
Visual Localization in Fused Image and Laser Range Data

Nicholas Carlevaris-Bianco, Anush Mohan
Dept. Electrical Eng. & Computer Science

University of Michigan
Ann Arbor, Michigan 48109

Email: {carlevar,anushm}@umich.edu

James R. McBride
Research and Innovation Center

Ford Motor Company
Dearborn, Michigan 48124

Email: jmcbride@ford.com

Ryan M. Eustice
Dept. Naval Architecture & Marine Eng.

University of Michigan
Ann Arbor, Michigan 48109

Email: eustice@umich.edu

Abstract— This paper reports on a method for tracking a
camera system within an a priori known map constructed
from co-registered 3D light detection and ranging (LIDAR) and
omnidirectional image data. Our method pre-processes the raw
3D LIDAR and camera data to produce a sparse map that can
scale to city-size environments. From the original LIDAR and
camera data we extract visual features and identify those that
are most robust to varying viewpoint. This allows us to include
only the visual features that are most useful for localization
in the map. Additionally, we quantize the visual features using
a vocabulary tree to further reduce the map’s file size. We
then use vision-based localization to track the vehicle’s motion
through the map. We present results on urban data collected
with Ford Motor Company’s autonomous vehicle testbed. In our
experiments the map is built using urban data from winter 2009,
and localization is performed using data collected in fall 2010
and winter 2011. This demonstrates our algorithm’s robustness
to temporal changes in the environment.

I. INTRODUCTION

Vehicles capable of autonomous navigation in urban envi-
ronments typically rely on expensive perception and naviga-
tion sensors and significant amounts of computing power.
Consider, for example, the vehicles used in the DARPA
Urban Challenge [1]. Most of these vehicles used expensive
inertial navigation sensors, 3D light detection and ranging
(LIDAR) scanners capable of measuring a million ranges
per second and multi-view camera systems. The rich data
provided by these sensors allowed the vehicles to operate
autonomously in their environment. Unfortunately, such a
sensor suite costs hundreds of thousands of US dollars.
Clearly, this prohibits widespread use of this technology.

In this paper we demonstrate that it is possible to collect
the vision and LIDAR data once for an area using a fully
instrumented vehicle, and afterward localize to the data using
a low cost camera system. This allows us to extend some of
the capabilities of advanced autonomous vehicles to much
lower cost instrumented camera systems.

Our method is divided into two parts: (i) a pre-processing
stage in which the map is constructed from the raw data pro-
vided by the full sensor suite and (ii) an online localization
stage where the instrumented camera system localizes itself
within the a priori map (Fig. 1).

At a minimum, the low cost system would consist of
a single monocular camera. However, the addition of an
orientation sensor and global positioning system (GPS) can
provide a bounded estimate of the camera’s orientation and

Fig. 1. Algorithm overview. Data collected using a fully instrumented
vehicle is used to build a fused modality map of the environment. Then a
lesser instrumented camera system, for example a camera with an attitude
sensor and GPS, localizes itself within the map (possibly years later).

position, which can be used to bootstrap the visual tracking
and to reinitialize the system after regions where tracking
fails. (Though, as we will discuss in Section VII, recent
progress in computer vision may allow for (re)initialization
using purely visual methods.) Instrumented camera systems,
which combine a camera, orientation sensor, and GPS are
becoming ubiquitous. For example, such integrated systems
are typically found in modern smart phones.

With this work we seek to address several challenges.
First, because the map is only collected once and then
later used for localization, the algorithm must be robust to



dynamic changes in the environment. Second, because the
camera trajectory may not be the same between mapping
and localization, we need to be robust to view point change.
To account for this, we specifically build the map to include
the most viewpoint-robust visual features. Finally, we seek
to produce a map that is scalable to very large areas. This
requires that our map representation be sufficiently compact
so that the map can be easily stored.

In our experiments, we consider a system with four
monocular cameras, GPS, and an attitude sensor, which we
use to localize an automobile traveling through an urban
environment. We present results in which the map is built
using data from fall 2009 while localizing to the map
with data collected in fall 2010 and winter 2011. This
demonstrates the ability of our system to provide a location
estimate that is significantly more accurate than that of a
consumer-grade GPS while dealing with large changes in a
dynamic environment.

