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Abstract: This paper examines the problem of localizing a network of underwater vehicles
using inter-vehicle range observations derived from measuring the one-way-travel-time (OWTT)
of acoustic broadcasts. We report the derivation of the novel origin state method; an algorithm
for distributing a local pose-graph as a sequence of minimal bandwidth information packets that
is robust to packet loss. We demonstrate the effectiveness of this algorithm as an extension of
the decentralized extended information filter (DEIF) for synchronous-clock acoustic navigation
through post-process implementation using a real-world data set.
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1. INTRODUCTION

Underwater vehicles typically fuse Doppler body-frame
velocity, attitude, and pressure depth observations to pro-
duce dead-reckoned (DR) navigation solutions. Without
absolute position measurements, (e.g., global positioning
system (GPS)), DR position errors grows unbounded in
time. Higher quality DR sensors are only capable of reduc-
ing the rate of uncertainty growth, therefore, alternative
methods for constraining navigation errors are required.

Underwater acoustic navigation systems attain bounded-
error navigation through range-only observations to bea-
cons with known position. Range observations are ob-
tained from measuring the time-of-flight (TOF) of acoustic
signals and assuming a known sound speed profile. The
long-baseline (LBL) navigation framework, for example,
employs a network of fixed reference beacons to which
vehicles can measure range (Hunt et al., 1974). LBL, how-
ever, limits the area of operations to the coverage footprint
of the reference beacons. Furthermore, narrowband LBL
lacks the ability to scale up to large groups of vehicles
because only a single vehicle can interrogate the beacon
network at any one time.

Synchronous-clock acoustic navigation (Eustice et al.,
2011) is an application of cooperative localization, which
involves a group of vehicles augmenting their position
estimates with inter-platform range observations. Much
like other acoustic navigation methods, receiving plat-
forms measure one-way-travel-time (OWTT) range to a
transmitting platform. The OWTT derived distance is
a function of the transmitter position at the time-of-
launch (TOL) and the receiver position at the time-of-
arrival (TOA). Synchronous-clock acoustic navigation can
be thought of as a moving long-baseline (MLBL) approach
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(Vaganay et al., 2004). Advantageously, synchronous-clock
acoustic networks can scale to arbitrarily many vehicles be-
cause all vehicles within acoustic range of the transmitting
platform passively receive a range measurement leading to
constant time update rates. Several methods have been
proposed to incorporate OWTT-derived relative-range ob-
servations into a navigation framework; each presenting a
trade off between consistency, bandwidth, and robustness
to lossy communication.

The rest of this paper is organized as follows. Section
2 reviews existing approaches to cooperative localization
and synchronous-clock acoustic navigation. Next, Section
3 highlights the ability of the decentralized extended infor-
mation filter (DEIF) algorithm to transmit a local pose-
graph as a sum of ‘delta information’ packets. Section 4
then presents the derivation of the origin state method, a
novel reinterpretation of the DEIF that is robust to packet
loss. Section 5 demonstrates the application of the mod-
ified decentralized extended information filter (MDEIF)
in a real-world experiment consisting of a topside ship
and an autonomous underwater vehicle (AUV). Finally,
Section 6 summarizes and presents recommendations for
future work.

2. COOPERATIVE LOCALIZATION

The goal of general cooperative localization is simply to
estimate the position of vehicles within the network given
local information, gained via onboard sensors, and ex-
ternal information, gained via inter-vehicle measurements
(such as OWTT range measurements). Several methods
for synchronous-clock acoustic navigation have been pro-
posed in the literature. Many of these methods can be
conceptualized using a pose-graph, which is a graphical
model in which past vehicle poses, or delayed states, are
represented by graph nodes and their interdependence is
encoded by graph edges (Fig. 1).



Fig. 1. Global pose-graph for a two-vehicle network. Circle
nodes represent vehicle poses, solid edges depict lo-
cally observable state transitions, while dashed edges
represent relative-range observations.

