , x
v
t+1, z

v
t , a

v
t ) = p(xvt+1|x

v
t , a

v
t )p(z

v
t |x

v
t )

p(avt |x
v
t , z

v
t )p(x

v
t ),

(3)

and the independence assumption finally leads to

p(xt+1) =
∏

v∈V

∫∫∫

Xv Zv Av

pv(xvt , x
v
t+1, z

v
t , a

v
t ) da

v
t dz

v
t dx

v
t .

(4)

Despite assuming independent vehicle actions, marginaliz-

ing over the large state, observation and action spaces in Eq. 4

is too expensive to find an optimal policy online in a timely

manner. A possible approximation to speed up the process,

commonly used by general POMDP solvers [2, 37] is to solve

Eq. 1 by drawing samples from p(xt). However, sampling over

the full probability space with random walks will yield a large

number of low probability samples (see Fig. 1). This paper

presents an approach designed to sample from high likelihood

scenarios such that the decision-making process is tractable.

B. Multipolicy Approach

We make the following approximations to sample from the

likely interactions of traffic agents:

1) At any given time, both our vehicle and other vehicles

are executing a policy from a discrete set of policies.

2) We approximate the vehicle dynamics and observation

models through deterministic, closed-loop forward simu-

lation of all vehicles with assigned policies.

These approximations allow us to evaluate the consequences

of our decisions over a limited set of high-level behaviors

determined by the available policies (for both our vehicle and

other agents), rather than performing the evaluation for every

possible control input of every vehicle.

Let Π be a discrete set of policies, where each policy

captures a specific high-level driving behavior. Let each policy

π ∈ Π be parameterized by a parameter vector θ capturing

variations of the given policy. For example, for a lane-

following policy, θ can capture the “driving style” of the

policy by regulating its acceleration profile to be more or less

aggressive. We thus reduce the search in Eq. 1 to a limited

set of policies. By assuming each vehicle v ∈ V is executing

a policy πv
t ∈ Π at time t, the driver model for other agents

can be now expressed as:

D(xt, z
v
t , a

v
t , π

v
t ) = p(avt |xt, z

v
t , π

v
t )p(π

v
t |xt, z0:t), (5)

where p(πv
t |xt, z0:t) is the probability that vehicle v is execut-

ing the policy πv
t (we describe how we infer this probability

in §IV). Thus, the per-vehicle joint density from Eq. 3 can

now be approximated in terms of πv
t :

pv(xvt , x
v
t+1, z

v
t , a

v
t , π

v
t ) = p(xvt+1|x

v
t , a

v
t )p(z

v
t |x

v
t )

p(avt |x
v
t , z

v
t , π

v
t )p(π

v
t |xt, z0:t)p(x

v
t ). (6)

Finally, since we have full authority over the policy executed

by our controlled car q ∈ V , we can separate our vehicle from

the other agents in p(xt+1) as follows:

p(xt+1) ≈

∫∫

X q Zq

pq(xqt , x
q
t+1, z

q
t , a

q
t , π

q
t ) dz

q
t dx

q
t

∏

v∈V |v 6=q





∑

Π

∫∫

Xv Zv

pv(xvt , x
v
t+1, z

v
t , a

v
t , π

v
t ) dz

v
t dx

v
t



 . (7)

We have thus far factored out the action space from p(xt+1) by

assuming actions are given by the available policies. However,

Eq. 7 still requires integration over the state and observation

spaces. Our second approximation addresses this issue. Given

samples from p(πv
t |xt, z0:t) that assign a policy to each vehi-

cle, we simulate forward in time the interactions of our vehicle

and other vehicles under their assigned policies, and obtain a

corresponding sequence of future states and observations. We

are thereby able to evaluate the reward function over the entire

decision horizon.



IV. BEHAVIORAL ANALYSIS AND PREDICTION VIA

CHANGEPOINT DETECTION

In this section, we describe how we infer the probability of

the policies executed by other cars and their parameters. Our

behavioral anticipation method is based on a segmentation of

the history of observed states of each vehicle, where each

segment is associated with the policy most likely to have

generated the observations in the segment. We obtain this seg-

mentation using Bayesian changepoint detection, which infers

the points in the history of observations where the underlying

policy generating the observations changes. Thereby, we can

compute the likelihood of all available policies for the target

car given the observations in the most recent segment, captur-

ing the distribution p(πv
t |xt, z0:t) over the car’s potential poli-

cies at the current timestep. Further, full history segmentation

allows us to detect anomalous behavior that is not explained

by the set of policies in our system. The changepoint-detection

procedure is illustrated by the simulation in Fig. 2. We next

describe the anticipation method for a single vehicle, which

we then apply successively to all nearby vehicles.