In Section II we discuss how our algorithm relates to
existing work in the fields of vision-based simultaneous
localization and mapping (SLAM), place recognition, and
visual localization. In Section III we provide an overview
of our system. Sections IV and V explain in detail how the
map is generated and our proposed method for localization.
Experimental results are presented in Section VI. Finally, we
discuss the results and future work in Section VII.

II. RELATED WORK

We attempt to solve the problem of camera localization
within an a priori known map. Previous work in visual
localization can be roughly split into two categories: tracking
methods and localization-by-recognition methods.

Tracking methods, which are common in the SLAM
and robotics communities, use a strong pose prior over a
small baseline to perform visual localization of sequential
images. Notable examples that address the full SLAM prob-
lem include the works by Davison et al. [2], Eade and
Drummond [3] and Klein and Murray [4]. Davison uses
an extended Kalman filter (EKF) based solution while Eade
extends FAST-SLAM [5]. Klein performs mapping based on
keyframe bundle adjustment while separately tracking the
camera motion by localizing to the current map using a
position prior from a constant velocity motion model.

The localization portion of these methods is similar to
our proposed tracking method. When a strong pose prior is
available, we actively search for known map features in the
current image based on their expected location in the image.
Similar to [4], we then find the estimated camera pose by
minimizing the re-projection error between the image and
map features.

However, the scale of the maps that these techniques deal
with is fairly small. While they focus on localizing a camera
within environments such as closed rooms, we focus on
localizing a camera in an outdoor city-scale environment.
Furthermore, these methods rely on high-frame-rate short-
baseline imagery in order to use patch-based features to
characterize points in the image. This is sufficient when the

localization and map building are performed simultaneously
by the same camera; however, in our application the map
building data and the localization data will be collected at
different times with a different trajectory and possibly a
different camera. We expect that patch based methods will
not provide a sufficient level of robustness to the variance
cause by the dynamic environment and changes in view
point. Therefore, we have chosen to use robust descriptors
such as scale invariant feature transform (SIFT) [6], [7]
instead of image patches.

Localization-by-recognition methods, [8], [9], [10], seek
to localize the camera by recognizing the current view with
respect to a set of known locations. This is often performed
with little or no prior information on the pose of the camera.
These methods have been addressed in the past by the
computer vision community. It is common practice to model
the locations as a collection of visual vocabulary (quantized
visual feature descriptors). This “bag of words” model [11]
is then used to determine which locations have a similar
distribution of features compared to the current image.
Hypothesis locations are geometrically verified, which also
serves to localize the camera with respect to that location.

Recently, two closely related works, [10], [12], attempt to
localize a camera in a map created by structure-from-motion.
These methods are similar to our approach as they seek to
localize the camera with respect to an a priori known map
of 3D feature points, yet differ from our proposed method
in map representations and localization methods.

Irschara et al. [10] propose a method that represents the
map as a set of spatially sampled ‘synthetic views’ created
by projecting the 3D feature points into evenly spaced
synthetic cameras. They then use image-to-image recognition
techniques to compute the camera’s pose with respect to a
synthetic view—thus localizing the camera. This differs from
our proposed method as we perform direct matching between
the image and the map’s 3D feature points. Additionally,
unlike our proposed method, Irschara et al. do not make
use of a pose prior and instead search over all synthetic
views at each new image. This makes their algorithm capable
of localizing a stream of images that are not necessarily
sequential. However, for the specific task of localizing a
moving camera we consider it important to include prior
pose information.

Arth et al. [12] also seek to localize images in a map
created using structure-from-motion. Their method divides
the map into ‘potentially visible sets’; discrete sets of feature
points which, based on occlusion, are all visible from a given
location. In indoor environments this often means that a room
will be considered a potentially visible set. They then require
information from a GPS sensor, radio frequency (RF) beacon,
or user input to determine in which potentially visible set
the camera currently is. The feature points within the given
potentially visible set are then matched against the current
image to localize the camera. In this sense, the potentially
visible sets are very similar to our proposed spatial clusters
in that they quickly allow one to reduce the quantity of visual
features considered for matching, based on a pose prior.



