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Abstract—This paper reports on a factor-based method for
node marginalization in simultaneous localization and mapping
(SLAM) pose-graphs. Node marginalization in a pose-graph in-
duces fill-in and leads to computational challenges in performing
inference. The proposed method is able to produce a new set
of constraints over the elimination clique that can represent
either the true marginalization, or a sparse approximation of
the true marginalization using a Chow-Liu tree. The proposed
algorithm improves upon existing methods in two key ways:
First, it is not limited to strictly full-state relative-pose constraints
and works equally well with other low-rank constraints such as
those produced by monocular vision. Second, the new factors are
produced in a way that accounts for measurement correlation, a
problem ignored in other methods that rely upon measurement
composition. We evaluate the proposed method over several real-
world SLAM graphs and show that it outperforms other state-
of-the-art methods in terms of Kullback-Leibler divergence.

I. INTRODUCTION

Pose-graph simultaneous localization and mapping (SLAM)
[1]–[5] has been demonstrated successfully over a wide variety
of applications. Unfortunately, the standard pose-graph formu-
lation is not ideal for long-term applications as the size of the
graph grows with time and spatial extent—even if a robot is
working in a finite region (since it must continue to add nodes
and measurements to the graph in order to stay localized).

This paper seeks to address this challenge by developing a
new method that allows one to remove nodes and factors from
the graph, thereby reducing inference complexity and allowing
for graph maintainability. Our proposed algorithm is designed
so that it meets the following criteria:

• The algorithm produces a new set of independent factors
using the current graph factors as input. The method does
not require the full linearized information matrix as input.

• The algorithm is able to produce constraints that can rep-
resent exact node marginalization, as well as constraints
that can represent a sparse Chou-Liu tree approximation
of the dense marginal.

• The algorithm works equally well with non full-state con-
straints. Constraints with lower degree of freedom (DOF)
than full state (e.g., bearing-only, range-only and partial
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Fig. 1: Depiction of dense-exact and sparse-approximate generic
linear constraint (GLC) node removal for the Duderstat SLAM pose-
graph. 33.3% of nodes from the original graph are removed. Green
links represent new GLC constraints.

state constraints) are handled under the same framework
as full-state constraints, without special consideration.

• The new factors are produced in a way that does not
double count measurement information. As we will show
in §II, methods based on the pairwise composition of
measurements produce pairwise constraints that are not
independent, which leads to inconsistency in the graph.

• The computational complexity of the algorithm is de-
pendent only on the number of nodes and factors in the
elimination clique, not on the size of the graph beyond
the clique.

• The algorithm does not require committing to a world-
frame linearization point, rather, the new factors are
parametrized in such a way as to use a local linearization
that is valid independent of the global reference frame.
This allows for the exploitation of methods that re-
linearize during optimization (e.g., [1], [2], [5]).

Methods that seek to slow the rate of growth of the pose-
graph exist. In [6], an information-theoretic approach is used
to add only non-redundant nodes and highly-informative mea-
surements to the graph. Similarly, [7] induces new constraints
between existing nodes when possible, instead of adding new
nodes to the graph. In this formulation the number of nodes
grows only with spatial extent, not with mapping duration—
though the number of factors and connectivity density within
the graph remain unbounded.

Methods that work directly on the linearized information
matrix (best suited for filtering-based SLAM solutions) include
[8]–[10]. In [8], weak links between nodes are removed to en-
force sparsity. Unfortunately, this removal method causes the
resulting estimate to be overconfident [11]. In [9], odometry
links are removed in order to enforce sparsity in feature-based
SLAM. Recently, [10] proposed an optimization-based method
that minimizes the Kullback-Leibler divergence (KLD) of the
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Fig. 2: Measurement composition vs. marginalization. The top row
shows the factor graph; bottom row shows its Markov random field.

information matrix while enforcing a sparsity pattern and the
requirement that the estimated information is conservative.
This method performs favorably in comparison with [9] and
[8], but requires a large matrix inversion in order to formulate
the optimization problem, which limits its online utility.

