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Abstract— This paper reports on a novel method for esti-
mating the sensor bias of three-axis magnetometers (or any
other field sensor). Our approach employs relative angular
position measurements to estimate the three-axis magnetometer
measurement bias, significantly improving magnetometer-based
attitude estimation. Relative angular position measurements can
be calculated from a variety of sources, including multiview
image registration or laser-based scan matching. We report two
methods implementing this approach based on batch linear least
squares and a real-time discrete Kalman filter. Compared with
previously reported methods our approach is time independent
and less restrictive with data sampling. In addition, our two
methods (i) are empirically shown to impose less restrictive
conditions for the movements of the instrument required for
calibration, (ii) do not require knowledge of the direction of
the field (e.g., the local magnetic field) or the attitude of the
instrument, and (iii) also ensure convergence for the estimated
parameters. The proposed methods are evaluated and compared
with previously reported methods in both numerical simulation
and in comparative experimental evaluation using cameras and
magnetometer sensors under different conditions.

I. INTRODUCTION

Magnetometers and visual sensors are widely used in
many applications including ground, space, air, and marine
vehicle navigation systems. Magnetometers are commonly
used to measure Earth’s local magnetic field vector and thus
determine the device heading (e.g., a digital compass). Mag-
netometers are highly affected by magnetic field disturbances
that can cause bias, scale, and lack of orthogonality in the
measured signals. Our approach employs relative rotation
measurements estimated from visual sensors to estimate the
bias of a three-axis magnetometer. The relative rotation mea-
surements are commonly available from stereo or monocular
visual odometry (VO) navigation systems (e.g., [20]), but
the proposed approach can be used in combination with any
method measuring the relative motion (e.g., laser-based scan-
matching), as depicted in Fig.1. Two methods are proposed
here based on this novel approach: (i) linear least squares
and (ii) Kalman filtering. Our main motivation is for the
problem of determining magnetometer sensor bias, but it can
also be applied to any other field sensor such as three-axis
accelerometers. The proposed solution does not, at present,
include the estimation of scale and orthogonality factors, but
it can be extended to these cases.

Several approaches for magnetometer calibration have
been reported that estimate the calibration parameters with-
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(a) Vision-based magnetometer
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Fig. 1. Magnetometer calibration diagram: Proposed method to estimate
the magnetometer’s measurement bias using the relative rotation R obtained
from the registration of two images or through laser scan-matching.

out the use of additional reference sensors. The problem of
self-calibrating a three-axis magnetometer without external
reference can be formulated as a minimization problem
that requires iterative methods to solve for the calibration
parameters. For estimating magnetometer bias, Gambhir [7]
proposed a “centered” approximation that can be solved
with linear least squares. Alonso and Shuster proposed the
“TWOSTEP” method, which uses Gambhir’s solution as ini-
tialization to an iterative second step for estimating the sensor
bias [3], and, as reported in a later work, also estimates the
scale and orthogonality factors [2]. In a similar approach,
Vasconcelos et al. [27] formulate the problem as an ellipsoid
fitting problem, and solve it using an iterative maximum
likelihood estimate (MLE) method. A closed-form solution to
align the sensor is also proposed. Several limitations exist,
however, for practical implementation in different applica-
tions. In general, all of these calibration methods require
large angular movements of the instrument to measure a
large section of the magnetic sensor output for an accurate
calibration. For better performance it is necessary to know
accurately the local magnitude of the Earth’s magnetic field.
This value can be calculated by magnetic field models,
(e.g., [16]), but can present large error in environments with
unmodeled magnetic distortions (e.g., due to buildings or
other local magnetic anomalies). Finally, these methods are
formulated for batch estimation and are not practical for
continuous real-time operation.

Some previously reported methods for calibrating mag-
netometers use additional sensors to estimate the measure-
ment bias. The requirement of additional sensors limit their
use but it allows to overcome some of the limitation of
magnetometer-only calibration methods. Li and Li [13] and



Kok et al. [12] make use of accelerometers to measure the
local gravity vector to propose methods based on dot product
corrections to estimate the magnetometer calibration. The
drawback of these approaches is that translational accel-
erations of the instrument can perturb the measurements,
introducing errors in the the magnetometer calibration.