III. SYSTEM OVERVIEW

The first step of our proposed method, Alg. 1, is a pre-
processing stage in which the map is constructed from the
raw data provided by the full sensor suite. During map
creation we extract visual features from the environment,
currently SIFT [6], and then track these features as the
fully instrumented robot moves through the environment. We
cluster features spatially, over their X , Y , Z position and
ψ, the azimuth angle from which the feature was observed.
We then consider the number of frames a feature has been
successfully tracked over to select only the most “trackable”
features of each cluster to include in the map. This allows
us to control map size and ensure good spatial coverage
of the environment while maintaining the utility for visual
localization. Additionally, we hierarchically cluster the visual
features extracted from the map images to produce a vocabu-
lary tree that quantitizes the visual features in the map. This
drastically reduces the memory required to store map features
and provides a rapid method for determining putative feature
correspondences. Map generation is discussed in detail in
Section IV.

Given the map, we then seek to localize the instrumented
camera as it moves through the environment using a (linear)
Kalman filter (KF) (our plant and observation models are
linear as formulated). We use measurements from GPS and
orientation sensors to initialize the KF and supplement local-
ization in feature-poor regions of the environment. However,
for accurate localization we rely on the camera to provide
motion constraints. To do so we must first associate the SIFT
features extracted from a given image with the features in the
map. We use the centroid of the spatial clusters to quickly
determine which clusters could contain candidate features
based on the current estimate of the camera pose. We then
project these candidate map features into the image and
search for visual correspondence. We use the uncertainty in
the camera pose to geometrically constrain the location of
possible image-to-map correspondences. Then given a set of
putative correspondences we use random sample consensus
(RANSAC) [13] to identify geometrically consistent inliers.
Finally, we use non-linear optimization to determine a pose
constraint that is used to provide a linear update on state to
the filter. Localization is discussed in detail in Section V.

IV. MAP GENERATION

The final map consists of M spatial clusters of feature
points. Each cluster has a mean position, X̄ = [X̄, Ȳ , Z̄]>,
and a mean view azimuth, ψ̄. The view azimuth is the
azimuth angle of the vector that points from the center
of the cluster to the center of the camera from which the
features in the cluster were observed. Within each cluster,
Ci for i = 1 . . .M , there are Ni feature points. Each feature
point, F ij for j = 1 . . . Ni, has an associated 3D location,
Xj = [X,Y, Z]>, view azimuth, ψj , and feature vocabulary
id, vj . The feature vocabulary id, vj , is the id of the leaf
node in the vocabulary tree to which the SIFT descriptor for
the feature corresponds. The steps used to produce the map
are as follows.

Algorithm 1 System Overview
Pre-processing

1: Extract visual SIFT features
2: Track features through environment
3: Quantize features with vocabulary tree
4: Cluster features spatially
5: Sub-sample map based on ‘trackability’

Online Localization
1: Predict motion
2: Extract and quantize visual SIFT features
3: Cull clusters based on centroid
4: Identify putative image-to-map correspondences
5: Determine geometrically consistent inliers (RANSAC)
6: Nonlinear optimization to produce pose estimate
7: Update filter

(a) Map features.

(b) Map clusters.

(c) Map clusters zoomed.

Fig. 2. A sample map built from a 1.36 km trajectory in an urban
environment is shown in (a). Each point is a different feature, the colors
are set by the cluster to which a feature belongs. A reduced map with only
cluster centroids and mean view azimuth vectors is shown in (b) with a
zoomed view in (c).



A. Feature Tracking

As the fully instrumented robot moves through the envi-
ronment it extracts SIFT features from each image it collects.
The features from sequential images are compared to pro-
duce a set of putative correspondences. From these putative
matches a set of inlier correspondences is determined by
fitting a fundamental matrix using RANSAC. The inliers that
have been tracked between two images are considered as
possible map features.