A. Changepoint Detection

To segment a target car’s history of observed states, we

adopt the recently proposed CHAMP algorithm by Niekum

et al. [30], which builds upon the work of Fearnhead and Liu

[15]. Given the set of available policies Π and a time series of

the observed states of a given vehicle z1:n = (z1, z2, . . . , zn),
CHAMP infers the MAP set of times τ1, τ2, . . . , τm, at which

changepoints between policies have occurred, yielding m+ 1
segments. Thus, the ith segment consists of observations

zτi+1:τi+1
and has an associated policy πi ∈ Π with parame-

ters θi.

The changepoint positions are modeled as a Markov chain

where the transition probabilites are a function of the time

since the last changepoint:

p(τi+1 = t|τi = s) = g(t− s), (8)

where g(·) is a pdf over time, and G(·) denotes its cdf.

Given a segment from time s to t and a policy π, CHAMP

approximates the logarithm of the policy evidence for that

segment via the Bayesian information criterion (BIC) [4] as:

logL(s, t, π) ≈ log p(zs+1:t|π, θ̂)−
1

2
kπ log(t− s), (9)

where kπ is the number of parameters of policy π and

θ̂ are estimated parameters for policy π. The BIC is a

well-known approximation that avoids marginalizing over the

policy parameters and provides a principled penalty against

complex policies by assuming a Gaussian posterior around the

estimated parameters θ̂. Thus, only the ability to fit policies

to the observed data is required, which can be achieved via a

maximum likelihood estimation (MLE) method of choice (we

elaborate on this in §IV-B).

As shown by Fearnhead and Liu [15], the distribution Ct

over the position of the first changepoint before time t can be

estimated efficiently using standard Bayesian filtering and an

online Viterbi algorithm. Defining

Pt(j, q) = p(Ct = j, q, Ej , z1:t) (10)

PMAP
t = p(Changepoint at t, Et, z1:t), (11)

where Ej is the event that the MAP choice of changepoints

has occurred prior to a given changepoint at time j, results in:

Pt(j, q) = (1−G(t− j − 1))L(j, t, q)p(q)PMAP
j (12)

PMAP
t = max

j,q

[

g(t− j)

1−G(t− j − 1)
Pt(j, q)

]

. (13)

At any time, the most likely sequence of latent policies

(called the Viterbi path) that results in the sequence of obser-

vations can be recovered by finding (j, q) that maximize PMAP
t ,

and then repeating the maximization for PMAP
j , successively

until time zero is reached. Further details on this changepoint

detection method are provided by Niekum et al. [30].

B. Behavioral Prediction

In contrast with other anticipation approaches in the lit-

erature which consider only the current state of the target

vehicle and assign equal likelihood to all its potential in-

tentions [16, 21, 22], here we compute the likelihood of

each latent policy by leveraging changepoint detection on the

history of observed vehicle states.

Consider the (m + 1)th segment (the most recent), ob-

tained via changepoint detection and consisting of observations

zτm+1:n. The likelihood and parameters of each latent policy

π ∈ Π for the target vehicle given the present segment can be

computed by solving the following MLE problem:

∀π ∈ Π, L(π) = argmax
θ

log p(zτm+1:n|π, θ). (14)

Specifically, we assume p(zτm+1:n|π, θ) to be a multivariate

Gaussian with mean at the trajectory ψπ,θ obtained by simulat-

ing forward in time the execution of policy π under parameters

θ from timestep τm + 1:

p(zτm+1:n|π, θ) = N (zτm+1:n;ψ
π,θ, σI), (15)

where σ is a nuisance parameter capturing modeling error

and I is a suitable identity matrix (we discuss our forward

simulation of policies further in §V-B). That is, Eq. 15 essen-

tially measures the deviation of the observed states from those

prescribed by the given policy. The policy likelihoods obtained

via Eq. 14 capture the probability distribution over the possible

policies that the observed vehicle might be executing at

the current timestep, which can be represented, using delta

functions, as a mixture distribution:

p(πv
t |xt, z0:t) = η

|Π|
∑

i=1

δ(αi) · L(πi), (16)

where αi is the hypothesis over policy πi and η is a normal-

izing constant. We can therefore compute the approximated

posterior of Eq. 7 by sampling from this distribution for each

vehicle, obtaining high-likelihood samples from the coupled

interactions of traffic agents.