Due to changes in the calibration parameters during oper-
ation, or the inability to estimate the calibration parameters
before operation, many applications require the ability to
perform the field sensor calibration continuously in real time.
Crassidis and Lai [6] propose an extension to the TWOSTEP
method based on an extended Kalman filter (EKF) and an
unscented Kalman filter (UKF) to estimate in real time the
sensor bias, scale, and orthogonality factors. Ma and Jiang
proposed an alternative method based on an UKF [15] and
Guo at al. [8] reported an EKF approach. These methods
exhibit some of the same problems noted for the batch
methods, and also do not ensure convergence of the estimated
parameters to the true values. Recently, Troni and Whitcomb
[26] proposed a method to estimate the magnetometer mea-
surement bias aided by three-axis angular-rate gyroscopes. In
constrast, our approach is based on angular position instead
of angular velocity measurements, though it shares several
of the same advantages of this previously reported method,
such as: (i) it is empirically shown to be less restricted in
the angular movements required, (ii) it does not require local
field information, such as the magnitude and/or direction of
the local magnetic field, (iii) it is implementable in real time,
and (iv) it has convergence properties. In addition, our pro-
posed method presents additional advantages such as: (1) our
batch method does not require numerical differentiation of
the magnetometer measurements, (2) it is independent of
the sampling time between two compared measurements,
making the proposed methods more suitable for systems with
unreliable sources of time or low sampling rate, and (3) it is
independent of the order of the measured signals, so it can
use all the available information. The main disadvantage of
the proposed approach, as compared to previous methods,
is that calculating the relative rotation input, in case it is
not available, might be a computationally expensive — but
feasible even in real-time — process (e.g., image registration
or laser scan-matching).

This paper is organized as follows. In Section II we give
a brief overview of notation and describe the sensor error
model. In Section III we describe our two proposed methods
for sensor bias estimation. In Section IV we describe our
experimental setup and we report a comparative numerical
simulation and comparative experimental evaluation of the
performance of the different sensor bias estimation methods.
Section V summarizes and concludes.

II. BACKGROUND

A. Mathematical Notation

We represent the rigid-body attitude using the rotation
matrix R(t) ∈ SO(3) describing the orientation of the
instrument frame V with respect to an inertial (world) fixed
frame W . The variable mk is a discrete sample measurement

(e.g., mk represents a discrete-time sampling of x(tk) at
time tk). The Euclidean vector norm is defined as usual as
||x|| = (x>x)

1/2, with x ∈ R3.

B. Sensor Error Model

Measurements from three-axis magnetometers are subject
to systematic errors due to sensor bias, scale factor, and lack
of orthogonality. We consider the usual bias model,

mk = x̄k + b, (1)

where x̄k ∈ R3 is the true field value in the instrument
reference frame at tk, mk ∈ R3 is the measured field value
in the instrument reference frame at tk, and b ∈ R3 is an
unknown constant sensor bias.

Three-axis magnetometers measure, in instrument coordi-
nates, the Earth’s local magnetic field, which is considered
to be locally constant and fixed with respect to the inertial
world-frame of reference. The true world-frame field vector
m0 is related to the instrument-frame sensor measurement
of the field x̄k by

m0 = w
vRk (mk − b), (2)

where w
vRk is the rotation matrix from the instrument frame

to the world-frame at time tk.

C. Visual Motion Estimation

The experiments considered here rely on visually-based
motion estimation. Motion estimates from visual information
can be extracted using different approaches. The methods can
be categorized into direct (pixel-based methods, e.g., optical
flow) [10], and indirect (feature-based methods) [25].

Referring to the pinhole camera model, a camera matrix is
used to denote a projective mapping from world (3D), Pw,
to pixel coordinates (2D), pp, as followsxpyp

1

 ∝ K
xwyw
zw

 . (3)

The camera intrinsics matrix K is defined as [9]

K =

αx s cx
0 αy cy
0 0 1

 , (4)

where (αx, αy) represent focal length in terms of pixels,
(cx, cy) represent the principal point, and s represents the
skew coefficient between the x and the y axis (often 0).