For full-state constraints (i.e., 3- or 6-DOF relative-pose
constraints depending on application) it is possible to compose
constraints and their associated uncertainty. The basic compo-
sition functions for compounding and inversion are reported
in [12]. Measurement composition is used in [13]–[15] in
order to produce a new set of constraints when nodes are
removed. In [13], all composed constraints are kept, causing
fill-in within the graph. In order to preserve sparsity, a subset
of the composed edges are pruned in [14] using a heuristic
based on node degree. In [15], composed-edge removal is
guided by a Chow-Liu tree calculated over the conditional
information of the elimination clique.

These composition-based methods meet many of the afore-
mentioned design criteria. They produce a new set of fac-
tors using the existing factors as input, the computational
complexity is only dependent on the number of nodes and
factors in the elimination clique, and the new factors can
be re-linearized during subsequent optimization. However, as
we show in §II, pairwise measurement composition is not
marginalization, and yields inconsistent estimates in all but
the simplest of graph topologies (since the composed pairwise
constraints are assumed to be independent, which they are not).
Additionally, it is not uncommon for a graph to be composed
of many different types of non-full-state constraints, such as
bearing-only, range-only and other partial-state constraints. In
these heterogeneous cases, measurement composition quickly
becomes complicated as the constraint composition rules for
all possible pairs of measurement types must be defined.

The remainder of this paper is outlined as follows: In
Section II we discuss the pitfalls associated with the use of
measurement composition for node removal. Our proposed
method is then described in Section III and experimentally
evaluated in Section IV. Finally, Sections V and VI offer a
discussion and concluding remarks.

II. PAIRWISE COMPOSITION 6= MARGINALIZATION

Consider the simple pose-graph depicted in Fig. 2(a) where
we show both its factor graph and Markov random field (MRF)
representations. Suppose that we wish to marginalize node x1.

Following [14], [15], and using the composition notation of
[12], we can compose the pairwise measurements to produce
the graph depicted in Fig. 2(b) as follows,

z′02 = h1(z01, z12) = z01 ⊕ z12,

z′03 = h2(z01, z13) = z01 ⊕ z13,

z′23 = h3(z12, z13) = 	z12 ⊕ z13.

(1)

These composed measurements are meant to capture the fully
connected graph topology that develops in the elimination
clique once x1 has been marginalized. In [14], [15], this
composition graph forms the conceptual basis from which
their link sparsification method then acts to prune edges and
produce a sparsely connected graph. The problem with this
composition is that the pairwise edges/factors in Fig. 2(b) are
assumed to be independent, which they are not.

It should be clear that the composed measurements in (1)
are correlated, as z′02, z′03 and z′23 share common information
(e.g., z′02 and z′03 both share z01 as input), yet, if we treat
these factors as strictly pairwise, we are unable to capture
this correlation. Now consider instead a stacked measurement
model defined as

zs =

z′02

z′03

z′23

 = h

z01

z12

z13

 =

 z01 ⊕ z12

z01 ⊕ z13

	z12 ⊕ z13

 . (2)

Its first-order uncertainty is given as

Σs = H

Σ01 0 0
0 Σ12 0
0 0 Σ13

H>,

where
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 .
The joint composition in (2) produces the factor graph

shown in Fig. 2(c), where in this formulation we see that Σs
captures the correlation between the compounded measure-
ments. In order to do this, it requires a trinary factor with
support including all three variables,

zs =

z′02

z′03

z′23

 = f

x0

x2

x3

 =

	x0 ⊕ x2

	x0 ⊕ x3

	x2 ⊕ x3

+ w, (3)

where w ∼ N
(
0,Σs

)
.