Fig. 2. Policy changepoint detection on a simulated passing maneuver on a highway. Our vehicle (far right) tracks the behavior of another traffic agent (far
left) as it navigates through the highway segment from right to left. Using the tracked vehicle’s history of past observations (green curve), we are able to
infer which policies are most likely to have generated the maneuvers of the tracked vehicle.

C. Anomaly Detection

The time-series segmentation obtained via changepoint de-

tection allows us to perform online detection of anomalous

behavior not modeled by our policies. Inspired by prior work

on anomaly detection [9, 25, 34], we first define the properties

of anomalous behavior in terms of policy likelihoods, and then

compare the observed data against labeled normal patterns in

previously-recorded vehicle trajectories. Thus, we define the

following two criteria for anomalous behavior:

1) Unlikelihood against available policies. Anomalous be-

havior is not likely to be explained by any of the available

policies, since they are designed to abide by traffic

rules and provide a smooth riding experience. Therefore,

behaviors like driving in the wrong direction or crossing

a solid line on the highway will not be captured by the

available policies. We thus measure the average likelihood

among all segments in the vehicle’s history as the global

similarity of the observed history to all available policies:

S =
1

m+ 1

m+1
∑

i=1

L(πi), (17)

where πi is the policy associated with the ith segment.

2) Ambiguity among policies. A history segmentation that

fluctuates frequently among different policies might be

a sign of ambiguity on the segmentation. To express

this criterion formally, we first construct a histogram

capturing the occurrences of each policy in the vehicle’s

segmented history. A histogram with a broad spread

indicates frequent fluctuation, whereas one with a single

mode is more likely to correspond to normal behavior.

We measure this characteristic as the excess kurtosis of

the histogram, κ = µ4

σ4 − 3, where µ4 is the fourth

moment of the mean and σ is the standard deviation.

The excess kurtosis satisfies −2 < κ < ∞. If κ = 0,

the histogram resembles a normal distribution, whereas

if κ < 0, the histogram presents a broader spread. That

is, we seek to identify changepoint sequences where there

is no dominant policy.

Using these criteria, we define the following normality mea-

sure given a vehicle’s MAP choice of changepoints:

N =
1

2
[(κ+ 2)S] . (18)

This normality measure on the target car’s history can then be

compared to that of a set of previously recorded trajectories

of other vehicles. We thus define the normality test for the

current vehicle’s history as N < 0.5γ, where γ is the minimum

normality measure evaluated on the prior time-series.

V. MULTIPOLICY DECISION-MAKING

We now present the policy selection procedure for our

car (Algorithm 1), which implements the formulation and

approximations given in §III by leveraging the anticipation

scheme from §IV. The algorithm begins by drawing a set of

samples s ∈ S from the distribution over policies of other

cars via Eq. 16, where each sample assigns a policy πv ∈ Π
to each nearby vehicle v, excluding our car. For each policy

π available to our car and for each sample s, we roll out

forward in time until the decision horizon H all vehicles under

the policy assignments (π, s) with closed loop simulation to

yield a set Ψ of simulated trajectories ψ. We then evaluate the

reward rπ,s for each rollout Ψ, and finally select the policy

π∗ maximizing the expected reward. The process continuously

repeats in a receding horizon manner. Note that policies that

are not applicable given the current state x0, such as an

intersection handling policy when driving on the highway, are

not considered for selection (line 5). We next discuss three

key points of our decision-making procedure: the design of

the set of available policies, using forward simulation to roll

out potential interactions, and the reward function.

Algorithm 1: Policy selection procedure.

Input:

• Current MAP estimate of the state, x0.

• Set of available policies Π.

• Policy assignment probabilities (Eq. 16).

• Planning horizon H .

1 Draw a set of samples s ∈ S via Eq. 16, where each

sample assigns a policy to each nearby vehicle.