A relatively simple approach to estimate the relative cam-
era motion is to use homography-based techniques [9]. A
homography relates points in a plane, or for pure rotation
motion between two camera views, as

p2 = H p1. (5)

The relationship between the homography, H , with the
relative camera motion (R, t) and the plane π = [n, d] can
be written as

H = K (R− tn/d) K−1. (6)



For the case of very small camera translation, t, or large
distance to the plane, d, H can be approximated with the
infinity homography H∞, as

H∞ = K R K−1. (7)

From H∞, we can calculate our relative camera rotation as

R̃ = K−1 H∞ K. (8)

Due to small numerical inaccuracies, R̃ may not strictly
lie within the family of SO(3) matrices so as final step
we calculate R, the closest rotation matrix to R̃ under the
Frobenius norm [18].

III. PROPOSED METHODS

In this section we report a novel approach to estimate the
3-axis magnetometer measurement bias based on the relative
rotation measurements (e.g., from a camera system). Two
methods using this approach are proposed.

A. System Model

Taking two measurements from (2) yields

m0 = w
vRj (mj − b) = w

vRi (mi − b), (9)

where mi and mj are two measured magnetic field vectors
in instrument coordinates at time ti and tj , respectively,
and w

vRi and w
vRj are the corresponding rotation matrices

from the instrument-frame to the world-frame. Defining
j
iR = w

vR
>
j
w
vRi yields

(mj − b) = j
iR (mi − b), (10)

and then rearranging the terms, we have

(jiR− I) b = j
iR mi −mj . (11)

Note that the instrument absolute attitudes, wvRi and w
vRj , do

not appear in (11), only the relative rotation between both
measurements, jiR.

We wish to estimate the constant unknown sensor bias, b,
for the system (11) from the signals mi, mj and j

iR. The
proposed solutions include (i) a batch least squares method
and (ii) a real-time Kalman filter method.

B. Linear Least-Squares for Sensor Bias Calibration

Based on (11), the unknown sensor bias, b, can be es-
timated with linear least squares estimation. The sum of
squared residuals cost function is

SSR(b) =

n−1∑
i=1

n∑
j=i+1

1

σ2
ij

|(jiR− I) b− j
iR mi+mj |2, (12)

where σij is the standard deviation of the measurements, and
each measurement mi is a discrete sample measurement at
ti. The linear least squares estimate for b is given by the
well-known solution

b̂ = (

n−1∑
i=1

n∑
j=i+1

1

σ2
ij

A>ijAij)
−1(

n−1∑
i=1

n∑
j=i+1

1

σ2
ij

A>ij yij), (13)

where Aij ∈ R3×3 is the calculated matrix Aij = j
iR − I ,

and yi ∈ R3 is the calculated vector from the measurements,
yi = j

iR mi −mj . The solution (13) uniquely exists when
the set axis of rotation vectors, {ωij} ∈ R3, of the set of
rotation matrices, jiR, are not all collinear, in consequence,
n−1∑
i=1

n∑
j=i+1

1
σ2
ij
A>ijAij is invertible.

The proposed method is flexible. For example, it can be
implemented based on information from matching all images
against each other, only consecutive images or each image
against a selected key frame image.

C. Kalman Filter for Sensor Bias Calibration

To implement a real-time Kalman filter method, the system
(11) can be rewritten as[

mk

b

]
︸ ︷︷ ︸

Φk

=

[
k
k-1R I − k

k-1R
0 I

]
︸ ︷︷ ︸

Ak

[
mk-1
b

]
︸ ︷︷ ︸

Φk-1

, (14)

with the measurement model

zk = [I 0]︸ ︷︷ ︸
H

[
mk

b

]
, (15)

and we can define the following discrete linear time-varying
system

Φk = Ak Φk-1 + ν1(t), ν1(t) ∼ N (0, Q),

zk = HΦk + ν2(t), ν2(t) ∼ N (0, R).
(16)

The sensor bias estimate can be solved with a standard
discrete-time Kalman filtering implementation [4], [11].