2.1 Prior Work

Eustice et al. (2006) initially proposed a maximum like-
lihood estimate (MLE) solution for synchronously navi-
gating subsea nodes via ranging to surface ships. Other
algorithms based upon the Kalman family of filters (Web-
ster et al., 2009; Fallon et al., 2010; Bahr et al., 2009), and
factor-graphs (Cunningham et al., 2010) also exist. These
algorithms are summarized below.

The centralized extended Kalman filter (CEKF) (Webster
et al., 2009) is a post-process solution that assumes ac-
cess to all sensor measurements from all platforms. The
CEKF is a global multi-platform pose-graph method that
maintains all current vehicle poses and all necessary TOL
poses in its state vector (Fig. 1). Each new TOL trans-
mitter state is added as a node on the global pose-graph.
Edges are then added representing OWTT range con-
straints between transmitter TOL nodes and TOA receiver
states. The CEKF recursively estimates the pose-graph
within a Kalman filter framework, tracking the global state
mean and covariance. Sharing inter-platform range mea-
surements builds correlation between vehicle navigation
estimates. The utility of the CEKF is that it tracks the
full covariance matrix of the network and therefore serves
as a baseline for comparison.

A simple approach to distributing the underwater coop-
erative localization problem is to have each platform only
estimate its current state as opposed to the full global
pose-graph. OWTT measurement updates are made by
including the transmitting platform’s local mean and co-
variance estimate in each acoustic broadcast. The naively
distributed extended Kalman filter (NEKF) method is
essentially equivalent to the CEKF but with inter-vehicle
correlation actively held zero. This method does not track
the full pose-graph and correlation that develops as a
result of acoustic broadcasts—resulting in an overconfident
estimate (Walls and Eustice, 2011). If, however, the cor-
relation remains small between platforms (e.g., when one
vehicle has constant access to GPS) the NEKF performs
relatively well.

Bahr et al. (2009) proposed the interleaved update (IU)
algorithm as a consistent distributed cooperative localiza-
tion solution. The IU maintains a bank of NEKFs and a
table that tracks the origins of each inter-vehicle observa-
tion. This entire bank of filters is transmitted within each
acoustic broadcast. By careful bookkeeping, relative-range
measurement updates are only performed using informa-
tion that is guaranteed to be uncorrelated. The result is a
conservative, but consistent, navigation solution.

The decentralized extended information filter (DEIF)
(Webster et al., 2010) is another distributed navigation
algorithm. The DEIF exactly matches the CEKF result
under a constrained network topology of a single client
vehicle receiving acoustic broadcasts from a server vehi-
cle. The authors insightfully observed that information
accrued between server broadcasts can be transmitted to
the client platform in a small additive packet, termed
‘delta information’. The client filter simply adds these
delta information packets to reassemble the global pose-
graph. This algorithm is described in greater detail in
Section 3 and serves as the motivation for our origin state
variant.

Cunningham et al. (2010) cooperatively builds landmark-
based maps of an environment. The authors present a
graphical approach for sharing local map information
across a network of vehicles. Their method, termed decen-
tralized data fusion-smoothing and mapping (DDF-SAM),
condenses a local landmark-based map and communicates
this graph among the network. A global estimation module
is then able to consistently combine local graphs and arrive
at a global solution. While DDF-SAM does provide a low
bandwidth means for distributing local pose-graphs, it
does not explicitly decompose the graph to achieve the
minimal bandwidth required for the acoustic channel.

2.2 Proposed Method

We consider pose-graph navigation frameworks for their
ability to easily encode correlation between separate plat-
forms that develops as a consequence of relative-range
observations. Ignoring correlation between platforms can
lead to inconsistent results by essentially double-counting
information.

In a pose-graph cooperative localization framework, each
platform estimates the global graph of the network. Fig. 1
illustrates the problem of estimating the position of two
vehicles given local observations and relative-range con-
straints. Note that each local-graph must minimally con-
tain all nodes that are involved in relative-range observa-
tions. We claim that each platform must accomplish two
tasks:

(1) Construct and distribute the local pose-graphs of
all platforms in the network. In Fig. 1 this step
corresponds to building a separate graph for each
vehicle using only the solid edges.

