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Abstract— This paper describes a data set collected by an
autonomous ground vehicle testbed, based upon a modified Ford
F-250 pickup truck. The vehicle is outfitted with a profes-
sional (Applanix POS-LV) and consumer (Xsens MTi-G) inertial
measurement unit (IMU), a Velodyne 3D-lidar scanner, two
push-broom forward looking Riegl lidars, and a Point Grey
Ladybug3 omnidirectional camera system. Here we present the
time-registered data from these sensors mounted on the vehicle,
collected while driving the vehicle around the Ford Research
campus and downtown Dearborn, Michigan during November-
December 2009. The vehicle path trajectory in these data sets
contain several large and small-scale loop closures, which should
be useful for testing various state of the art computer vision and
simultaneous localization and mapping (SLAM) algorithms.

Fig. 1. The modified Ford F-250 pickup truck.

I. INTRODUCTION

The University of Michigan and Ford Motor Company have

been collaborating on autonomous ground vehicle research

since the 2007 DARPA Urban Grand Challenge, and through

this continued collaboration have developed an autonomous

ground vehicle testbed based upon a modified Ford F-250

pickup truck (Fig. 1). This vehicle was one of the finalists

in the 2007 DARPA Urban Grand Challenge and showed

capabilities to navigate in the mock urban environment, which

included moving targets, intermittently blocked pathways, and

regions of denied global positioning system (GPS) reception

[McBride et al., 2008]. This motivated us to collect large scale

visual and inertial data of some real-world urban environ-

ments, which might be useful in generating rich, textured, 3D

maps of the environment for navigation purposes.

Here we present two data sets collected by this vehicle while

driving in and around the Ford research campus and downtown

Dearborn in Michigan. The data includes various small and

large loop closure events, ranging from feature rich downtown

areas to featureless empty parking lots. The most significant

aspect of the data is the precise co-registration of the 3D laser

data with the omnidirectional camera imagery thereby adding

visual information to the structure of the environment as

obtained from the laser data. This fused vision data along with

odometry information constitutes an appropriate framework

for mobile robot platforms to enhance various state of the

art computer vision and robotics algorithms. We hope that

this data set will be very useful to the robotics and vision

community and will provide new research opportunities in

terms of using the image and laser data together, along with

the odometry information.

II. SENSORS

We used a modified Ford F-250 pickup truck as our base

platform. Although, the large size of the vehicle might appear

like a hindrance in the urban driving environment, it has

proved useful because it allows strategic placement of different

sensors. Moreover, the large space at the back of the truck was

sufficient enough to install four 2U quad-core processors along

with a ducted cooling mechanism. The vehicle was integrated

with the following perception and navigation sensors:

A. Perception Sensors

1) Velodyne HDL-64E lidar [Velodyne, 2007] has two

blocks of lasers each consisting of 32 laser diodes

aligned vertically, resulting in an effective 26.8◦ vertical

field of view (FOV). The entire unit can spin about its

vertical axis at speeds up to 900 rpm (15 Hz) to provide

a full 360 degree azimuthal field of view. The maximum

range of the sensor is 120 m and it captures about 1

million range points per second. We captured our data

set with the laser spinning at 10 Hz.

2) Point Grey Ladybug3 omnidirectional camera [Point-

grey, 2009] is a high resolution omnidirectional camera

system. It has six 2-Megapixel (1600×1200) cameras

with five positioned in a horizontal ring and one po-

sitioned vertically. This enables the system to collect

video from more than 80% of the full sphere. The

camera can capture images at multiple resolutions and

multiple frame rates, it also supports hardware jpeg

compression on the head. We collected our data set at

half resolution (i.e. 1600×600) and 8 fps in raw format

(uncompressed).

3) Riegl LMS-Q120 lidar [RIEGL, 2010] has an 80◦ FOV

with very fine (0.2◦ per step) resolution. Two of these

sensors are installed at the front of the vehicle and the

range returns and the intensity data corresponding to

each range point are recorded as the laser sweeps the

FOV.
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B. Navigation Sensors

1) Applanix POS-LV 420 INS with Trimble GPS [Applanix,

2010] is a professional-grade, compact, fully integrated,

turnkey position and orientation system combining a

differential GPS, an inertial measurement unit (IMU)

rated with 1◦ of drift per hour, and a 1024-count wheel

encoder to measure the relative position, orientation,

velocity, angular rate and acceleration estimates of the

vehicle. In our data set we provide the 6-DOF pose

estimates obtained by integrating the acceleration and

velocity estimates provided by this system at a rate of

100 Hz.

2) Xsens MTi-G [Xsens, 2010] is a consumer-grade, minia-

ture size and low weight 6-DOF microelectromechanical

system (MEM) IMU. The MTi-G contains accelerom-

eters, gyroscopes, magnetometers, an integrated GPS

receiver, static pressure sensor and a temperature sensor.

