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Abstract— This paper reports on an underwater cooperative
localization algorithm for faulty low-bandwidth communica-
tion channels based on a factor graph estimation frame-
work. Vehicles measure the one-way-travel-time (OWTT) of
acoustic broadcasts to obtain a relative range observation to
the transmitting vehicle. We present a method to robustly
share locally observed sensor data across the network by
exploiting odometry factor composition. Our algorithm calls on
approximate marginalization techniques to compute a compact
set of informative factors that enable local navigation data
to be shared efficiently. We provide results from a real-
time implementation of our algorithm using two autonomous
underwater vehicles and a surface vehicle.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) typically inte-

grate body-frame velocities, attitude, and pressure depth to

compute a dead-reckoned (DR) navigation solution. Errors

in xy horizontal position estimates grow unbounded in time

without regular access to an absolute position reference (

global positioning system (GPS) is only available at the

surface). Bounded error navigation can be achieved with the

aid of fixed acoustic beacon systems such as long-baseline

(LBL). While these systems can accurately localize an AUV,

they do not scale well to large vehicle networks and can be

expensive to deploy.

Synchronous-clock acoustic hardware allows communi-

cating vehicles to observe their relative range via the one-

way-travel-time (OWTT) of acoustic broadcasts [1]. OWTTs

provide a relative range measurement between the trans-

mitting vehicle pose at the time-of-launch (TOL) and the

receiving vehicle pose at the time-of-arrival (TOA). The

acoustic channel, however, is broadcast and unacknowledged,

provides very low bandwidth (typically less than 100 bps),
and displays low reception rates (often less than 50%).

We propose a cooperative localization framework in which

underwater vehicles act as mobile navigation beacons. We

extend ideas originally presented in the origin state method

proposed by Walls and Eustice [2] to a novel approach that

exploits properties of the constituent factors within a graph-

based estimator.

We employ approximate marginalization techniques to

enable vehicles to share an informative subset of composed

factors. Approximate marginalization has recently become

a popular tool within the simultaneous localization and
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(a) Centralized factor graph over vehicle network.

(b) Factor graph over vehicle network constructed onboard the
blue vehicle by our algorithm. Take note that the dashed
green factors represent a new set of approximate factors
distinct from the original in (a).

Fig. 1: Example cooperative localization factor graph—

empty circles represent variable pose nodes, solid dots are

odometry and prior factors, and arrows illustrate range-only

factors and the direction of communication (TOA–TOL). In

this example, red represents a topside ship with access only

to GPS, while green and blue represent AUVs.

mapping (SLAM) community for reducing graph complexity,

e.g., [3–6]. In this work, we exploit similar tools in order to

efficiently distribute locally obtained information within a

cooperative localization framework.

The specific contributions of this work include:

• We present a cooperative localization algorithm for

communication-limited networks that is completely pas-

sive (i.e., does not rely on acknowledgments) and em-

ploys a fixed bandwidth data packet.

• We approximate the true locally constructed factor

graph using approximate marginalization techniques to

produce a structure that can be more easily broadcast.

• We provide a comparative evaluation of our algorithm

and a performance summary from a three vehicle field

deployment including two AUVs and a topside ship.

II. RELATED WORK

Within cooperative localization frameworks, teams of

communicating vehicles localize each other by sharing local



sensor data and observing relative vehicle pose. Early work

explored sharing information among the team and perform-

ing local data fusion [7–11].

More recent methods proposed framing cooperative local-

ization as a multiple vehicle graph-based SLAM problem

[12, 13]. These methods implicitly handle correlation that

develops between vehicle estimates when relative informa-

tion is shared; our proposed method falls within this category.

The centralized estimator for OWTT cooperative localization

shares a similar structure to a pose-graph SLAM formulation

with known data association.

Leung et al. [14] presented a decentralized cooperative

localization algorithm capable of reproducing the central-

ized estimate in the presence of dropped communication.