As we continue processing features from sequential im-
ages we count the number of frames through which each
feature was tracked. A higher count indicates that the feature
was robust to view point change and, therefore, a good
choice for inclusion in the map. By normalizing this count
by the maximum in the whole map, we produce a view
robustness score that varies between 0 and 1. In order
to produce a single descriptor for the feature we average
the descriptors from each image in which the feature was
detected and then find the vocab tree leaf that corresponds to
this averaged feature. This method, of tracking features over
multiple frames and averaging to determine the most robust
features, was proposed by Kawewong et al. in [14] and has
been shown to produce good results for place recognition in
dynamic environments.

Additionally, we must determine the location of the feature
points in space with respect to a local coordinate frame.
We assume the pose of the robot to be known with very
low uncertainty during the map construction phase. In our
experiments this comes from the fact that the robot is instru-
mented with a differential GPS and an extremely accurate
inertial measurement unit (IMU). If we can project a range
measurement from the laser scanner onto the feature in any
of the images where it was observed, we use the laser scanner
measurement as the location of the feature. However, if
no 3D information from the laser scanner is available, the
locations of the points can be triangulated from the camera
views using the accurate vehicle pose. Because triangulation
is inherently more noisy than the laser scanner, we rely on
two heuristics to reduce noisy triangulations. First, as the
fully instrumented robot has five cameras during the data
collection phase, we only attempt to triangulate points in the
cameras that are not aligned with the direction of the motion
of the vehicle. Second, we require that a feature be seen in
three or more sequential frames so that we can compute a
least squares solution for triangulation.

B. Spatial Clustering

Given all the extracted features, we then seek to spatially
cluster the features. Clustering allows us to preserve good
spatial coverage when sub-sampling the map. The spatial
clustering also helps during localization by allowing us to
quickly reject a large number of clusters based on their
centroid location and mean view angle. We aim to cluster the
features based on their location, [X,Y, Z]>, and view angle,
ψ. However, clustering over the view angle, ψ, is problematic
as it is a circular quantity. Therefore, in practice, clustering
is performed using K-Means over a 5-dimensional space,

Fig. 3. Sample vocabulary tree, with k = 3 and L = 3 (only 2 of 128
dimensions shown).

[X,Y, Z,Xc, Yc]
>, where, Xc and Yc are the position of the

camera that observed the feature. We then can calculate ψ
after clustering based on X , Y , Xc and Yc.

The number of clusters is a function of map size and
environment. We found that in an urban environment it was
acceptable to automatically adjust the number of clusters
so that the average number of features per cluster was
v 200, where 200 is approximately the average number
of features tracked between images during map building.
Fig. 2(a) shows an example map collected over a 1.36 km
trajectory in an urban environment. Each point is a different
feature, the colors are set by the cluster to which a feature
belongs. Fig. 2(b) contains a reduced map with only cluster
centroids and mean view azimuth vectors shown (to reduce
clutter). One can see that nearby features will be separated
into distinct clusters if the features were originally viewed
from different locations.

C. Vocabulary Tree Generation

A vocabulary tree [15] provides a method to quantize the
map’s visual features in order to reduce the amount of data
that must be stored for each feature point. Additionally, the
tree provides a fast method to determine potential feature
correspondences because a new feature can be quantized
using a small number of comparisons.

The vocabulary tree is produced by hierarchically cluster-
ing the visual features in the 128-dimensional SIFT feature
space. Clustering is performed at each level using K-Means
to produce k clusters, where k is referred to as the branch
factor. Repeating this process for a set number of levels,
L, produces kL leaf nodes. Traversing the tree in order to
quantize a feature descriptor requires only kL comparisons.

Fig. 3 illustrates two dimensions of a vocabulary tree
with k = 3 and L = 3. In practice, vocabulary trees
may have hundreds of thousands to millions of leaf nodes
depending on the application and number of features used
in training. The results in this paper were produced with
approximately 5 million training features yielding a relatively
coarse vocabulary tree with k = 8 and L = 5 with 85 =
32, 768 leaf nodes.