Its internal low-power signal processor provides real

time and drift-free 3D orientation as well as calibrated

3D acceleration, 3D rate of turn, and 3D velocity of

the vehicle at 100 Hz. It also has an integrated GPS

receiver which measures the GPS coordinates of the

vehicle. The 6-DOF pose of the vehicle at any instance

can be obtained by integrating the 3D velocity and 3D

rate of turn.

C. Data Capture

In order to minimize the latency in data capture, all of

the sensor load is evenly distributed across the four quad-

core processors installed at the back of the truck. Time

synchronization across the computer cluster is achieved by

using a simple network time protocol (NTP) [Mills, 2006]

like method whereby one computer is designated as a “master”

and every other computer continually estimates and slews its

clock relative to master’s clock. This is done by periodically

exchanging a small packet with the master and measuring the

time it takes to complete the round trip. We estimate the clock

skew to be upper bounded by 100 µs based upon observed

round-trip packet times.

When sensor data is received by any of these synchronized

host computers, it is timestamped along with the timestamp

associated with the native hardware clock of the sensor de-

vice. These two timestamps are then merged according to

the algorithm documented in [Olson, 2010] to determine a

more accurate timestamp estimate. This sensor data is then

packaged into a Lightweight Communication and Marshalling

(LCM) [Huang et al., 2010] packet and is transmitted over

the network using multicast user datagram protocol (UDP).

This transmitted data is captured by a logging process, which

listens for such packets from all the sensor drivers, and stores

them on the disk in a single log file. The data recorded in this

log file is timestamped again, which allows for synchronous

playback of the data later on.

III. SENSOR CALIBRATION

All of the sensors (perceptual and navigation) are fixed to

the vehicle and are related to each other by static coordinate

transformations. These rigid-body transformations, which al-

low the re-projection of any point from one coordinate frame

to the other, were calculated for each sensor. The coordinate

frames of the two navigation sensors (Applanix and MTi-G)

coincide and are called the body frame of the vehicle—all

other coordinate frames are defined with respect to the body

frame (Fig. 2). Here we use the Smith, Self and Cheeseman

[Smith et al., 1988] coordinate frame notation to represent

the 6-DOF pose of a sensor coordinate frame where Xab =
[x, y, z, roll, pitch, yaw]⊤ denotes the 6-DOF pose of frame

b with respect to frame a. The calibration procedure and the

relative transformation between the different coordinate frames

are described below and summarized in Table I. We also use

the concept of local frame [Moore et al., 2009] which is

a smoothly varying coordinate system, with arbitrary origin.

The vehicle moves in this local frame according to the best

available relative motion estimate coming from the IMU.
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Fig. 2. Relative position of the sensors with respect to the body frame.

A. Relative transformation between the Velodyne laser scan-

ner and body frame (Xbl):

A research grade coordinate measuring machine (CMM)

was used to precisely obtain the position of some known

reference points on the truck with respect to the body frame,

which is defined to be at the center of the rear axle of the

truck. The measured CMM points are denoted Xbp. Typical

precision of a CMM is of the order of micrometers, thus for all

practical purposes we assumed that the relative position (Xbp)

of these reference points obtained from CMM are true values

without any error. We then manually measured the position

of the Velodyne from one of these reference points to get

Xpl. Since the transformation Xpl is obtained manually, the

uncertainty in this transformation is of the order of a few

centimeters, which for all practical purposes can be considered

to be 2–5 cm. The relative transformation of the Velodyne with

respect to the body frame is thus obtained by compounding

the two transformations [Smith et al., 1988].