The sufficient conditions for observability of the linear
time-varying (LTV) system (16) can be shown by a rank test
(see [24], Theorem 25.9),

rank

 I 0
k
k-1R I − k

k-1R
k+1
k R k

k-1R I − k+1
k R k

k-1R


︸ ︷︷ ︸

Θ

= 6. (17)

Note that for full column rank of the matrix Θ, the equation
Θz 6= 0 should hold for all z 6= 0. If z = [z1 z2]>, then it is
required that z2−kk-1Rz2 6= 0 or z2−k+1

k Rkk-1Rz2 6= 0 for any
z2 6= 0. That is equivalent to k

k-1Rz2 6= z2 or k+1
k Rz2 6= z2

for any z2 6= 0. Then a sufficient condition for system (16)
is observable on [t0, tf ] if for some tk, tk+1 ∈ [t0, tf ], the
axis of two sampled rotation matrices k

k-1R and k+1
k R are

not collinear.

IV. PERFORMANCE EVALUATION

We compared the performance of the following five meth-
ods for the problem of sensor bias estimation. Three batch
estimation methods were evaluated:

a. Centering: For comparison purposes, the sensor bias is
estimated using the first step of the TWOSTEP method
[3] that leads to a simple batch linear least squares
solution.

b. TWOSTEP: For comparison purposes, the sensor bias
is estimated using the TWOSTEP method [3].



c. VMC-LS: The sensor bias is estimated using the batch
method proposed in Section III-B based on relative rota-
tion motion in the instrument-frame. The measurements
are low-pass filtered and re-sampled at the camera frame
rate.

In addition, two real-time methods were evaluated:
d. AI-EKF: For comparison purposes, the sensor bias

is estimated using the real-time attitude independent
method based on the EKF [6]. Note that for an accurate
comparison the implemented version of this method
only estimates the sensor bias, and not the scale and
orthogonality matrix.

e. VMC-KF: The sensor bias is estimated using the
Kalman filter method described in Section III-C based
on relative rotation motion in the instrument-frame.

For comparing the real-time estimation methods (AI-
EKF and VMC-KF), the sensor measurement bias used for
comparing with the batch methods consists of the average of
the last 50% of the estimated sensor measurement bias. The
TWOSTEP and AI-EKF methods require knowledge of the
local magnetic field magnitude. In our evaluation we used
the standard US/UK World Magnetic Model for 2010–2015
[16] available online [1]. For comparison purposes we also
evaluate the case of running the TWOSTEP method with a
manually selected value of local magnetic field magnitude
estimated in-situ before each experiment in order to improve
the performance of this method (instead of using the less
accurate value from models for our case). We denote this
case as TWOSTEP*. The camera alignment to the inertial
measurement unit was manually measured and compensated
in the experimental evaluation.

A. Simulation Results

A Monte Carlo simulation was implemented with 1000
trials for two different types of datasets. The first dataset,
SIM1L, simulates the case of large angular movements of the
instrument in all degrees of freedom, as depicted in Fig. 2(a).
The second dataset, SIM2S, simulates a constrained angular
movement of the instrument, as depicted in Fig. 2(b). The
duration of each experiment is 120 s and the simulated sensor
data is generated at 4 Hz. Gaussian noise was added to the
simulated magnetometer measurements (σmag = 1 mG), and
the simulated relative rotation measurements (σR = 1◦). The
true magnetic field vector is x0 = [200, −40, 480]> mG
and the bias is b = [20, 120, 90]> mG. The magnitude
of the magnetic field used for the TWOSTEP and AI-EKF
methods was 1% greater than the value used in generating
the simulated data. The covariance matrices used by the
AI-EKF and VMC-KF methods are Q = 0.1I6×6 mG and
R = I3×3 mG. These values were chosen in the range of
the expected process and sensor noises. Fig. 3 shows the
estimation performance for each simulated experiment.