TABLE I
NUMBER OF FEATURES AND MAP FILE SIZE FOR SAMPLE TRAJECTORY

Number of Features File Size
Raw Data — 110 GB
Map after Feature Extraction 5,809,691 4.7 GB
Map after Tracking and Vocab ID 366,687 18 MB
Map after Sub-sampling 174,441 12 MB

D. Map Sub-sampling

Even for short trajectories the size of the raw image and
LIDAR data collected by the fully instrumented robot will be
on the order of hundreds of gigabytes. By representing the
map as a sparse collection of 3D points described by their
associated visual vocabulary we can discard the majority of
the image and LIDAR data producing maps on the order of
hundreds of megabytes in size. However, depending on the
memory limitations of the instrumented camera system, and
on the extent of the map, one may wish to further reduce the
file size of the map. By considering the view robustness score
(the normalized number of frames the feature was tracked
over), we can rank the features within a cluster. We can then
sub-sample the map by selecting the “best” features from
each cluster until a predetermined memory limit. Note that
this is performed on a per-cluster basis. Given a memory
limit and the number of clusters in the map we calculate
a maximum number of features per clusters. Clusters with
many features are sub-sampled down to this limit while
clusters with too few features are not sub-sampled. This
allows us to maintain the good spatial coverage of the map
during sub-sampling.

Table I shows file sizes for the map used in our experi-
ments. The raw data collected by the map building robot is
over 100 GB for the 1.36 km urban trajectory. By extracting
visual features and discarding the raw images and laser scans
we reduce the data size to 4.7 GB. By tracking features
over multiple frames and describing them using a vocabulary
tree the map can be reduced to 18 MB—with further size
reduction possible through map sub-sampling.

V. LOCALIZATION FILTER

The localization filter is used to track the state of the
instrumented camera system through the map. Our state
vector, x = [r,θ,v,ω]>, contains the 3D position r =
[x, y, z]>, Euler orientation θ = [r, p, h]>, linear velocity
v = [ẋ, ẏ, ż]> and Euler rates ω = [ṙ, ṗ, ḣ]>, all with respect
to a fixed world coordinate frame.

Similar to Davison et al. [2], we use a constant velocity,
constant angular velocity motion model. This model assumes
that the camera is driven by unknown Gaussian distributed
accelerations with a constant velocity over a single time
step. This unknown acceleration accounts for the unknown
dynamics of the system as well as the unknown control input
to the instrumented camera system.

A. Camera Constraints

The camera observation model is the conventional pro-
jective camera model that takes a homogeneous point X =

Fig. 4. Estimating potential clusters based on centroid and mean view
azimuth. First, we eliminate clusters outside of the perceptual radius (dotted
black line). Second, we remove clusters with a centroid that does not lie in
a 90◦ cone in front of the camera (solid red lines). Finally, clusters with
a mean view azimuth that does not align with the camera’s view azimuth
within ±45◦ are removed (dashed red lines). This leaves only the pose-
viable candidate clusters (bold green) to consider when performing data
association.

[X,Y, Z, 1]> in 3D and projects it onto the image plane at
a location p = [u, v, w]> as shown in (1). The projection
matrix P = K[R | t] is composed of the intrinsic camera
matrix K, and the extrinsic camera parameters R and t, that
capture the camera’s rotation and translation.

p = PX (1)

1) Visual Data Association: In order to correct our pre-
dicted state using these camera measurements, we need
to perform data association to establish a correspondence
between SIFT features extracted from the image and features
in the map. A large map may have hundreds of thousands of
point features. In order to avoid unnecessary computational
costs, we first wish to quickly eliminate highly unlikely
feature points. To do so we consider only the clusters’
centroids and mean view azimuths. First, we exclude clusters
whose centroid is beyond the “perceptual radius” of the
current pose estimate. For our experiments the perceptual
radius was set to 100 m—the maximum range of the laser
scanner used to build the map. Second, we eliminate clusters
with a centroid that does not lie in a 90◦ cone in front
of the camera. Finally, we remove clusters with a mean
view azimuth that does not align with the camera’s view
azimuth within ±45◦. This process is illustrated in Fig. 4.
The centroids of the remaining, much reduced, subset of
clusters are projected into the camera frame. If they fall
within a bound around the image then we consider the cluster
to be a candidate for matching.