The bandwidth required for transmitting knowledge sets,

however, may exceed the acoustic channel capacity during

periods of lost connectivity. Nerurkar and Roumeliotis [15]

similarly targeted cooperative localization in bandwidth con-

strained scenarios, but require constant connectivity.

Many other researchers in the underwater domain have

considered fusing relative range measurements derived from

observing the time-of-flight (TOF) of acoustic broadcasts.

Previous work [1, 2, 16–23] has considered the limitations

of the acoustic channel and the difficulties of fusing range-

only observations.

The complexity of graph-based estimation is largely de-

pendent on the size (i.e., number of variable nodes) and

sparsity of the graph (i.e., number of edges). Graph sparsi-

fication methods have been introduced [3–6] to both reduce

the number of variables in the graph and increase the sparsity

without greatly affecting the solution. We take advantage of

approximate marginalization techniques to refactor a local

factor graph over a smaller set of poses to reduce the

communication requirement.

The work proposed here is closest to that outlined by

Walls and Eustice [2] and Fallon et al. [20]. In our previous

work [2], we exploited the structure of the information

matrix to cope with unpredictable packet loss. Unfortunately,

the algorithm requires periodically shifting an origin pose,

requires a recovery mechanism for pathological communi-

cation failures, and does not seamlessly allow for a vehicle

with no odometry (e.g., a surface vehicle with only GPS) to

participate. Fallon et al. [20] proposed constructing a graph-

based estimator on each vehicle by broadcasting individual

factors to the team. Their method transmits each factor over

a large set of pose nodes and requires data requests when

communication is lost. We exploit the factor structure of the

local graph to robustly communicate information within a

completely passive framework.

Paull et al. [23] independently arrived at a similar solution

discussed in Section V and Section VI.

III. PROBLEM STATEMENT

We formulate cooperative localization within a factor

graph framework [24]. The underlying structure of the factor

graph consists of information local to each vehicle and

information due to relative vehicle measurements. We will

first review the factor graph formulation for a single vehicle

and then expand to the full vehicle network.

In the single vehicle setting, the factor graph approach is

a smoothing algorithm that estimates the entire trajectory of

the vehicle. A factor graph is a bipartite graph with pose

(variable) nodes and factor (measurement) nodes represent-

ing the joint distribution over the unknown poses. The ith
vehicle graph represents the joint distribution over its N
poses, Xi = [x1, . . . ,xN ], as

p(Xi) ∝ p(x1)
∏

i

p(zodoi |xi,xi−1)
∏

j

p(zpriorj
|xj), (1)

where we assume each vehicle has access to its initial

belief p(x1). The graph structure is a chain as we only

consider unary ‘prior’ factors, zprior, (e.g., GPS) and pairwise

sequential ‘odometry’ factors, zodo, (e.g., integrated velocity).

For convenience, we define a ‘link’, Li, associated with

the ith pose node, xi, as a 2-tuple containing the odometry

factor to the previous pose node and a prior factor. Note that

each link need not have both an odometry and prior factor,

for example the initial link only contains a prior factor. The

local chain is the set of links which represent the vehicle

trajectory corresponding to (1), Clocal = {Li}
N
i=1. In Fig. 1a,

each uniformly colored subgraph represents a local chain.

We can construct the factor graph over the entire M
vehicle network (i.e., all vehicle poses), {X1, . . . ,XM},

p(X1, . . . ,XM ) ∝
∏

i

p(Xi)
︸ ︷︷ ︸

Clocali

∏

k

p(zk|xik ,xjk)
︸ ︷︷ ︸

relative factors

, (2)

where each zk represents a relative vehicle constraint be-

tween poses on vehicles ik and jk. In this work, zk is

a OWTT range constraint between a transmitting vehicle’s

TOL pose and a receiving vehicle’s TOA pose. The factor

graph for a three vehicle network is illustrated in Fig. 1a.