The simulation results show that for a complete range
of movements (i.e., SIM1L), the batch methods Centered,
TWOSTEP, and VMC-LS show the best performance with
an average error under 0.2 mG for the magnetometer bias

(a) Sim. data SIM1L:
Large movements

(b) Sim. data SIM2S:
Constrained movements

Fig. 2. Simulated magnetometer data: Three-dimensional plot of the
simulated magnetometer data (black dots). For reference, a sphere is plotted
centered at b. The large reference-frame is at (0,0,0) with x-axis in red, y-
axis in green, and z-axis in blue. A small reference-frame is plotted at the
center of the sphere. The line connecting the large and small reference-
frames represent the sensor measurement bias.

estimate. The VMC-KF method shows good estimation per-
formance of the magnetometer bias with an error under
0.5 mG. The worst performance is shown by the AI-EKF
method with bias estimation errors over 5 mG. The AI-
EKF method is affected by linearization errors and does
not ensure convergence. For the second dataset, SIM2S, the
proposed methods, VMC-LS and VMC-KF, show the best
performance, with bias estimation errors under 2–3 mG.

The other methods (Centered, TWOSTEP, and AI-EKF)
show a bias estimation error over 10 mG. Note that the
TWOSTEP and AI-EKF methods are very sensitive to errors
in the used value of the a priori magnitude of the local
magnetic field. For small movement experiments (such as
SIM2S), we notice that the sensor bias estimation error grows
proportionally to the error in the magnitude of the magnetic
field. In our simulation performance evaluation, an error in
the magnitude used for estimation is introduced representing
1% of the real magnitude. But for common applications,
the difference between the local magnitude of the magnetic
field and that predicted by the model can include much
higher errors (such as inside/near buildings or other unknown
magnetic anomalies).

These simulation results support the utility of all proposed
methods. In the next section we evaluate the performance for
experimental data.

B. Experimental Results

This section reports the results of a comparative experi-
mental performance evaluation of the five calibration meth-
ods in experimental trials of systems equipped with a micro-
electro-mechanical systems (MEMS) magnetometers and a
camera. For our experimental performance evaluation we
use two different experimental setups: an indoor laboratory
experimental setup and an outdoor phone-based experimental
setup. The experimental setups are depicted in Fig. 4.

1) Indoor laboratory experimental setup: For measuring
the magnetic field we use a MEMS-based attitude and
heading reference system (AHRS), the Microstrain 3DM-
GX3-25 [17]. Images were captured with a Point Grey
Chameleon camera with a resolution of 1280 by 960
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(a) Simulation results from SIM1L: Large angular movements
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(b) Simulation results from SIM2S: Constrained angular movements

Fig. 3. Performance evaluation results from simulated data: The y-axis shows the sensor bias estimation error for each solution (mG) in logarithmic scale.
Each box plot is calculated from 1000 trials. The proposed methods’ (VMC-LS and VMC-KF) estimation performance is less sensitive with constrained
angular movements while previously reported methods’ (Centered, TWOSTEP, AI-EKF) estimation performance is significantly reduced.

(a) Laboratory experimental setup (b) Phone experimental setup

Fig. 4. Experimental setups.

pixels [22]. Data was recorded at 4 Hz. For comparing
the heading estimation performance, we used the Qual-
isys ProReflex motion capture system MCU 1000 [23]
as “ground-truth” heading.

2) Outdoor phone experimental setup: We use a
LG Nexus 4 mobile phone with a three-axis accelerom-
eter, three-axis gyroscope, and three-axis magnetome-
ter included. The images from the back camera were
acquired at 640 by 480 pixels. Data was recorded at
3.5 Hz. For comparing the heading estimation perfor-
mance, we used the estimated relative attitude to visual
markers in the scene (AprilTags [21]) to compute our
“ground-truth” heading.

We computed the relative rotation inputs using the
OpenCV library [5] following a commonly used visual
odometry pipeline:

1) Image acquisition: We acquired and time stamped the
images at 3.5− 4.0 fps.

2) Feature detection: SIFT features and descriptors [14] are
detected in grayscale calibrated images.

3) Matching: Features from two correlative images are

matched using the randomized kd-tree forest imple-
mented in the FLANN (Fast Approximate Nearest
Neighbor Search) library [19].