(2) Compute a global estimate (i.e., global pose-graph).
This action is illustrated as adding the dashed lines
in Fig. 1.

The novel contribution of this work is a method for de-
composing, distributing, and later reconstructing a local
pose-graph using the concept of an origin state. Our algo-
rithm allows relative-pose constraints to be added within
a cooperative localization framework with bandwidth and
robustness in mind. This method can be directly applied to
the DEIF algorithm to make it robust to a lossy communi-
cation channel. Moreover, this result also provides possible
application to work such as DDF-SAM by providing a
more bandwidth constrained method for distributing local
pose-graphs.



Fig. 2. Local graph decomposition. Coarsely dashed arcs
represent state transitions transmitted by the DEIF
algorithm. Finely dashed arcs represent state transi-
tions transmitted by the origin state method where
x0 is the agreed upon origin node.

3. DECENTRALIZED EXTENDED INFORMATION
FILTER

The DEIF algorithm allows a subsea vehicle to simulta-
neously reconstruct the topside ship’s (or other support
vehicle’s) local pose-graph and incorporate OWTT derived
relative-range constraints. The interested reader is referred
to (Webster et al., 2010) for an in depth description of the
algorithm, though a brief outline is given below. In the
following discussion, the subsea vehicle and support vehicle
are referred to as the client and server, respectively. The
extended information filter (EIF) tracks the distribution
parametrized by the information matrix, Λ, and informa-
tion vector, η, which are defined in terms of the covariance,
Σ, and mean, µ, of the state vector, x, as

Λ = Σ−1, η = Λµ.

The DEIF algorithm accomplishes the previously outlined
two steps of pose-graph cooperative localization (local
pose-graph distribution and global estimation) within a
filtering framework. The DEIF assumes that communica-
tion, and consequently relative-range observations, occur
in a single direction (i.e, server to client). Therefore, only
the server (transmitter) is concerned with communicating
its local pose-graph and only the client (receiver) performs
a global estimation procedure as it is the sole platform with
access to relative-range observations.

The real insight of the DEIF algorithm lies in its ability to
distribute the server’s local-pose graph as a series of delta
information packets. The simple sum of this series exactly
reproduces the server pose-graph. Conceptually, each delta
information packet describes a one-step transition adding
a new node connected to the previous node. These delta
information transitions are illustrated in Fig. 2.

3.1 DEIF Operation

The DEIF consists of two information filters: one main-
tained by the server and only incorporating local measure-
ments, the second running on the client vehicle incorpo-
rating its local DR observations as well as relative-range
constraints from the server.

Server Side Implementation The server filter augments
its state vector at each TOL with its current state, so that
after N acoustic broadcasts, its state vector at time k is

xs(k) = [x>sk ,x
>
stN−1

, . . . ,x>st0 ]>,

where the ‘s’ subscript denotes server states and ti rep-
resents the ith TOL. This state vector describes the local

pose-graph up to time k with each node representing a
TOL state. At the next TOL, the server filter computes
a delta information packet to be encoded in the next
transmission. The delta information, expressed as,

∆ΛsN = ΛsN − ΛsN−1

∆ηsN = ηsN − ηsN−1

(1)

encompasses all local measurements and predictions that
have occurred since the previous TOL, effectively describ-
ing a one step transition. The full derivation of this process
is described in detail in (Webster et al., 2010). Briefly,
the delta information computation is possible because the
information matrix exhibits a sparse block tri-diagonal
form and measurement updates and predictions only addi-
tively modify a small fixed sized portion of the information
matrix and vector. Therefore, delta information represents
the change in this small area of the information matrix
and vector corresponding to the new TOL state and the
previous TOL state.

For example, if we consider the server pose-graph at the
second TOL, t1, its state vector would also include the
TOL state at time t0,

xs(t1) = [x>st1 ,x
>
st0

]>.