The gold-standard would be to compute the maximum a

posteriori (MAP) estimate for each vehicle in a centralized

estimator as

X
∗
i = argmax{X1,...,XM}p(X1, . . . ,XM )

= argmin{X1,...,XM} − log p(X1, . . . ,XM )
, (3)

which results in a nonlinear least-squares problem for Gaus-

sian noise models [24].

The full joint distribution (2) consists of a product of

each vehicle’s local chain and the relative vehicle factors.

Therefore, in order to construct (and perform inference on)

the full factor graph, the ith vehicle must have access to the

set of local factors from all other vehicles, {Clocalj}j 6=i, and

the set of all relative vehicle factors. Sharing this information,

however, is nontrivial due to the limitations of the acoustic

communication channel.

In this paper, we present an algorithm for each vehicle to

robustly communicate an approximation of its local chain.

In turn, each vehicle in the network can construct a graph

consisting of its local chain, the set of approximate chains

received from other vehicles, and the set of relative vehicle

measurements that it observes locally, i.e., range constraints

for which it has measured the OWTT (a subset of all ranges)



Algorithm 1 Local chain distribution.

1: initialize(Clocal, Capprox) {Prior factor on initial pose.}
2: while is running() do
3: add new link(Clocal) {New odometry and prior factors.}
4: if t is TOL then
5: append approx(Clocal, Capprox) {Section IV-B.}
6: LK = choose links(Capprox) {Section IV-C.}
7: L

′

K = compose links(LK) {Section IV-A.}
8: broadcast links(L′

K)
9: end if

10: end while

Algorithm 2 Cooperative localization

Require: Clocal {Local chain}
1: C = ∅ {Set of received chains.}
2: Zr = ∅ {Set of received range observations.}
3: while is running() do
4: if Lrec, zr, i = received broadcast() then
5: add links(C[i],Lrec) {Links from vehicle i.}
6: Zr = Zr ∪ zr

7: solve batch(Clocal,C,Zr)
8: end if
9: end while

as in Fig. 1b. We will show that our approximation produces

an accurate representation that allows robust communication

over a faulty and bandwidth-limited channel, and that using

a subset of relative vehicle measurements still provides

significant improvement over DR navigation.

IV. COOPERATIVE LOCALIZATION

The key requirement for cooperative localization is the

ability to share local chains. Below, we develop an algorithm

for robustly broadcasting a local chain across a faulty low-

bandwidth communication channel. Our approach is com-

pletely passive, in other words, the information each vehicle

broadcasts is independent of the rest of the network—a

desirable property for an unacknowledged channel. In this

section, we outline an effective strategy to (i) share a local

chain (Algorithm 1) and (ii) use the set of received local

chains and observed relative range observations to compute

a navigation estimate (Algorithm 2), as illustrated in Fig. 1.

A local chain consists of odometry and prior factors. We

first show that we can leverage the composition operation

over odometry factors to represent each new odometry factor

as a transformation relative to an ‘origin’ (§IV-A). This

composition operation is invertible in an equivalent decom-

position operation onboard the receiving vehicle. Moreover,

both of these operations are robust to communication failure,

so that every received odometry factor can be used to

reconstruct the local chain.

We compose the odometry factor of each link, Li, to obtain

the broadcast link, L′
i. A receiving vehicle reconstructs

the transmitter’s chain consisting of decomposed odometry

factors and prior factors contained in received links. If a

broadcast is missed, upon the next successful reception the

receiving vehicle can still reconstruct the chain without the

prior factor in the missed link. We rebroadcast links with

Fig. 2: A sequence of odometry factors can be composed

into a single factor. Likewise, a composed factor can be

decomposed given another factor.

prior factors to help ensure an accurate chain reconstruction,

meaning that at each TOL we broadcast a set of links, L.

Since we only use the set of locally observed range mea-

surements, each vehicle need only share TOL pose nodes.

However, a local chain, Clocal, consists of many additional

pose nodes. To reduce the communication burden, we employ

approximate marginalization to compute an approximate

local chain Capprox that only contains odometry and prior

factors over TOL pose nodes (§IV-B).