2 R ← ∅ // Rewards for each rollout

3 foreach π ∈ Π do // Policies for our car

4 foreach s ∈ S do // Policies for other cars

5 if APPLICABLE(π, x0) then

6 Ψπ,s ← SIMULATEFORWARD(x0, π, s,H)
// Ψπ,s captures all vehicles

7 R ← R∪{(π, s, COMPUTEREWARD(Ψπ,s))}
8 return π∗ ← SELECTBEST(R)

A. Policy Design

There are many possible design choices for engineering the

set of available policies in our approach, which we wish to

explore in future work. However, in this work we use a set



of policies that covers many in-lane and intersection driving

situations, comprising the following policies: lane-nominal,

drive in the current lane and maintain distance to the car

directly in front; lane-change-right/lane-change-left, separate

policies for a single lane change in each direction; and turn-

right, turn-left, go-straight, or yield at an intersection.

B. Sample Rollout via Forward Simulation

While it is possible to perform high-fidelity simulation

for rolling out sampled policy assignments, a lower-fidelity

simulation can capture the necessary interactions between

vehicles to make reasonable choices for our vehicle behavior,

while providing faster performance. In practice, we use a

simplified simulation model for each vehicle that assumes

an idealized steering controller. Nonetheless, this simplifica-

tion still faithfully describes the high-level behavior of the

between-vehicle interactions our method reasons about. For

vehicles classified as anomalous, we simulate them using a

single policy accounting only for their current state and map

of the environment, since they are not likely to be modeled

by the set of behaviors in our system.

C. Reward Function

The reward function for evaluating the outcome of a rollout

Ψ involving all vehicles is a weighted combination of metrics

mq(·) ∈ M, with weights wq that express user importance.

The construction of a reward function based on a flexible

set of metrics derives from our previous work [11], which

we extend here to handle multiple potential policies for other

vehicles. In our system, typical metrics include the distance to

the goal at the end of the evaluation horizon as a measure of

accomplishment, minimum distance to obstacles to evaluate

safety, a lane choice bias to add a preference for the right

lane, and the maximum yaw rate and longitudinal jerk to

measure passenger comfort. For a full policy assignment (π, s)
with rollout Ψπ,s, we compute the rollout reward rπ,s as the

weighted sum rπ,s =
∑|M|

q=1
wqmq(Ψ

π,s). We normalize each

mq(Ψπ,s) across all rollouts to ensure comparability between

metrics. To avoid biasing decisions, we set the weight wq to

zero when the range of mq(·) across all samples is too small

to be informative.

We finally evaluate each policy reward rπ for our vehicle as

the expected reward over all rollout rewards rπ,s, computed as

rπ =
∑|S|

k=1
rπ,skp(sk), where p(sk) is the joint probability of

the policy assignments in sample sk, computed as a product of

the per-vehicle assignment probabilities (Eq. 16). We use ex-

pected reward to target better average-case performance, as it

is easy to become overly conservative when negotiating traffic

if one only accounts for worst-case behavior. By weighting by

the probability of each sample, we can avoid overcorrecting

for low-probability events.

VI. RESULTS

To evaluate our behavioral anticipation method and our

multipolicy sampling strategy, we use traffic-tracking data

collected using our autonomous vehicle platform. We first

introduce the traffic-tracking dataset and the vehicle used to

collect it. Next, we use this dataset to evaluate our prediction

and anomaly detection method and the performance of our

multipolicy sampling strategy. Finally, we evaluate our mul-

tipolicy approach performing integrated behavioral analysis

and decision-making on highway traffic scenarios using our

multivehicle simulation engine.

A. Autonomous Vehicle Platform, Dataset, and Setup

To collect the traffic-tracking dataset we use in this work, we

have used our autonomous vehicle platform (shown in Fig. 3),

a 2013 Ford Fusion equipped with a sensor suite including four

Velodyne HDL-32E 3D LIDAR scanners, an Applanix POS-

LV 420 inertial navigation system (INS), GPS, and several

other sensors.

Fig. 3. Our autonomous car platform, used to record the traffic-tracking
dataset we use in this work. The vehicle is equipped with a sensor suite
including four LIDAR units and survey-grade INS.

The vehicle uses prior maps of the area it operates on that

capture information about the environment such as LIDAR

reflectivity and road height, and are used for localization and

tracking of other agents. The road network is encoded as a

metric-topological map that provides information about the

location and connectivity of road segments, and lanes therein.

Estimates over the states of other traffic participants are

provided by a dynamic object tracker running on the vehicle,

which uses LIDAR range measurements. The geometry and

location of static obstacles are also inferred onboard using

LIDAR measurements.