We then project all of the feature points within the candi-
date clusters onto the image plane and search for matching
image features within a neighborhood determined by the
first-order covariance of the camera pose:

Σzz = JP
x Σxx(JP

x )> + JP
XΣXX(JP

X)>, (2)

where z = [u, v]> are the pixel coordinates of the feature
and JP

x and JP
X are the Jacobians of the camera projection

function, (1), with respect to the camera pose, x, and the
feature’s 3D coordinates, X, respectively. Fig. 5 depicts the
data association procedure, with projected map points shown
as stars and image features shown as dots. The ellipse around



Fig. 5. Geometrically constrained correspondence search. Projected map
points are shown as stars and image features are shown as dots. The ellipse
around each map feature represents a 99% confidence bound on where the
feature should lie in the image.

each map feature represents the 99% confidence bound
on where the feature should lie based on the uncertainty
associated with projecting that 3D map point into the image.
A match between a map feature and an image feature is
established when an image feature from the same vocabulary
tree leaf as the map feature is found within the search ellipse.
Finally, we use RANSAC to select only those associations
that are geometrically consistent.

2) Camera Observation Update: As a result of the data
association step, we obtain a correspondence between the
image features, z = [u, v]>, and the map features X =
[X,Y, Z]>. The projected pixel locations of the map features
ẑ = [û, v̂]> are obtained from the model described in (1). We
then try to find the state vector, x̂ = [x̂, ŷ, ẑ, r̂, p̂, ĥ]>, that
minimizes the re-projection error between image features and
map points, as shown in (3),

x̂ = arg min
x
φ(

[
u
v

]
,

[
û
v̂

]
). (3)

In our experiments the cost function φ is simply squared
error; however, a Huber [16] cost function could be used
to reduce the influence of outliers. We solve for the optimal
pose using the Levenberg-Marquardt optimization algorithm.
The first-order approximation of the covariance of the esti-
mated state is given by

Σx̂x̂ = (Jφx
>

Σ−1ppJ
φ
x )−1 (4)

where Jφx is the Jacobian of the cost function with respect
to state, and Σpp is the covariance of the pixel coordinates
of the extracted features, commonly assumed to be isotropic
with unit variance.

VI. EXPERIMENTAL RESULTS

In order to evaluate our algorithm in a real-world scenario
we present results using the Ford Campus Vision and LIDAR
Data Set [17]. This data set was collected with Ford’s
autonomous ground vehicle testbed (Fig. 1) outfitted with an
omni-directional camera, professional IMU and differential

GPS. To build the map we use the full sensor suite with
data collected in the winter 2009. To test localization we
then use data collected with the same vehicle driving a
similar trajectory in fall 2010 and winter 2011. For local-
ization we use four of the cameras from the omnidirectional
system, excluding the forward looking camera. Additionally,
we consider attitude measurements from a consumer-grade
orientation sensor and position from a consumer-grade GPS.

A. Localization Results

The trajectories produced by our proposed algorithm are
shown in Fig. 6(a) and 6(b). At any given point in the trajec-
tory the size and color of the marker are proportional to the
spatial uncertainty in the state estimate. Spatial uncertainty
is defined in terms of the determinate of the x and y position
covariance as

σ = (det Σxy)1/4, (5)

which has units of length. Sample imagery corresponding
to the numbered locations in the trajectories is shown in
Fig. 6(c) through 6(h). These images illustrate some of the
challenges presented by the data set including; low saliency
regions, 6(c), changing structure and appearance, 6(d) and
6(f), and poor lighting and exposure, 6(g) and 6(h). Even
under the best conditions, 6(e), visual matching must still
contend with lighting changes.

We see that our proposed method allows for low-
uncertainty localization for both the fall 2010 and winter
2011 data sets. As one would expect, the snow present in
the winter 2011 trajectory proves slightly more difficult,
especially in regions with less visually interesting features,
such as the leg around region 1.