The ith receiving vehicle is able to reconstruct the broad-

cast local chains by decomposing broadcast odometry factors

with odometry factors already received. Using the set of

reconstructed approximate local chains {Capproxj
}j 6=i, its own

local chain Clocali , and the set of observed OWTT range

constraints, the vehicle can construct and solve a batch

nonlinear least-squares problem (3) to estimate its smoothed

trajectory.

A. Odometry Composition

In this section, we show that composition is reversible

(decomposition). Moreover, it is equivalent to marginaliza-

tion over the odometry chain. We leverage this property to

robustly broadcast each link Li ∈ Capprox.

Rigid-body transformation (e.g., odometry) observations

are full rank relative-pose constraints expressed as

zij = hij(xi,xj) +wij (4)

= ⊖xi ⊕ xj +wij , (5)

where xi and xj are two poses with respect to the same

reference frame, wij ∼ N
(
0,Rij

)
is an independent ad-

ditive noise vector, and ⊕ and ⊖ represent generalized

compounding and inverse operators. These operators are

simple addition and subtraction for poses in R
d and are

nonlinear functions for poses on SE(2) and SE(3) [25].

Per Smith et al. [25], a composite observation zik is

computed through the sequence

zik = g(zij , zjk) (6)

= zij ⊕ zjk. (7)

The composite relation zik is a random variable. A first-order

covariance approximation is computed as

zik ≈ g|
zij ,zjk

+ J1⊕δij + J2⊕δjk (8)

∼ N
(
hik, J1⊕RijJ

⊤
1⊕ + J2⊕RjkJ

⊤
2⊕

)
, (9)

where hik = hij⊕hjk and J = ∂g/∂(zij , zjk) = [J1⊕, J2⊕].



(a) Local chain, Clocal, over all poses.

(b) Approximate local chain, Capprox, over TOL poses.

Fig. 3: At the new TOL, xk, we compute a set of factors

(orange) that best represents the distribution induced by

the original factors (blue) since the last TOL, xj , with

intermediate nodes (shaded) marginalized out.

Suppose we are given the composed observations

(zij ,Rij) and (zik,Rik). It follows directly from (9) that

we can invert this operation to recover the transformation

between xj and xk and its covariance as

zjk = ⊖zij ⊕ zik (10)

Rjk = J−1
2⊕(Rik − J1⊕RijJ

⊤
1⊕)J

−⊤
2⊕ , (11)

where J2⊕ is guaranteed to be nonsingular by the nature of

the compounding operation. We call this operation, ‘decom-

position’. Composition and decomposition are illustrated in

Fig. 2.

In our field trials, each pose is parameterized by the

vehicle’s xy horizontal position, i.e., xi ∈ R
2. In this case,

J1⊕ = J2⊕ = I, and composition and decomposition reduce

to simple addition and subtraction, respectively. Paull et al.

[23] introduced an equivalent composition/decomposition

operation applicable in only R
2.

Any link in the local chain can robustly be communicated

by broadcasting its composed odometry to an ‘origin’ pose

(in practice, we use the local coordinate frame origin) as

in line 7 of Algorithm 1. The receiving vehicle simply

decomposes the odometry factor with the set of already

received links as in line 5 of Algorithm 2. In this manner,

we can exactly distribute the odometry backbone of a local

graph. The subset of links each vehicle has received is

unknown to the broadcasting vehicles, however, composi-

tion/decomposition still allows a receiver to reconstruct a

complete chain over received links.

B. Local Chain Approximation

A local chain, Clocal, will include both unary prior factors

and pairwise sequential odometry factors over the full set

of pose nodes. Ideally, the local chain would only include

pose nodes at each TOL—the only poses involved in relative

ranging events observed by other vehicles—to reduce the size

of the chain that must be shared. In this section, we detail

a method to incrementally approximate the full local chain

with a chain only over TOL pose nodes, Capprox, as illustrated

in Fig. 3.