The corresponding information matrix and vector are

Λs1 =

[
Λst1st1

Λst1st0
Λst0st1

Λst0st0

]
, ηs2 =

[
ηst1
ηst0

]
.

At the next TOL, t2, the server state vector becomes

xs(t2) = [x>st2 ,x
>
st1
,x>st0 ]>.

The information matrix and vector now take the form

Λs2 =

Λst2st2
Λst2st1

0
Λst1st2

Λ′st1st1 Λst1st0
0 Λst0st1

Λst0st0

 , ηs2 =

ηst2
η′st1
ηst0

 ,
where the sub elements Λ′st1st1 6= Λst1st1

and η′st1 6= ηst1
.

The delta information is computed as

∆Λs2 = Λs2 − Λs1 =

Λst2st2
Λst2st1

0
Λst1st2

(Λ′st1st1 − Λst1st1
) 0

0 0 0

 ,
∆ηs2 = ηs2 − ηs1 =

 ηst2
η′st1 − ηst1

0

 ,
where Λs1 and ηs1 are padded with zeros for conforma-
bility. The extraneous zero rows and columns are dropped
from the delta information matrix and vector for trans-
mission. Each delta information packet displays this same
nonzero pattern leading to a fixed bandwidth packet. This
compact packet encodes the changes in the server pose-
graph from t1 to t2, which is broadcast to the client vehicle
at the TOL.

Note that the server is only required to keep the last two
TOL states in its state vector for delta information com-
putation. Therefore, in a practical implementation older
states can be marginalized out without consequence. Ad-
vantageously, the memory requirement of the information
filter grows linearly with the number of past states, O(N),
as opposed to the covariance form of the Kalman filter
which grows quadratically, O(N2).

Client Side Implementation The client filter tracks the
global pose-graph consisting of nodes representing its



current state as well as previous server TOL states. Server
TOL states are accumulated through the sequence of delta
information packets received at the TOA via the reverse
operation described in (1). This additive step reconstructs
the server local pose-graph up to its TOL.

After receiving N acoustic broadcasts at time k, the client
state vector includes

xc(k) = [x>ck ,x
>
stN−1

, . . . ,x>st0 ]>,

where the ‘c’ subscript denotes client states. After incor-
porating the newest delta information packet, the filter
proceeds with the new range measurement update follow-
ing the standard Kalman procedure, completing the global
estimation step. Note that following this relative-range
measurement update, the client DEIF estimate is exactly
equivalent to the estimate maintained by the CEKF.

The DEIF’s sequential nature of the delta information
computation imposes a non-lossy communication require-
ment. By missing a single delta information packet, the
receiving platform can no longer reconstruct the transmit-
ter’s local pose-graph. A practical workaround is to use
a transmission redundancy scheme; however, this vitiates
the algorithm’s low-bandwidth motivation.

4. ORIGIN STATE METHOD

The origin state method is motivated by the non-lossy
communication requirement of the DEIF. While DEIF
delta information packets represent a one-step transition
between consecutive nodes, there is no physical interpreta-
tion behind the meaning of each packet. Instead, we pro-
pose an alternative called the origin state method, which
decomposes the pose-graph into meaningful components
that allow for the pose-graph to be reconstructed even in
the presence of missed packets.

The basic idea behind the origin state method is to
represent nodes in the pose-graph relative to another node,
the origin, as opposed to a transition from the previous
node as in the DEIF. This difference is illustrated in Fig. 2.
Instead of representing the relationship between nodes as
an additive delta information packet, we explicitly solve
for the joint marginal distribution of the new node and
the origin node. The process of computing an origin state
packet and reconstructing the pose-graph given a new
origin state packet is demonstrated below.

4.1 Computing Origin State Packets

Assume that the transmitter’s state vector, after three
TOL at times t0, t1, and t2, is

x2 = [x>t2 ,x
>
t1 ,x

>
t0 ]>.