The traffic-tracking dataset consists of 67 dynamic object

trajectories recorded in an urban area. Of these 67 trajectories

(shown in Fig. 4), 18 correspond to “follow the lane” maneu-

vers and 20 to lane change maneuvers, recorded on a divided

highway. The remaining 29 trajectories correspond to maneu-

vers observed at a four-way intersection regulated by stop

signs. All trajectories were recorded by the dynamic object

tracker onboard the vehicle and extracted from approximately

3.5 h of total tracking data.

In all experiments we use a C implementation of our system

running on a single 2.8GHz Intel i7 laptop computer.

B. Behavioral Prediction

For our system, we are interested in correctly identifying

the behavior of target vehicles by associating it to the most

likely policy according to the observations. Thus, we evaluate



(a)

(b)

Fig. 4. Trajectories in the traffic-tracking dataset used to evaluate our
multipolicy framework. (a) 29 trajectories recorded at a four-way intersection.
(b) 38 trajectories comprising lane change and “follow the lane” maneuvers
on a divided highway, plotted on a common frame of reference.

our behavioral analysis method in the context of a classifica-

tion problem, where we want to map each trajectory to the

underlying policy (class) that is generating it at the current

timestep. The available policies used in this evaluation are:

Π = {lane-nominal, lane-change-left, lane-change-right}

∪

{turn-right, turn-left, go-straight, yield},
(19)

where the first subset applies to in-lane maneuvers and the

second subset applies to intersection maneuvers. For all poli-

cies we use a fixed set of parameters tuned empirically to

control our autonomous vehicle platform, including maximum

longitudinal and lateral accelerations, and allowed distances to

nearby cars, among other parameters.

To assess each classification as correct or incorrect, we

leverage the road network map and compare the final lane

where the trajectory actually ends to that predicted by the

declared policy. In addition, we assess behavioral prediction

performance on subsequences of incremental duration of the

input trajectory, measuring classification performance on in-

creasingly longer observation sequences.

Fig. 5 shows the accuracy and precision curves for policy

classification over the entire dataset. The ambiguity among hy-

potheses results in poor performance when only an early stage

of the trajectories is used, especially under 30% completion.

However, we are able to classify the trajectories with over 85%

accuracy and precision after only 50% of the trajectory has

been completed. Note, however, that the closed-loop nature of

our policies allows us to maintain safety at all times regardless

of anticipation performance.

Fig. 5. Precision and accuracy curves of current policy identification via
changepoint detection, evaluated at increasing subsequences of the trajectories.
Our method provides over 85% accuracy and precision after only 50% of
trajectory completion, while the closed loop nature of our policies guarantee
safety at all times regardless of anticipation performance.

C. Anomaly Detection

We now qualitatively explore the performance of our

anomaly detection test. We recorded three additional trajecto-

ries corresponding to two bikes and a bus. The bikes crossed

the intersection from the sidewalk, while the bus made a

significantly wide turn. We run the test on these trajectories

and on three additional intersection trajectories using the

minimum normality value on the intersection portion of the

dataset, γ = 0.1233. As shown by the results in Fig. 6, our

test is able to correctly detect the anomalous behaviors not

modeled in our system.

(a) Car 1 (b) Car 2 (c) Car 3

(d) Bike 1 (e) Bike 2 (f) Bus

Fig. 6. Anomaly detection examples. Top row: normal trajectories driven
by cars from the intersection dataset. Bottom row: anomalous trajectories
driven by bikes (d), (e), and a bus (f). Our test is able to correctly detect the
anomalous trajectories not modeled by our intersection policies (γ = 0.1233).

D. Multipolicy Sampling Performance

To show that our approach makes decision-making tractable,

we assess the sampling performance in terms of the likelihood

of the samples using the recorded intersection trajectories. We

compare our multipolicy sampling strategy to an uninformed

sampling strategy such as those used by general decision-

making algorithms that do not account for domain knowledge

to focus sampling (e.g., Silver and Veness [35], Thrun [37]).