We refer to the marginal distribution over TOL pose

nodes computed from Clocal as the target distribution. The

marginal cannot be exactly represented by a set of prior and

odometry factors (a requirement for robust communication

by odometry composition, see §IV-A). However, we can

compute the set of factors that most closely models this

target distribution. The general framework for representing a

Gaussian distribution using a desired nonlinear factor set is

outlined by Mazuran et al. [6].

We incrementally construct the approximate local chain

by ‘refactoring’ the full local chain between TOLs as in

Fig. 3. The links contained between the last TOL and the

current TOL induce a marginal distribution over the TOL

nodes p(xj ,xk) = N
(
µ,Σ

)
= N−1

(
η,Λ

)
.

We compute a single odometry factor, zjk =
hodo(xj ,xk) + wjk, and a prior over each node, zj =
hprior(xj) +wj and zk = hprior(xk) +wk, that most closely

induce the target distribution, p(xj ,xk). Let the distribution

induced by the approximate factors be

q(xj ,xk) = N−1
(
η
′,Λ′

)
(12)

η
′ = J⊤R−1 (Z− h(xi,xj)) (13)

Λ′ = J⊤R−1J, (14)

where Z represents the stacked observation vector, J is the

stacked measurement Jacobian, and R is the block-diagonal

stacked measurement covariance. We choose Z and R to

minimize the Kullback-Leibler divergence (KLD) between

p(xj ,xk) and q(xj ,xk). The KLD is minimized when Z

is the expected observation evaluated at the mean, i.e.,

h(µi,µj). R is then computed as

R∗ = arg min
R∈S++

DKL(p(xj ,xk)||q(xj ,xk)) (15)

= arg min
R∈S++

tr
(
J⊤R−1JΣ

)
− ln det

(
J⊤RJ

)
, (16)

where S++ is the cone of symmetric positive definite ma-

trices (with appropriate sparsity structure). As shown in

Mazuran et al. [6], the above optimization problem is convex

and can be solved efficiently. While we have not enforced

a consistency constraint on R, this could be expressed as a

convex linear matrix inequality as in [26].

In general, Λ will not be full rank and we cannot compute

approximate factors as in (16). This will only occur if no

prior is available over the time window i → j (as is often true

for AUVs). In this case, however, we can exactly represent

the target information with a composed odometry factor

(see §IV-A) and no prior factors. Similarly, if no odometry

is available over i → j (e.g., for a topside vehicle with

only GPS), then the TOL poses are independent and a prior

may be computed to exactly represent the target distribution

without an odometry factor.

At the TOL, after computing new approximate link factors

in Capprox, a vehicle broadcasts the new TOL link and k ad-

ditional links to rebroadcast, L, as in Algorithm 1. The size

of k is predetermined depending on the available bandwidth.

C. Choosing Good Priors

Capprox can be reconstructed from the set of received links,

however, not all broadcasts will be successfully received



so that some prior factors will be missing. We use some

additional bandwidth to rebroadcast useful or informative

links with prior factors. Below, we consider finding the set

of prior factors that are most informative about the current

vehicle pose so that receiving vehicles are able to best use

their observed range measurement.

A simple method is to broadcast the k most recent prior

factors (k-last in §V). Intuitively, the most recent prior factors

may be most informative about the transmitting vehicle’s

current pose. However, as a counterpoint, consider a vehicle

with perfect (deterministic) odometry. Then, the best prior

factors would be the factors with lowest uncertainty, not the

most recent. For this reason, we develop a method to identify

a more informative set of prior factors (k-best in §V).

Since we broadcast each prior factor over a lossy and un-

acknowledged channel, we assume that the ith transmission

is lost with probability ri. If a link has been broadcast mi

times, then the probability that it has been received is

preci = 1−
mi∏

i=1

ri. (17)

The results presented in §V assume that ri is a fixed param-

eter; however, ri could incorporate additional knowledge, or

even be a learned parameter.