The corresponding information matrix and vector are:

Λ2 =

[
Λt2,t2 Λt2,t1 0
Λt1,t2 Λt1,t1 Λt1,t1

0 Λt0,t1 Λt0,t0

]
, η2 =

ηt2
ηt1
ηt0

 , (2)

where the off-diagonal zero is from the Markov property.
At the next TOL state, t3, the state vector is augmented
with the current platform pose. The information matrix
and vector now take the form

Λ3 =

Λt3,t3 Λt3,t2 0 0
Λt2,t3 Λ′t2,t2 Λt2,t1 0

0 Λt1,t2 Λt1,t1 Λt1,t0
0 0 Λt0,t1 Λt0,t0

 , η3 =

ηt3
η′t2
ηt1
ηt0

 , (3)

with boxed elements indicating new (from augmentation)
or changed values. Note that Λ′t2,t2 6= Λt2,t2 and likewise
η′t2 6= ηt2 . The transition from (2) to (3) contains all local
information that has been gained by the transmitter from
local measurements.

The origin state packet is computed as the joint marginal
of the transmitter distribution over the new TOL node,
xt3 , and the origin state, xt0 . The origin state is simply
a node in the pose-graph that the transmitter and the
receiver both agree upon. In this example, let xt0 be the
origin state. In the information form, marginalization is
defined by the Schur complement resulting in

Λs
3 =

[
Λs
t3,t3 Λs

t3,t0
Λs
t0,t3 Λs

t0,t0

]
, ηs

3 =

[
ηs
t3

ηs
t0

]
, (4)

where the ‘s’ superscript indicates that this is the joint
marginal distribution computed on the server. An origin
state packet is computed at each TOL and communicated
to the receiver where the series of all origin state packets
is used to reconstruct the transmitter’s pose-graph. The
dimension of the origin state packet is equal to that of the
delta information required by the DEIF.

4.2 Reconstructing Pose-Graphs from Origin State Packets

The goal of the receiving platform is to reconstruct the
transmitter local pose-graph given the sequence of origin
state packets. In this example, assume that the receiver has
acquired the pose-graph up to the previous TOL, (i.e., up
to t2 in (2)), and then receives the new origin state packet,
expressed as (4). The received origin state packet encodes
the joint marginal of the transmitter state at the TOL and
the origin. For notational convenience, we also define the
joint marginal of the previous delayed state, xt2 , and the
origin state, xt0 , over the previous distribution, (2),

Λc
2 =

[
Λc
t2,t2 Λc

t2,t0
Λc
t0,t2 Λc

t0,t0

]
, ηc

2 =

[
ηc
t2

ηc
t0

]
, (5)

where this time the ‘c’ superscript indicates that this joint
marginal is computed on the client platform.

The client can now reconstruct (3) using just (2), (4), and
(5). By studying how the new origin state packet, (4), was
computed via the marginalization operation of (3) (refer
to Appendix A), we equate terms and explicitly solve for
the unknown values of the information matrix and vector.
The full pose-graph up to time t3 is then defined in the
information form by computing the following system,

Ω−1 = Λc
t0,t2
−1(Λc

t0,t0 − Λs
t0,t0)Λc

t2,t0
−1

β = −Λs
t3,t0(Ω−1Λt2,t0)−1

ν =
[
Λc
t0,t2Ω−1

]−1
(ηc

t0 − ηs
t0)

Λt3,t3 = Λs
t3,t3 + βΩ−1β>

Λt3,t2 = β
Λ′t2,t2 = Ω + Λt2,t1Λ−1t1,t1Λ−1t1,t2

ηt3 = ηs
t3 + βΩ−1ν

η′t2 = ν + Λt2,t1Λ−1t1,t1ηt1 .

(6)

The equations in (6) solve for the full joint distribution
given the joint marginals over each TOL state and the



origin state. Intuitively, this method can be thought of as
inferring the correlation between a new TOL state and
all other past states by observing how its correlation with
a known origin state is affected. We can see this in the
terms (Λc

t0,t0 − Λs
t0,t0) and (ηc

t0 − ηs
t0), which express the

difference in information known about the origin state by
the client and server vehicles.