It is this inability of pairwise factors to capture correlation
between composed measurements that causes simple com-
pounding to be wrong. Note that the graphs in Fig. 2(b) and
Fig. 2(c) have the same Markov network representation and
information matrix sparsity pattern. The difference between
the binary and trinary factorization is only made explicit in
the factor graph representation. The two observations: (i) that
composed measurements are often correlated, and (ii) that
representing the potential of an elimination clique with n
nodes requires n-nary factors, will prove important in the
remainder of the paper.



Fig. 3: Sample factor graph where node x1 is to be marginalized. Here
Xm = [x0,x1,x2,x3]. The factors Zm = [z0, z01, z12, z23, z13]
(highlighted in red) are those included in calculating the target
information, Λt.

III. METHOD

The proposed method consists of two main parts. First, we
compute the information induced by marginalization over the
elimination clique. We refer to this information matrix as the
target information, Λt. Second, we use Λt to compute either
(i) an exact n-nary factor that produces an equivalent potential
over the elimination clique (in the case of dense node removal),
or (ii) a sparse set of factors that best approximate the true
distribution over the elimination clique using a Chow-Liu tree
(in the case of sparsified node removal). Having computed this
new set of factors, we can simply remove the marginalization
node from the graph and replace its surrounding factors with
the newly computed set.

A. Building the target information

The first step in the algorithm is to correctly identify the
target information, Λt. Letting Xm ⊂ X be the subset of
nodes including the node to be removed and the nodes in
its Markov blanket, and letting Zm ⊂ Z be the subset of
measurement factors that only depend on the nodes in Xm we
consider the distribution p(Xm|Zm) ∼ N−1

(
ηm,Λm

)
. From

Λm we can then compute the desired target information, Λt,
by marginalizing out the elimination node using the standard
Schur-complement form. For example, in the graph shown in
Fig. 3, to eliminate node x1 we would first calculate Λm using
the standard information-form measurement update equations
[8], [11] as

Λm = H>0 Λ0H0 + H>01Λ01H01 + H>12Λ12H12

+H>23Λ23H23 + H>13Λ13H13,

where Hij are the Jacobians of the observation models for
measurements zij with information matrices Λij , and then
compute the target information as

Λt = Λαα − ΛαβΛ−1
ββΛ>αβ ,

where Λαα, Λαβ and Λββ are the required sub-blocks of Λm
with α = [x0,x2,x3] and β = [x1]. Note that, though this
example only contains unary and binary factors, general n-
nary factors are equally acceptable.

The key observation when identifying the target information
is that, for a given linearization point, a single n-nary factor
can recreate the potential induced by the original pairwise
factors by adding the same information (i.e., Λm) to the
graph. Moreover, because marginalization only affects the
information matrix blocks corresponding to nodes within the

elimination clique, an n-nary factor that adds the information
contained in Λt to the graph will induce the same potential in
the graph as true node marginalization at the given lineariza-
tion point.

Note that the target information, Λt, is not the conditional
distribution of the elimination clique given the rest of the
nodes, i.e., p(x0,x2,x3|x4,Z), nor is it the marginal distri-
bution of the elimination clique, i.e., p(x0,x2,x3|Z). Using
either of these distributions as the target information results in
a wrong estimate as information will be double counted when
the n-nary factor is reinserted into the graph.

It is also important to note that the constraints in Zm may
be purely relative and/or low-rank (e.g., bearing or range-only)
and, therefore, may not fully constrain p(Xm|Zm). This can
cause Λt to be singular. Additionally, some of Λt’s block-
diagonal elements may also be singular. This will require
special consideration in subsequent sections.

B. Generic linear constraints

Having defined a method for calculating the target informa-
tion, Λt, we now seek to produce an n-nary factor that captures
the same potential. We refer to this new n-nary factor as a
generic linear constraint (GLC). Letting xc denote a stacked
vector of the variables within the elimination clique after node
removal, we begin by considering an observation model that
directly observes xc with a measurement uncertainty that is
defined by the target information:

z = xc + w where w ∼ N−1
(
0,Λt

)
. (4)

Setting the measurement value, z, equal to the current lin-
earization point, x̂c, induces the desired potential in the graph.
Unfortunately, the target information, Λt, may not be full rank,
which is problematic for optimization methods that rely upon
a square root factorization of the measurement information
matrix [1], [5]. We can, however, use principle component
analysis to transform the measurement to a lower-dimensional
representation that is full rank.