4) Homography: Homography is calculated with outlier
rejection using Random Sample Consensus (RANSAC),
[9].

5) Motion estimation: We calculate the relative rotation
estimate from (8).

It should be noted that although the AprilTag markers were
present in both experiments, we did not use them to improve
the visual motion estimate previously described. In practice,
the number of features introduced for the AprilTags markers
was significantly smaller than the features detected on the
background.

Four experiments were performed. Two experiments in the
laboratory facility, EXP1L and EXP2S, and two experiments
outside with a mobile phone, EXP3L and EXP4S. The first
experiment for each setup, EXP1L and EXP3L, measure a
large range of movements, Fig. 5(a) and 5(c). The trajectory
is a sequence of large heading, pitch, and roll rotations.
Most of these trajectories are not feasible to implement in
many robotic vehicles. The second experiment for each setup,
EXP2S and EXP4S, measures a more feasible sequence of
movements, Fig. 5(b) and 5(d), where the range of movement
of the system is limited in heading, pitch, and roll. The data
was collected and bias estimation executed and analyzed off-
line.

For our analysis, the estimation is performed for all
the evaluated methods using raw measurements from the
sensor including the measured orthogonality and scale factor
distortions. The unaccounted error in the scale factor can
show the robustness to perturbations of the proposed methods
that are not compensating for these errors. In practice, the
orthogonality scale factor matrix can be measured previously
and compensated to improve the performance of the system,
to later use the proposed methods to continue estimating the
sensor bias under different conditions.



TABLE I
SUMMARY OF THE SENSOR BIAS ESTIMATION RESULTS FROM LABORATORY EXPERIMENTS (EXP1L AND EXP2S) AND PHONE EXPERIMENTS

(EXP3L AND EXP4S). BEST HEADING ESTIMATION PERFORMANCE IN EACH EXPERIMENT IS MARKED IN BOLD FONT.

EXP1L - LABORATORY

b̂x b̂y b̂z σ(hE)
[mG] [mG] [mG] [deg]

Raw -0.0 -0.0 -0.0 8.5
Centered [7] -35.1 -45.3 -59.7 3.1
TWOSTEP [3] -34.8 -43.2 -59.8 3.1
TWOSTEP* [3] -35.1 -45.0 -59.7 3.1
VMC-LS -24.6 -33.7 -49.7 2.5
AI-EKF [6] -20.2 62.8 -63.0 6.2
VMC-KF -30.3 -43.1 -43.1 2.7

EXP2S - LABORATORY

b̂x b̂y b̂z σ(hE)
[mG] [mG] [mG] [deg]

-0.0 -0.0 -0.0 8.5
-11.5 -61.7 -61.2 4.0
26.0 32.5 -57.6 8.0
-4.2 -43.4 -60.5 4.3
-17.0 -33.2 -49.5 2.8
26.6 39.6 -56.7 8.2
-11.7 -30.9 -41.1 3.4

EXP3L - PHONE

b̂x b̂y b̂z σ(hE)
[mG] [mG] [mG] [deg]

0.0 0.0 -0.0 100.5
67.0 801.5 -622.0 4.2
67.7 817.6 -713.4 6.2
67.1 802.8 -629.1 4.3
85.7 800.3 -597.8 4.2

228.2 427.9 194.5 206.8
84.6 804.3 -599.7 4.2

EXP4S - PHONE

b̂x b̂y b̂z σ(hE)
[mG] [mG] [mG] [deg]

0.0 0.0 -0.0 100.5
79.8 760.8 -584.8 6.0
12.7 949.5 -762.5 28.4
59.9 817.2 -637.9 5.3
86.6 789.4 -603.8 4.5

192.3 102.5 24.7 111.8
87.4 795.5 -592.6 4.3

(a) Experimental data
EXP1L: Laboratory large
movements

(b) Experimental data
EXP2S: Laboratory
constrained movements

(c) Experimental data
EXP3L: Phone large
movements

(d) Experimental
data EXP4S: Phone
constrained movements

Fig. 5. Experimental evaluation data: Three-dimensional plot of the mag-
netometers’ recorded data for each experiment (black dots). For reference,
a sphere is plotted centered at the best estimate of the sensor measurement
bias. A reference-frame is plot at the center of the sphere with x-axis in
red, y-axis in green, and z-axis in blue.