B. Map Sub-sampling Results

Additionally, we consider the effect of map sub-sampling
on the localization utility of a map. Fig. 7 compares the
moving average of spatial uncertainty for varying map sizes
using the proposed sub-sampling method outlined in Sec.
IV-D. As one would expect, reducing the number of features
in the map results in a higher average uncertainty. However,
even after removing approximately half of the map’s features,
visual tracking still provides a substantial reduction in spatial
uncertainty.

During development we also considered sub-sampling
based on the visual uniqueness of features within a cluster.
In order to identify features that may be visually aliased in
a local area, we computed a simple local saliency score, s,
for each feature with respect to its spatial cluster. Using the
vocabulary id for the visual features we consider, for each
feature in a spatial cluster, the ratio between the number
of features from the same vocab in that spatial cluster
nsame vocab, and the total number of features in the spatial
cluster, ntotal. The local saliency score, s, is then defined as

s = 1− nsame vocab
ntotal

(6)

where s varies between 0 and 1 with visually repetitive
features receiving low scores.



(a) Fall 2010 trajectory. (b) Winter 2011 trajectory.

(c) Sample images 1. (d) Sample images 2. (e) Sample images 3.

(f) Sample images 4a. (g) Sample images 4b. (h) Sample images 5.

Fig. 6. Experimental results. (a) and (b) show the trajectory produced by our algorithm using data from 2010 and 2011. At any given point in the
trajectories the size and color of the marker are proportional to the spatial uncertainty in the xy state estimate. Sample imagery from the map and both
localization sets corresponding to the numbered locations in the trajectory are shown in (c)–(h). These images illustrate some of the challenges presented
by the data set including; low saliency regions, (c), changing structure and appearance, (d) and (f), and poor lighting and exposure, (g) and (h). Even under
the best conditions, (e), visual matching must still contend with lighting changes.

Fig. 7. Effect of map sub-sampling: a moving average of the spatial
uncertainty is plotted for varying map sizes.

Comparing our proposed method, Sec. IV-D, local saliency
and naı̈ve random sub-sampling, Fig. 8, we see that for
a given map size our proposed view-robustness method
provides a substantial reduction in localization uncertainty.

Additionally, we note that local saliency sub-sampling
systemically performs worse than random sub-sampling.
Though unexpected, this result provided two interesting in-

Fig. 8. Average spatial uncertainty is plotted for varying map sizes using
the proposed view robustness sub-sampling method (IV-D), saliency based,
and naı̈ve random sub-sampling.

sights into the proposed algorithm. First, we note that through
cluster-based feature culling (Fig. 4) and geometrically con-
strained correspondence search (Fig. 5) we greatly reduce the
effect of visually aliased features in the environment. This
alone, however, does not explain why saliency sub-sampling
should perform worse than random. In fact we found that
multiple instances of the same feature can be added to the
map. This happens during map construction when a feature



Fig. 9. Vocabulary-tree-based location recognition was used in place of
GPS to bootstrap the localization filter over the fall 2010 trajectory. Again,
the spatial uncertainty is proportional to size and color of the marker. The
GPS measured trajectory is plotted in cyan for reference.

is tracked for several frames, is missed during one frame,
then is detected again and tracked in subsequent frames.
Without a way to re-establish tracking, multiple instances of
the same feature are inserted into the map. These duplicate
features will be considered visually aliased and removed
during saliency sub-sampling even though they are trackable
over a wide change in view point. It is because of this that
saliency sub-sampling harms the ability to localize to the
map.

VII. DISCUSSION AND FUTURE WORK

Recent works, including [4] and [18], have advocated
for methods in which visual tracking is supplemented by
localization-by-recognition methods. When initializing track-
ing or when tracking is lost, these methods provide a vision-
only method to (re)initialize the visual tracking filter. We
are currently working toward a visual method for providing
a global estimate of the camera position to supplement or
replace our current use of GPS. As a preliminary result
we have implemented vocabulary-tree-based recognition as
described by [15], using the map’s spatial clusters as our
location model. The 2010 trajectory, processed with this
method, is shown in Fig. 9. When the robot encounters
visually salient regions of the environment the location
recognition algorithm is able to bootstrap the visual filter.
However, when tracking is lost in visually uninteresting
regions, tracking results are unavailable until the location
recognition algorithm can reinitialize the filter.