We know that Λt will be a real, symmetric, positive semi-
definite matrix due to the nature of its construction. In general
then, it has an eigen-decomposition given by

Λt =
[
u1 · · · uq

] λ1 0 0

0
. . . 0

0 0 λq


u
>
1
...

u>q

 = UDU>,

(5)
where U is a p × q matrix, D is a q × q matrix, p is the
dimension of Λt, and q = rank(Λt). Letting G = D

1
2 U>

allows us to write a transformed observation model,

zglc = Gz = Gxc + w′ where w′ ∼ N−1
(
0,Λ′

)
. (6)

Using the pseudo-inverse [16], Λ+
t = UD−1U>, and noting

that U>U = Iq×q, we find that

Λ′ = (GΛ+
t G>)−1 = (D

1
2 U>(UD−1U>)UD

1
2 )−1 = Iq×q.



This GLC factor will contribute the desired target information
back to the graph, i.e.,

G>Λ′G = G>Iq×qG = Λt,

but is itself non-singular. This is the key advantage of the
proposed GLC method; it automatically determines the appro-
priate measurement rank such that Λ′ is q × q and invertible,
and G is an p × q new observation model that maps the p-
dimensional state to the q-dimensional measurement.

C. Avoiding world-frame linearization in GLC

At this point, the GLC method still fails to meet our initial
design criteria because it linearizes the potential with respect to
the state variables in the world-frame. This may be acceptable
in applications where a good world-frame linearization point
is known prior to marginalization; however, in general, a more
tenable assumption is that a good linearization point exists for
the local relative-frame transforms between nodes within the
elimination clique.

To adapt GLC so that it only locally linearizes the relative
transformations between variables in the elimination clique,
we first define a “root-shift” function that maps its world-frame
coordinates, xc, to relative-frame coordinates, xr. Letting xij
denote the jth pose in the ith frame, the root-shift function
for xc becomes

xr =


x1
w

x1
2
...
x1
n

 = r (xc) = r



xw1
xw2
...
xwn


 =


	xw1

	xw1 ⊕ xw2
...

	xw1 ⊕ xwn

 . (7)

In this function the first node is arbitrarily chosen as the root
of all relative transforms. The inclusion of the inverse of the
root pose, x1

w, is important as it ensures that the Jacobian of
the root-shift operation, R, is invertible, and allows for the
representation of target information that is not purely relative.

To derive, instead of starting with a direct observation of the
state variables, as in (4), we instead start with their root-shifted
relative transforms,

zr = xr + wr where wr ∼ N−1
(
0,Λtr

)
. (8)

Here, the root-shifted target information, Λtr , is calculated
using the fact that the root-shift Jacobian, R, is invertible,

Λtr = R−>ΛtR
−1. (9)

Like the original target information, the root-shifted target
information, Λtr , will also be low-rank. Following the same
principal component analysis procedure as before, we perform
the low-rank eigen-decomposition Λtr = UrDrU

>
r , which

yields a new observation model,

zglcr = Grr(xc) + w′r where w′r ∼ N−1
(
0,Λ′r

)
, (10)

where Gr = D
1
2
r U>r , and measurement information Λ′r =

Iq×q . Using the root-shifted linearization point to compute the
measurement value, zglcr = Grr(x̂c), will again induce the
desired potential in the graph. Now, however, the advantage is
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Fig. 4: Demonstration of root-shifted vs. world-frame GLC factors.
Depicted is a simple graph (a) that is initially constructed with
two well-connected clusters connected by a highly-uncertain and
inaccurate link. The center (magenta) node in each cluster is removed
inducing a GLC factor over each cluster. Subsequently, a second
measurement is then added between the two clusters, correcting
the world-frame location of the upper-right cluster. After adding
the strong inter-cluster constraint, the graph with the world-frame
linearized GLCs fails to converge to the correct optima (b), while
the graph with root-shifted GLCs does (c). The Kullback-Leibler
divergence from the true marginalization is displayed for each test.

that the GLC factor embeds the linearized constraint within a
relative coordinate frame defined by the clique, as opposed to
an absolute coordinate world-frame. Fig. 4 demonstrates this
benefit.