Xbl = Xbp ⊕Xpl (1)
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TABLE I

RELATIVE TRANSFORMATION OF SENSORS

Transform Value (meters and degrees)

Xbl [2.4,−.01,−2.3, 180◦, 0◦, 90◦]
XbRl

[2.617,−0.451,−2.2, 0◦, 12◦, 1.5◦]
XbRr

[2.645, 0.426,−2.2, 180◦, 6◦, 0.5◦]
Xhl [.34,−.01,−.42, .02◦,−.03◦,−90.25◦]
Xbh [2.06, 0,−2.72,−180◦,−.02◦,−.8◦]

B. Relative transformation between the Riegl Lidars and the

body frame (Left Riegl = XbRl
, Right Riegl = XbRr

)

These transformations are also obtained manually with the

help of the CMM as described above in section III-A.

C. Relative transformation between the Velodyne laser scan-

ner and Ladybug3 camera head (Xhl):

This transformation allows us to project any 3D point in

the laser reference frame into the camera head’s frame and

thereby into the corresponding camera image. The calibra-

tion procedure requires a checkerboard pattern to be viewed

simultaneously from both the sensors. The 3D points lying

on the checkerboard pattern in the laser reference frame

and the normal to the plane in the camera reference frame,

obtained from the image using Zhang’s method [Zhang, 2000],

constrains the rigid body transformation between the laser and

the camera reference frame. We can formulate this constraint

as a non-linear optimization problem to solve for the optimum

rigid body transformation. The details of the procedure can be

found in [Pandey et al., 2010].

D. Relative transformation between the Ladybug3 camera

head and body frame (Xbh):

Once we have Xbl and Xhl the transformation Xbh can be

calculated using the compounding operation by Smith et al

[Smith et al., 1988]:

Xbh = Xbl ⊕ (⊖Xhl) (2)

IV. DATA COLLECTION

The data was collected around the Ford research campus

area and downtown area in Dearborn, Michigan, henceforth

referred to as the test environment. It is an ideal data set

representing an urban environment and it is our hope that it

will be a useful data set to researchers working on autonomous

perception and navigation in unstructured urban scenes.

The data was collected while driving the modified Ford F-

250 around the test environment several times while covering

different areas. We call each data collection exercise to be

a trial. In every trial we collected the data keeping in mind

the requirements of state of the art simultaneous localization

and mapping (SLAM) algorithms, thereby covering several

small and large loops in our data set. A sample trajectory

of the vehicle in one of the trials around downtown Dearborn

and around Ford Research Complex is shown in Fig. 4. The
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Fig. 3. The directory structure containing the data set. The rectangular blocks
represent folders.

Fig. 4. The top panel shows the trajectory of the vehicle in one trial around
downtown Dearborn. The bottom panel shows the trajectory of the vehicle in
one trial around Ford Research Complex in Dearborn. Here we have plotted
the GPS data coming from the Trimble overlaid ontop of an aerial image from
Google maps.

unprocessed data consists of three main files for each trial. One

file contains the raw images of the omnidirectional camera,

captured at 8 fps, and the other file contains the timestamps

of each image measured in microseconds since 00:00:00 Jan

1, 1970 UTC. The third file contains the data coming from

remaining sensors (perceptual/navigational). This file stores
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the data in a LCM log file format similar to that described

in [Huang et al., 2010]. The unprocessed data consist of

raw spherically distorted images from the omnidirectional

camera and the raw point cloud from the lidar (without any

compensation for the vehicle motion). Here we present a set

of processed data with MATLAB scripts that allow easy access

of the data set to the users. The processed data is organized in

folders and the directory structure is as shown in Fig. 3. The

main files and folders are described below:

1) LCM: This folder contains the LCM log file correspond-

ing to each trial. Each LCM log file contains the raw 3D

point cloud from the Velodyne laser scanner, the lidar

data from the two Reigl LMS-Q120s and the naviga-

tional data from the navigational sensors described in

Section II. We provide software to playback this log file

and visualize the data in an interactive graphical user

interface.

2) Timestamp.log: This file contains the Unix timestamp,

measured in microseconds since 00:00:00 Jan 1, 1970

UTC, of each image captured by the omnidirectional

camera during one trial.