If a packet is lost in transmission, the receiving platform
still reconstructs an equivalent pose-graph with subse-
quent packets as if the lost TOL state had been marginal-
ized out. The robustness of the origin state method to
dropped transmissions is an important feature especially
when using an unstable communication channel, such as
the acoustic channel.

4.3 Numerical Stability

The origin state method defines a transmission scheme
robust to packet loss using a small fixed amount of band-
width; however, there is a catch. Over time the correla-
tion between each new TOL state and the origin state
decreases due to process noise. As mentioned previously,
the origin state method computes the full joint distribution
over the current state and all past states by observing
how information gained between transmissions affects the
estimate of an origin state. As the correlation between the
newest state and the origin state decreases, the ability to
numerically compute the difference in information known
about the origin state diminishes. Eventually, the origin
state method breaks as a result of numerical instability.

A simple solution to this issue is to ensure that the origin
state is continually moved forward in time, so as to remain
as close as possible to the new TOL state. Origin shifting
can easily be accomplished in the underwater scenario by
allowing communication to occur bi-directionally among
platforms so that each platform can transmit an index
relating to the most recently received TOL pose from
all other platforms in addition to its usual origin state
packet. Each platform can then track the most recent
state received by all other vehicles and shift its origin
state forward accordingly. The drawback is that client
communication is no longer passive.

4.4 Modified Decentralized Extended Information Filter

The MDEIF operation mirrors the standard DEIF except
for the acoustic packet composition. In the MDEIF, the
server vehicle transmits the origin state joint marginal of
each TOL state. The client vehicle now reconstructs the lo-
cal information from the server as previously outlined, and
computes the current delta information exactly as if the
server vehicle had done so. This delta information is then
handed over to the existing DEIF machinery. The resulting
MDEIF algorithm produces the same navigation solution
as the DEIF while lifting the non-lossy communications
constraint. For practical implementation, an origin shifting
scheme similar to the one outlined above is necessary.

(a) Vehicle trajectories (b) Iver2 AUV

Fig. 3. Experimental Setup.

Table 1. AUV Navigation Sensors: Sampling
Frequency and Noise Characteristics.

Client Sensors Variable Frequency Noise

Microstrain AHRS φ, θ, ψ 25.0 Hz 2.0◦

Doppler velocity log ẋ, ẏ, ż 3.0 Hz 5.0 cm/s
pressure depth z 2.0 Hz 10 cm
acoustic modem slant range every ∼15 sec 1 m

Server Sensors Variable Frequency Noise

GPS x, y 1.0 Hz 3.0 m

5. EXPERIMENTS

5.1 Experimental Setup

A two-node AUV trial was carried out using one custom
modified Ocean-Server Iver2 AUV and a topside surface
craft. The AUV followed a lawn-mower pattern with
roughly 500 m tracklines spaced 50 m apart as depicted in
Fig. 3. The topside ship drifted to various positions around
the survey area during the mission.

The AUV was equipped with a typical advanced dead-
reckoned sensor suite (as detailed in (Brown et al., 2008)
and summarized in Table 1) comprised of a 600 kHz
RDI Doppler velocity log (DVL), a Microstrain 3DM-
GX1 attitude and heading reference system (AHRS), and
a Desert Star Systems SSP-1 digital pressure sensor. We
define the state of each vehicle at time k as

xk = [xk, yk, ẋk, ẏk]
>
,

where the vehicle position in the local-level plane is de-
scribed by the xy pair and the corresponding world-frame
velocities are ẋẏ. Since we consider attitude to be instru-
mented with bounded error, we project the DVL body-
frame velocity measurements into the world-frame and
treat these as linear observations of the AUV velocity.
The topside vehicle only observes world-frame position as
measured by a GPS receiver.

The source of each acoustic transmission was defined by
a fixed time division multiple access (TDMA) schedule
during which each vehicle was assigned a time-slot to
send a data packet. The network maintained a 145 second
TDMA cycle, which consisted of 6 topside broadcasts and
4 subsea broadcasts. During the experiment, the subsea
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Fig. 4. Estimated AUV position uncertainty. Note that the
estimates produced by the CEKF, DEIF, and MDEIF
are nearly identical.

vehicle received roughly 81% of acoustic transmissions
from the ship, while the topside ship received about 67%
of the subsea transmissions.