Magnetometer bias was estimated with each evaluated
method using data from EXP1L to EXP4S. From each
estimated magnetometer bias, b̂q , we calculate the heading
error, hEq , between the heading, hq , calculated from the
magnetometer data with the estimated bias b̂q removed,
and the heading from the visual tags, hREF . For a more
accurate heading comparison in the case of the constrained
experiments, EXP2S and EXP4S, we use the same data, from
EXP1L and EXP3L, respectively, to calculate the heading
error. Table I summarizes the experimental results.

From the performance evaluation in Table I, the VMC-
LS and VMC-KF methods show good performance in all
four experiments, correcting the heading error from the
original 8.5–100◦ range to less than 3◦ for laboratory ex-
periments and 4.5◦ for phone experiments. On the other
hand, the Centered and TWOSTEP methods only show good

performance for the large angular movement experiments,
EXP1L and EXP3L, but they are less accurate for a more
limited calibration dataset, EXP2S and EXP3S. For EXP2S,
the Centered and TWOSTEP methods show error increase
in 1–20◦ from the original error with EXP1L. For the
case of the manually selected magnetic field magnitude for
each experiment, TWOSTEP*, the results are better than
TWOSTEP in all cases but not as good as the proposed
methods VMC-LS and VMC-KF for the constrained angular
movement experiments, EXP2S and EXP4S. AI-EKF, like in
the numerical simulations, shows worst performance of the
evaluated methods, and it is not able to estimate the bias
and improve the heading estimate for the phone experiments
EXP3L and EXP4S. This is due to the large initial bias
for the phone increasing the linearization errors of the EKF,
making the filter to not converge to the correct estimate of
the bias.

Fig. 6 shows the sensor bias estimate over time for the
two real time evaluated methods (AI-EKF and VMC-KF)
for EXP3L and EXP4S. The results show that the bias is
correctly estimated only for VMC-KF but not for AI-EKF.
The VMC-KF method converges in less than 18 s (EXP3L)
and 12 s (EXP4S). The bx and by values converge fastest due
to the nature of the excitation with large heading movements.

V. CONCLUSIONS

The proposed relative angular position aided estimation
methods (VMC-LS and VMC-KF) were shown to improve
the sensor bias estimation performance under some circum-
stances with limited range of movement of the system when
compared with the previously reported methods (Centered,
TWOSTEP, and AI-EKF).

The numerical simulation and experimental results quanti-
fied the sensor measurement bias estimation performance un-
der different scenarios of calibration motions. The proposed
methods, VMC-LS and VMC-KF, show good performance
for all the evaluated scenarios. The previously reported
methods, Centered, TWOSTEP, and AI-EKF, show good
performance only when the data contains large angular mo-
tion. In addition, TWOSTEP and AI-EKF methods require
exact knowledge of the magnitude of the local magnetic field
vector, and are very sensitive to error in this value.

The comparative experimental evaluation quantified the
resulting calibrated heading estimation performance when
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(a) Magnetometer bias estimation over time for EXP3L
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(b) Magnetometer bias estimation over time for EXP4S

Fig. 6. The x-axis shows the time (seconds) and the y-axis the estimated bias for each method (mG). The AI-EKF method is shown in dotted red and
the VMC-KF method in solid blue. As a reference, the offline bias estimated by the VMC-LS method is shown as dashed green.

compared with the heading estimated by a motion capture
system and visual markers outside. The proposed method,
VMC-LS and VMC-KF, show significantly smaller heading
error after calibration than all the previously reported meth-
ods for the case of a more feasible sequence of calibration
movements for most ground, marine, or aerial vehicles.
Finally, the proposed real-time method, VMC-KF, ensures
convergence to the estimated sensor bias value while the
previously proposed method, AI-EKF, does not ensure con-
vergence to the true values.
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