3) Pose-Applanix.log: This file contains the 6-DOF pose

of the vehicle in a local coordinate frame, as described

in [Moore et al., 2009]. The local frame is arbritrarily

fixed at the location where the applanix is initialized

for the first time (which may be far away from the

current location of the vehicle) and all the vehicle

poses are reported with respect to this local frame. The

angle theta that the X-axis of this local frame makes

with East is known and is recorded in the Gps.log

(see Gps.log below). The local frame is thus an East-

North-Up (ENU) coordinate frame rotated by an angle

theta. The acceleration and rotation rates given by the

IMU (Applanix POS-LV) are first transformed into the

local frame and then integrated to obtain the pose of

the vehicle in this local reference frame. The Pose-

Applanix.log when loaded in MATLAB has the following

fields for each vehicle pose:

a) Pose.utime: is the unix timestamp measured in

microseconds.

b) Pose.pos: is the 3-DOF position of the vehicle in

the local reference frame.

c) Pose.rph: is the roll, pitch and heading of the

vehicle. Here the heading is with respect to the

orientation of the vehicle when the applanix is

initialized. It is not the true heading calculated with

respect to East. In order to get the true heading

you need to subtract the angle that the local frame

makes with East, which is given in the GPS.log.

d) Pose.vel: is the 3-DOF velocity of the vehicle in

the local reference frame.

e) Pose.rotation rate: is the angular velocity of the

vehicle.

f) Pose.accel: is the 3-DOF acceleration of the vehicle

in local reference frame.

g) Pose.orientation: is the orientation of the vehicle

given in quaternions.

We have not fused the IMU data with the GPS in our

data set, but we provide the GPS data separately along

with the uncertainities in the GPS coordinates. We have

not provided the uncertainity in the pose estimates in our

data set but it can be calculated from the measurement

noise obtained from the Applanix POS-LV specification

sheet [Applanix, 2010].

4) Pose-Mtig.log: This file contains the navigational data:

3D rotational angles (roll, pitch and yaw), 3D acceler-

ations and 3D velocities of the vehicle along with the

timestamp provided by the Xsens MTi-G, during one

trial. Here we provide the vehicle pose estimated by

integrating the velocities. The raw data is available in the

LCM log file and can be extracted from there. The Pose-

Mtig.log when loaded in MATLAB has the following

fields for each vehicle pose:

a) Pose.utime: is the unix timestamp measured in

microseconds.

b) Pose.pos: is the 3-DOF position of the vehicle

in North-East-Down (NED) coordinate frame with

origin at the position where the vehicle starts.

c) Pose.rph: is the euler roll, pitch and heading of the

vehicle. Heading here is reported with respect to

the North.

d) Pose.vel: is the 3-DOF velocity of the vehicle in

the NED reference frame

e) Pose.rotation rate: is the angular velocity of the

vehicle.

f) Pose.accel: is the 3-DOF acceleration of the vehi-

cle.

5) Gps.log: This file contains the GPS data of the vehicle

along with the uncertainities provided by the Trimble

GPS, obtained during one trial. This data structure has

the following fields:

a) Gps.utime: is the unix timestamp measured in

microseconds.

b) Gps.lat lon el theta: is the [4x1] array of GPS

coordinates. First three entries are the latitude,

longitude and elevation/altitude whereas the last

entry theta is the angle that the X-axis of the local

frame makes with East.

c) Gps.cov: is the [4x4] covariance matrix represent-

ing the uncertainity in the GPS coordinates.

6) IMAGES: This folder contains the undistorted images

captured from the omnidirectional camera system during

one trial. The folder is further divided into sub-folders

containing images corresponding to individual cameras

from the omnidirectional camera system. This folder

also contains a folder named “FULL”, which contains

the undistorted images stacked together in one file as

depicted in Fig. 5.

7) PARAM.mat: This contains the intrinsic and extrinsic

parameters of the omnidirectional camera system and is

a (1× 5) array of structures with the following fields:

a) PARAM.K: This is the (3×3) matrix of the internal

parameters of the camera.

b) PARAM.R, PARAM.t: These are the (3×3) rotation
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Fig. 5. The distorted images, from the five horizontal sensors of the
omnidirectional camera, stacked together.

Fig. 6. The left panel shows a spherically distorted image obtained from the
Ladybug3 camera. The right panel shows the corresponding undistorted image
obtained after applying the transformation provided by the manufacturer.

matrix and (3× 1) translation vector, respectively,

which transforms the 3D point cloud from the laser

reference system to the camera reference system.