We use a mutual information objective for determining

the utility of a prior factor. Mutual information indicates the

uncertainty reduction in the current pose of the reconstructed

chain, xN , by adding knowledge of a prior factor. Let LK =
{L1, . . . ,Lk} be the set of k links that we will broadcast.

The optimal set is then given by

L
∗
K = argmax

LK

E[MI[xN |LK ]]

= argmax
LK

log
∣
∣Λrecon(xN )

∣
∣

Λrecon = Λodo +
∑

i

preciΛpriori
,

where Λrecon(xN ) represents the marginal information of xN

in the reconstructed chain computed from Λrecon via the

Schur complement. In general, this is a difficult combina-

torial optimization problem. Instead, we follow a simpler

approach. We evaluate the objective for each link and then

greedily select the single link, Lj , that maximizes the objec-

tive, increment mj , and remove Lj from the set of potential

links to broadcast. We repeat the process of evaluating each

link and greedily selecting the best k times.

V. FIELD TRIALS

A. Implementation details

For validation, we fielded two Ocean-Server Inc. Iver2

AUVs, termed AUV-A and AUV-B (see Fig. 4), and a

topside support ship. The AUVs are each equipped with an

advanced dead-reckoning sensor suite including a 600 kHz
RDI Doppler velocity log (DVL), a Microstrain 3DM-GX3-

25 attitude heading reference system (AHRS), and a Desert

Star Systems SSP-1 digital pressure sensor. Each AUV

observed GPS during intermittent surface intervals. The

Fig. 4: One of the Iver2 AUVs used in the field trials.

topside support ship had access only to GPS (no measured

odometry). All vehicles used the Woods Hole Oceanographic

Institution (WHOI) Micro-modem and co-processor board

with a synchronous-clock reference for inter vehicle com-

munication and ranging.

Each vehicle pose was parameterized by its xy horizontal

position. GPS observations were transformed to a local coor-

dinate frame and constitute a full-rank linear observation. We

assumed that the GPS accuracy was constant and therefore

we assumed noise with a fixed standard deviation of 5 m.

The AUV odometry, zij , and corresponding covariance, Rij ,

were computed by Euler integrating DVL and AHRS and

performing a first-order covariance approximation [1].

Observed OWTT ranges represent a 3D slant range. Since

depth is measured with bounded error, we are able to project

ranges into the 2D horizontal plane and use the resulting

pseudo ranges within our estimation framework. We used

a fixed OWTT measurement uncertainty since the relative

depth between each vehicle’s acoustic transducer was small

and relatively constant.

Vehicles broadcast navigation messages roughly once

per minute according to a fixed time division multi-

ple access (TDMA) schedule. The proposed composi-

tion/decomposition allowed a coarse quantization (factors

were rounded to 1 cm). Each navigation packet (i.e., set of

links L) required a single 64 B frame of either a Micro-

modem Rate 1 or Rate 2 data packet. Previous work [2]

required two 64 B frames, leading to a 50% reduction.

We employed our k-last prior factor selection strategy

during real-time experiments (for k = 2). In post-process, we

computed the prior factors that would have been broadcast

with our k-best strategy.

We also implemented the algorithm proposed by Paull

et al. [23] for comparison. Their algorithm similarly broad-

casts each new TOL pose as a composed factor. There are

two large differences in our approach: (i) they transmit prior

factors directly from the full local chain separately, i.e., they

must broadcast each prior link in addition to TOL links,

and (ii), they also broadcast received range factors and their

corresponding TOA links. The second difference effectively

allows for bidirectional ranging at the cost of packets that

grow linearly in the size of the network (a TOA pose is

broadcast for each vehicle in the network). During the three

vehicle post-process evaluation, their algorithm broadcast

more links requiring greater bandwidth (4 composed odom-

etry factors + 2 range factors + a prior factor compared to 3

composed odometry factors + 2 prior factors for ours).
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Fig. 5: Local graph reconstruction quality for k-last, k-best,

and Paull et al. for various reception rates averaged over 100

trials for six local chains. Note log scale on ordinate axis.