We compared the performance of the DEIF and the
MDEIF through post-process implementation. In order to
run the DEIF, we made the assumption that successful
acoustic broadcasts were known ahead of time in order to
correctly compute each delta information; an assumption
that would not hold true in a real-time implementation.
The MDEIF uses acoustic broadcasts sent from the AUV
to the topside ship to shift the origin state forward
in time as proposed earlier. No assumptions regarding
successful transmission were made by the MDEIF so that
its performance in post-process accurately reflects its real-
time performance.

5.2 Results

The xy position uncertainty estimates are shown in Fig. 4
for the DEIF and MDEIF, as well as for the CEKF for
comparison. The position uncertainty is greatly reduced
by incorporating OWTT relative-range measurements be-
tween the two vehicles.

Fig. 5 presents the difference in xy position estimates
for the DEIF and MDEIF. The difference remains under
several millimeters throughout the experiment and, with
the exception of a brief period toward the end of the
mission (corresponding to a period of lost communication),
the difference is on the order of numerical precision. During
the period of lost communication, the origin is not shifted
forward in time so we expect the origin state method to
have difficulty with numerical precision. The difference
remains small, however, and the algorithm is able to
recover.

We see that the MDEIF performs nearly identical to
the DEIF without requiring a non-lossy communication
channel or redundant transmission schemes.
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Fig. 5. The top plot shows the difference between the
DEIF and MDEIF position estimates, which remain
negligible throughout the experiment. The lower plot
shows the correlation coefficient between the origin
state and the current topside state. The correlation
coefficient quickly goes to zero unless the origin is
shifted forward in time. The difference between the
DEIF and MDEIF is largest during a period when
the origin is not shifted forward (t=3400 to t=3700),
although this difference quickly decreases once regular
communication resumes (t=4000).

6. CONCLUSION

In this paper, we have shown that cooperative localization
can be segmented into two component tasks: local graph
synthesis and global graph estimation. The proposed origin
state method is a low bandwidth solution to the first
component. Under the origin state framework, receiving
platforms can reconstruct the transmitter’s local pose-
graph as a combination of many joint marginal origin state
packets.

We also presented an extension to the DEIF estimation
framework, the MDEIF, which lifts the non-lossy com-
munication requirement of the DEIF. We showed the
performance of the MDEIF on an experimental data set
including a single AUV and a topside ship, and found it
to be equal to the DEIF and CEKF in terms of accuracy.

Future work will address the numerical instability that
occurs when the current state of the transmitting vehicle
is no longer correlated with the origin state. We will also
examine other estimation frameworks that, in concert with
the origin state method, could incorporate relative-range
observations across a large network of vehicles.
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Appendix A. ORIGIN STATE METHOD DERIVATION

This section details the steps taken to obtain (6). This pro-
cedure allows the client to solve for the joint distribution
over all server TOL states,

Λ3 =

Λt3,t3 Λt3,t2 0 0
Λt2,t3 Λ′t2,t2 Λt2,t1 0

0 Λt1,t2 Λt1,t1 Λt1,t0
0 0 Λt0,t1 Λt0,t0

 , η3 =

ηt3
η′t2
ηt1
ηt0

 , (A.1)

given information that the client has access to including
the server joint distribution after the previous origin state
packet,

Λ2 =

[
Λt2,t2 Λt2,t1 0
Λt1,t2 Λt1,t1 Λt1,t1

0 Λt0,t1 Λt0,t0

]
, η2 =

ηt2
ηt1
ηt0

 , (A.2)

and the new origin state packet,

Λs
3 =

[
Λs
t3,t3 Λs

t3,t0
Λs
t0,t3 Λs

t0,t0

]
, ηs

3 =

[
ηs
t3

ηs
t0

]
, (A.3)

which is simply the joint marginal of (A.1) over the newest
TOL state at t3, and the origin state at t0 computed by

the server. Note that the client will solve for the boxed
elements in (A.1).