These values were obtained by compunding the

following transformations:

Xcil = Xcih ⊕Xhl, (3)

where Xcih defines the relative transformation be-

tween camera head and the ith sensor (camera) of

the omnidirectional camera system. The transfor-

mation Xcih is precisely known and is provided

by the manufacturers of the camera.

c) PARAM.MappingMatrix: This contains the map-

ping between the distorted and undistorted image

pixels. This mapping is provided by the manu-

facturers of the Ladybug3 camera system and it

corrects for the spherical distortion in the image.

A pair of distorted and undistorted images from

the camera is shown in Fig. 6.

8) SCANS: This folder contains 3D scans from the Velo-

dyne laser scanner, motion compensated by the vehicle

pose provided by the Applanix POS-LV 420 inertial

navigation system (INS). Each scan file in this folder is

a MATLAB file (.mat) that can be easily loaded into the

MATLAB workspace. The structure of individual scans

once loaded in MATLAB is shown below:

a) Scan.XYZ: is a (3 × N) array of the motion

compensated 3D point cloud represented in the

Velodyne’s reference frame (described in Section

III). Here N is the number of points per scan,

which is typically 80,000–100,000.

b) Scan.timestamp laser: is the Unix timestamp mea-

sured in microseconds since 00:00:00 Jan 1, 1970

UTC for the scan captured by the Velodyne laser

scanner.

c) Scan.timestamp camera: is the Unix timestamp

measured in microseconds since 00:00:00 Jan 1,

1970 UTC for the closest image (in time) captured

by the omnidirectional camera.

d) Scan.image index: is the index of the image that is

closest in time to this scan.

e) Scan.X wv: is the 6-DOF pose of the vehicle in

the world reference system when the scan was

captured.

f) Scan.Cam: is a (1 × 5) array of structures corre-

sponding to each camera of the omnidirectional

camera system. The format of this structure is

given below:

• Scan.Cam.points index: is a (1 × m) array of

index of the 3D points in laser reference frame,

in the field of view of the camera.

• Scan.Cam.xyz: is a (3 × m) array of 3D laser

points (m < N) as represented in the camera

reference system and within the field of view of

the camera.

• Scan.Cam.pixels: This is a (2 × m) array of

pixel coordinates corresponding to the 3D points

projected onto the camera.

9) VELODYNE: This folder has several “.pcap” files

containing the raw 3D point cloud from the Velodyne

laser scanner in a format that can be played back at a

desired frame rate using our MATLAB playback tool.

This allows the user to quickly browse through the data

corresponding to a single trial.

We have provided MATLAB scripts to load and visualize

the data set into the MATLAB workspace. We have tried to

keep the data format simple so that it can be easily used by

other researchers in their work. We have also provided some

visualization scripts (written in MATLAB) with this data set

that allow the re-projection of any scan onto the corresponding

omnidirectional imagery as depicted in Fig. 7. We have also

provided a C visualization tool that uses OpenGL to render

the textured point cloud as shown in Fig. 7.

A. Notes on data

The time registration between the laser and camera data is

not exact due to a transmission offset caused by the 800 Mb/s
Firewire bus over which the camera data is transferred to

the computer. The camera data is timestamped as soon as it

reaches the computer, so there is a time lag between when

the data was actually captured at the camera head and the

computer timestamp associated with it. We calculated this

approximate time lag (= size of image transferred / transfer

rate) and subtracted it from the timestamp of the image to

reduce the timing jitter.
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Fig. 7. The top panel is a perspective view of the Velodyne lidar range data,
color-coded by height above the estimated ground plane. The center panel
shows the above-ground-plane range data projected into the corresponding
image from the Ladybug3 cameras. The bottom panel shows the Screenshot of
the viewer showing the RGB textured point cloud corresponding to a parking
lot in downtown Dearborn captured during one of the trials in the month of
December.

The Ford Campus Vision and Lidar Data Set is available

for download from our server at http://robots.engin.

umich.edu/SoftwareData/Ford. Current data sets

were collected during November–December 2009, in the future

we plan to host more data sets corresponding to some other

times of the year.

V. SUMMARY

We have presented a time-registered vision and navigational

data set of unstructured urban environments. We believe that

this data set will be highly useful to the robotics community,

especially to those who are looking toward the problem of

autonomous navigation of ground vehicles in an a-priori un-

known environment. The data set can be used as a benchmark

for testing various state of the art computer vision and robotics

algorithms like SLAM, iterative closest point (ICP), and 3D

object detection and recognition.
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