B. Local graph reconstruction

Here we demonstrate the quality of the local chain re-

construction under varying channel conditions. We ran three

trials ranging from 60− 90 min to collect navigation obser-

vations and broadcast event times for each of our two AUVs

resulting in six local chains. During the trials, each AUV had

intermittent access to GPS during brief surface intervals. In

post-process, we computed and sampled the set of navigation

packets at different reception rates and reconstructed the

local chain. For each reception rate, we sampled different

sets of received messages 100 times. We then compared the

reconstructed local chain to the target chain (the marginal full

chain over received TOL pose nodes). Fig. 5 compares the

local chain reconstruction for prior factor selection methods,

k-last and k-best, as well as the method proposed by Paull

et al. [23].

We can see that our proposed algorithm with the k-best

selection strategy outperforms k-last by a factor of two or

three in most trials. At 100% reception rate (no dropped

packets) the full approximate chain was reconstructed and is

therefore equivalent for k-best and k-last. Moreover, the full

approximate chain closely represents the full local chain.

Our proposed algorithm improves upon Paull et al.’s

method by several orders of magnitude in most trials. Our

method is able to include more prior information into the

broadcast links, and therefore leads to a better reconstruction.

As mentioned in §IV-A, composition is equivalent to

marginalization. Therefore, when no priors are present in the

local chain, all compared algorithms are exactly equal to the

target distribution (up to quantization errors).

C. Cooperative localization

We executed three multiple vehicle trials to demonstrate

the ability of our algorithm to provide useful navigation

information to an AUV. We varied the number of vehicles

and AUV access to GPS in each trial to demonstrate a

variety of practical applications. Acoustic reception rates

varied between 37–86% up to 500 m relative range. Results

are summarized in Fig. 6. Fig. 6j reports each distributed

algorithm’s ability to produce the centralized uncertainty

estimate onboard AUV-B. Although we only show results for

AUV-B, note that all vehicles compute a local reconstruction

of the centralized estimator.

1) Trial 1: AUV-A and AUV-B performed overlapping

orthogonal lawnmower surveys (see Fig. 6a). Both vehicles

had only dead-reckoned navigation available. Since there are

no GPS priors, our local graph reconstruction is equivalent

to Paull et al.’s [23]. Moreover, the local chain reconstruction

for all algorithms was exact. k-last and k-best produced

the same solution since there are no priors to rebroadcast.

Since Paull et al. incorporated range constraints between

both vehicles, their algorithm computed a solution that more

closely matches the centralized result (see Fig. 6j). Their

algorithm did not exactly reproduce the centralized result

because AUV-B did not receive all range factors observed

by AUV-A. Although we only used the local subset of range

factors, we were still able to benefit from relative range

observations and the difference compared to the centralized

estimator is small.

2) Trial 2: AUV-A executed a narrow diamond trajectory

over AUV-B’s lawnmower survey. Both vehicles had dead-

reckoned navigation available, but AUV-A also intermittently

received GPS during short surface intervals (see Fig. 6b).

Fig. 6e plots the pose uncertainty onboard AUV-B. Using

our proposed algorithm, AUV-B was able to accurately

approximate AUV-A’s pose-graph, including the many prior

factors. k-best here performed slightly better than k-last

because of its ability to more accurately reproduce AUV-A’s

local chain. Although Paull et al. [23] was able to incorporate

range information in both directions, our reconstruction of

AUV-A was more accurate, leading to a more confident

estimate. Due to the diminishing returns of information

provided by the range observations, our algorithm was able to

closely reproduce the centralized solution despite only using

a subset of the range observations.