We take groups of coupled trajectories from the dataset

involving from one to four vehicles negotiating the inter-

section simultaneously. For each vehicle in each group, we

compute, via Eq. 15, the likelihood of the most likely policy

πML in {turn-right, turn-left, go-straight, yield} according to

the corresponding trajectory in the group. We then evaluate

the computation time required by each of the two sampling

strategies to find a sampled trajectory with a likelihood equal

or greater than L(πML).
The uninformed strategy generates, for each vehicle in-

volved, a trajectory that either remains static for the duration

of the trajectory to yield or crosses the intersection at constant

speed. This decision is made at random. If the decision

is to cross, the direction of the vehicle is determined via

random steering wheel angle rates in a simple car kinematic

model. Conversely, the multipolicy sampling strategy consists

of randomly selecting policies for each vehicle and obtaining

their rollouts. The computation times for each strategy are

shown in Table I. Times are computed out of 100 simulations

for each case (from one to four cars). Although the time

required grows dramatically fast for both strategies due to

the combinatorial explosion of vehicle intentions, these results

show that our multipolicy sampling strategy is able to find

high-likelihood samples orders of magnitude faster than an

uninformed sampling strategy. A visualization of a sample

simulation of this experiment is shown in Fig. 1.

TABLE I
COMPARISON OF SAMPLING STRATEGIES.

STRATEGY NUM. CARS AVG. COMP. TIME STD. DEVIATION

Uninformed
1

15.3990 s 9.1014 s
Multipolicy 0.0012 s 0.0004 s

Uninformed
2

39.6037 s 24.4575 s
Multipolicy 0.0036 s 0.0014 s

Uninformed
3

99.5785 s 76.3222 s
Multipolicy 0.0100 s 0.0050 s

Uninformed
4

296.9633 s 232.5125 s
Multipolicy 0.0247 s 0.0142 s

E. Decision-Making Results

We tested the full decision-making algorithm with behav-

ioral prediction in a simulated environment with a multi-lane

highway scenario involving two nearby cars. Fig. 7(a) shows

the scenario used for testing at an illustrative point at half way

through the scenario. This simulation uses the same policy

models we have developed and tested on our real-world test

car [11]. Fig. 7(b) shows the policy reward function, in which

the chosen policy is the maximum of the available policies.

Note that this decision process is instantaneous, which explains

the oscillations when policies are near decision surfaces. We

prevent the executed policy from oscillating with a simple

pre-emption model that ensures we only switch policies when

distinct maneuvers (such as lane-changes) are complete.

We collected timing information on different operations in

the experiment to evaluate runtime performance. The main

expense is forward simulation and metric evaluation for each
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Fig. 7. (a) Results of a simulated multi-car interaction scenario, in which the
car under our control (shown in green) approaches the slower vehicles A and
B from behind. Vehicle B starts by executing a lane change from the center
to left lane, which it is just completing at the time shown, while A remains in
the right lane. Cyan lines show the simulated rollouts for our vehicle, while
magenta lines show the simulated rollouts for each of the other vehicles. (b)
Evaluation of the policy reward functions for each of the three policies over
the course of the simulated scenario. Note that not all policies are applicable
at all times, which we render as a discontinuity.

rollout, however, these tasks are easily parallelizable. In the

test scenario in which we rollout all sample permutations, the

theoretical maximum number of rollouts is 27 given 3 policy

options per vehicle, but in practice the maximum number of

rollouts was 12, with a mean of 8.6. This smaller number

of rollouts is because not all policies are applicable at once.

Parallel evaluation performance is bounded by the maximum

time for a single rollout, for which the mean worst time was

84ms, and the worst time over the whole experiment was

106ms. Even in the worst case, our real-time decision-making

target of 1 Hz is acheiveable.

VII. CONCLUSION

We introduced a principled framework for integrated behav-

ioral anticipation and decision-making in environments with

extensively coupled interactions between agents. By explicitly

modeling reasonable behaviors of both our vehicle and other

vehicles as policies, we make informed high-level behavioral

decisions that account for the consequences of our actions.

We presented a behavior analysis and anticipation system

based on Bayesian changepoint detection that infers the like-

lihood of policies of other vehicles. Furthermore, we provided

a normality test to detect unexpected behavior of other traffic

participants. We have shown that our behavioral anticipation

approach can identify the most-likely underlying policies that

explain the observed behavior of other cars, and to detect

anomalous behavior not modeled by the policies in our system.

In future work we will explicitly model unexpected be-

havior, such as the appearance of a pedestrian or vehicles

occluded by large objects. We can also extend the system

to scale to larger environments by strategically sampling

policies to focus on those outcomes that most affect our

choices. Exploring principled methods for reacting to detected

anomalous behavior is also an avenue for future work.
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