To make the derivation clear, we define two more marginal
distributions each computed by the client. First, we define
the joint marginal of (A.1) over the transmitter states at
times t3 and t2 as well as the origin state at time t0,

Λc
3 =

Λt3,t3 Λt3,t2 0
Λt2,t3 Λc

t2,t2
′ Λc

t2,t0
0 Λc

t0,t2 Λc
t0,t0

 , ηn
3 =

ηt3
ηc
t2
′

ηc
t0

 . (A.4)

The receiver does not have outright access to this distribu-
tion, but solving for it will serve as an intermediate step.
Second, we express the joint marginal of the distribution
up to time t2, (A.2), over the previous delayed state at
time t2, and the origin state at time t0,

Λc
2 =

[
Λc
t2,t2 Λc

t2,t0
Λc
t0,t2 Λc

t0,t0

]
, ηc

2 =

[
ηc
t2

ηc
t0

]
. (A.5)

The strategy to solve for (A.1) first involves explicitly
writing (A.3) by applying the Schur complement to (A.4)
and then equating known terms. We can write the new
origin state packet in terms of a marginal of (A.4) as[

Λs
t3,t3 Λs

t3,t0
Λs
t0,t3 Λs

t0,t0

]
=[

Λt3,t3 − Λt3,t2Λc
t2,t2
′−1Λt2,t3 −Λt3,t2Λc

t2,t2
′−1Λc

t2,t0

−Λc
t0,t2Λc

t2,t2
′−1Λt2,t3 Λc

t0,t0 − Λc
t0,t2Λc

t2,t2
′−1Λc

t2,t0

]
,

[
ηs
t3

ηs
t0

]
=

[
ηt3 − Λt3,t2Λc

t2,t2
′−1ηc

t2
′

ηc
t0 − Λc

t0,t2Λc
t2,t2
′−1ηc

t2
′

]
.

(A.6)
Solving the above leads to

Ω−1 = Λc
t2,t2

′−1 = Λc
t0,t2
−1(Λc

t0,t0 − Λs
t0,t0)Λc

t2,t0
−1

β = −Λs
t3,t0(Ω−1Λt2,t0)−1

ν = ηc
t2
′ =

[
Λc
t0,t2Ω−1

]−1
(ηc

t0 − ηs
t0)

Λt3,t3 = Λs
t3,t3 + βΩ−1β>

Λt3,t2 = β
Λt2,t3 = β>

ηt3 = ηs
t3 + βΩ−1ν.

(A.7)

The only remaining unknown elements from (A.1) are
Λ′t2,t2 and η′t2 . We take a similar approach to solve this
by writing (A.4) after applying the Schur complement to
(A.1) and then equating terms.Λt3,t3 Λt3,t2 0

Λt2,t3 Λc
t2,t2
′ Λc

t2,t0
0 Λc

t0,t2 Λc
t0,t0

 =

Λt3,t3 Λt3,t2 0
Λt2,t3 Λ′t2,t2 − Λt2,t1Λ−1t1,t1Λt1,t2 −Λt2,t1Λ−1t1,t1Λt1,t0

0 −Λt0,t1Λ−1t1,t1Λt1,t2 Λt0,t0 − Λt0,t1Λ−1t1,t1Λt1,t0

 ,
ηt3
ηc
t2
′

ηc
t0

 =

 ηt3

ηt2 − Λt2,t1Λ−1t1,t1ηt1

ηt0 − Λt0,t1Λ−1t1,t1ηt1

 .
(A.8)

The final unknown terms can then be expressed as

Λ′t2,t2 = Λc
t2,t2
′ + Λt2,t1Λ−1t1,t1Λt1,t2

η′t2 = ηc
t2
′ + Λt2,t1Λ−1t1,t1ηt1 .

(A.9)

Together (A.7) and (A.9) present a method to solve for
the unknown elements of (A.1).