3) Trial 3: A topside vehicle with constant GPS access

supported AUV-A (with intermittent GPS) and AUV-B (see

Fig. 6c). The factor graph produced here is illustrated in

Fig. 1. AUV-A followed a large diamond over AUV-B’s

lawnmower survey while the topside vehicle drifted above

the survey area. In this case, the centralized estimator used

ranges between all three vehicles. Our method only used

ranges between the local platform and the other vehicles.

Paull et al.’s, however, included ranges in both directions
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(b) Trial 2: relative paths (1.50 h), AUV-A

has access to GPS.
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(c) Trial 3: relative paths (1.55 h), AUV-A,
topside (not shown) have GPS.
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(d) Trial 1: AUV-B’s uncertainty.
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(e) Trial 2: AUV-B’s uncertainty.
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(f) Trial 3: AUV-B’s uncertainty.
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(g) Trial 1: Difference in uncertainty
compared to centralized estimator.
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(h) Trial 2: Difference in uncertainty
compared to centralized estimator.
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(i) Trial 3: Difference in uncertainty
compared to centralized estimator.

Trial 1 [ m] Trial 2 [ m] Trial 3 [ m]

Paull et al. [23] 0.005 0.981 0.463
Proposed (k-last) 0.039 0.086 0.212
Proposed (k-best) 0.039 0.074 0.192

(j) Average 1-σ uncertainty difference compared to the centralized estimator.

Fig. 6: Summary of field trials and performance comparison. (a–c) shows each vehicle trajectory. (d–f) plots the smoothed

uncertainty in each AUV-B pose computed as the fourth root of the determinant of the pose marginal covariance.

and could also use ranges between other vehicles, but only

if the TOL and TOA poses in each local chain had been

received. Once again, our reconstruction of AUV-A’s chain

is more informative. As shown in Fig. 6j, we have received

the bulk of the benefit in terms of uncertainty reduction from

the local set of range observations and achieve a smaller

estimate uncertainty compared to Paull et al.

VI. DISCUSSION

Our algorithm is similar in some respects to that indepen-

dently proposed by Paull et al. [23], however, we believe

there are many beneficial differences illustrated in Fig. 7.

The most marked improvement in our algorithm is its ability

to broadcast a local chain by using an accurate approximation

that includes a more informative set of prior factors. The

compact approximate chain contains fewer links to broadcast.

While we currently only incorporate ranges measured locally,

this allows for a fixed bandwidth data packet, regardless of

the size of the vehicle network. We can use the additional

bandwidth to rebroadcast previous informative links and for

other practical purposes (e.g., command, control, vehicle

health). Paull et al. [23] are able to incorporate inter-vehicle



(a) True local chain, Clocal, over all poses.

(b) Local chain reconstructed by Paull et al. including a
range observed by the other vehicle at a TOA pose.

(c) Approximate local chain, Capprox, reconstructed by
our method, k-last, with k ≥ 1.

Fig. 7: Comparison of reconstructed local chains by Paull et

al. (b) and our method (c) as if the data transmitted at the

second TOL, xj , was not received. Arrows away from the

chain indicate TOLs, arrows toward the chain indicate TOAs.

ranges, but only when the receiving vehicle has received all

involved poses—cascaded communication topologies are not

supported, as with our method. Finally, the local subset of

range observations is sufficient for accurate navigation in

many practical situations (as evidenced in §V).

VII. CONCLUSION

Accurate localization extends the capacity of AUVs to

perform ocean science. OWTT underwater cooperative local-

ization promises improved navigation for AUVs over larger

area and time scales without additional infrastructure. We

exploited the structure of the composition operation and an

accurate approximation of the local chain to robustly share

locally observed sensor data across a fragile communication

channel. We then used the collection of received chains

and observed relative pose measurements to compute an

improved navigation solution.

Our proposed method can also find application in the

broader robotics community where limited communication

is an operational factor. Avenues for future work include

extending our chain approximation method to include in-

formation received from other vehicles. This would allow

better localization performance in certain communication

topologies, for example, cascaded networks.
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