Currently, our framework does not have a mechanism
to update the a priori map based upon feedback from the
localizing camera system. We feel that if used over long
periods of time (such as in life-long learning) that it would be
imperative for the map to be improved using feedback from
the localizing camera—developing even more temporally
stable maps through repeated use.

Finally, we are also interested in applying a similar
structure to multi-robot SLAM where different robots have
varying sensing capabilities.

VIII. CONCLUSIONS

This paper presented an algorithm for localizing an instru-
mented camera system within an a priori known map con-

structed from co-registered 3D LIDAR and omnidirectional
image data. Our method intelligently sub-samples the rich 3D
LIDAR and image data to produce a compact map of visual
features that are both robust to varying view point and that
are visually salient. We demonstrated the use of vision-based
localization to track an auxiliary camera’s motion through the
map. and the ability of the algorithm to localize in a map
built with real-world data collected over multiple years.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under NSF Award IIS-0746455 and in part by
the Ford Motor Company via the Ford-UofM Alliance Award
#N009933. We would also like to thank Gaurav Pandey for
his help in the data collection process.

REFERENCES

[1] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic, 1st ed. Springer Publish-
ing Company, Incorporated, 2009.

[2] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, pp. 1052–1067, June 2007.

[3] E. Eade and T. Drummond, “Scalable monocular SLAM,” in IEEE
Conf. on Comp. Vis. Pat. Rec., vol. 1. IEEE, 2006, pp. 469–476.

[4] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in IEEE Int. Symp. on Mixed and Aug. Reality, Nara,
Japan, November 2007, pp. 1–10.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
a factored solution to the simultaneous localization and mapping
problem,” in 18th Nat. Conf. on A.I. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 2002, pp. 593–598.

[6] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, pp. 91–110, November 2004.

[7] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks,” Int. J. Rob.
Res., vol. 21, pp. 735–758, 2002.

[8] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization
and mapping in the space of appearance,” Int. J. Rob. Res., vol. 27,
no. 6, pp. 647–665, 2008.

[9] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recog-
nition,” in IEEE Conf. on Comp. Vis. Pat. Rec. IEEE, 2007, pp.
1–7.

[10] A. Irschara, C. Zach, J. Frahm, and H. Bischof, “From structure-from-
motion point clouds to fast location recognition,” in IEEE Conf. on
Comp. Vis. Pat. Rec. IEEE, 2009, pp. 2599–2606.

[11] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” IEEE Int. Conf. on Comp. Vis., vol. 2,
pp. 1470–1477 vol.2, Apr. 2003.

[12] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg,
“Wide area localization on mobile phones,” in IEEE Int. Symp. on
Mixed and Aug. Reality. IEEE, 2009, pp. 73–82.

[13] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with application to image analysis and
automated cartography,” Comms. of the ACM, vol. 24, no. 6, pp. 381–
395, Jun. 1981.

[14] A. Kawewong, N. Tongprasit, S. Tangruamsub, and O. Hasegawa,
“Online and incremental appearance-based SLAM in highly dynamic
environments,” Int. J. Rob. Res., vol. 30, pp. 33–55, January 2011.

[15] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” IEEE Conf. on Comp. Vis. Pat. Rec., vol. 2, pp. 2161–2168,
2006.

[16] Z. Zhang, “Parameter estimation techniques: a tutorial with application
to conic fitting,” Img. and Vis. Comp., vol. 15, no. 1, pp. 59–76, 1997.

[17] G. Pandey, J. McBride, and R. Eustice, “Ford campus vision and lidar
data set,” in Int. J. Rob. Res., 2011, in Press.

[18] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder,
V. Lepetit, and P. Fua, “View-based maps,” Int. J. Rob. Res., vol. 29,
no. 8, pp. 941–957, 2010.