D. Sparse approximate node removal

Exact node marginalization causes dense fill-in. As the
number of marginalized nodes increases, this dense fill-in can
quickly reduce the graph’s sparsity and greatly increase the
computational complexity of optimizing the graph [1], [5]. In
[15], Kretzschmar and Stachniss insightfully propose the use
of a Chow-Liu tree (CLT) [17] to approximate the individual
elimination cliques as sparse tree structures.

The CLT approximates a joint distribution as the product of
pairwise conditional distributions,

p(x1, · · · ,xn) ≈ p(x1)

n∏
i=2

p(xi|xp(i)), (11)

where x1 is the root variable of the CLT and xp(i) is the parent
of xi. The pairwise conditional distributions are selected such
that the KLD between the original distribution and the CLT
approximation is minimized. To construct it, the maximum
spanning tree over all possible pairwise mutual information
pairings is found (Fig. 5), where the mutual information
between two Gaussian random vectors,

p(xi,xj) ∼ N
([ µi

µj

]
,
[ Σii Σij

Σji Σjj

])
≡ N−1

([ ηi
ηj

]
,
[ Λii Λij

Λji Λjj

])
,

(12)



Fig. 5: Illustration of the Chow-Liu tree approximation. The mag-
nitude of mutual information between variables is indicated by
line thickness. The original distribution p(x1, x2, x3, x4) (left), is
approximated as p(x1)p(x3|x1)p(x2|x3)p(x4|x3) (right).

is given by [18]

I(xi,xj) =
1

2
log

(
|Λii − ΛijΛ

−1
jj Λji|

|Λii|

)
. (13)

Like [15], we can apply the CLT approximation to sparsify
our n-nary GLC factors; however, our implementation of CLT-
based sparsification differs in a few subtle, yet important,
ways. In [15], the maximum mutual information spanning tree
is computed over the conditional distribution of the elimination
clique given the remainder of the graph. This tree is then used
to guide which edges should be composed and which edges
should be excluded. This is not ideal for two reasons. First,
the conditional distribution of the elimination clique is not the
distribution that we wish to reproduce by our new factors (see
§III-A). Second, pairwise measurement composition fails to
track the proper correlation (see §II).

We address these issues by computing the CLT distribution
(11) from the target information, Λt, which is the distribution
that we wish to approximate, and then represent the CLT’s
unary and binary potentials as GLC factors.

1) CLT factors: To start, let’s first consider CLT binary
potentials, p(xi|xp(i)), and in the following use xj = xp(i)

as shorthand for the parent node of xi. We note that the
target-information-derived joint marginal, pt(xi,xj), can be
computed from Λt and written as in (12).1 From this joint
marginal, we can then easily write the desired conditional,
pt(xi|xj) = N

(
µi|j ,Σi|j

)
≡ N−1

(
ηi|j ,Λi|j

)
, and express it

as a constraint as

e = xi − µi|j = xi − Λ−1
ii (ηi − Λijxj), (14)

where e ∼ N−1
(
0,Λi|j

)
, and with Jacobian,

E =
[
∂e
∂xi

∂e
∂xj

]
=
[
I Λ−1

ii Λij
]
. (15)

Therefore, using the standard information-form measurement
update, we see that this constraint adds information

E>Λi|jE, (16)

where Λi|j is simply Λii.
Treating (16) as the input target information, we can pro-

duce an equivalent GLC factor for this binary potential using
the techniques described in §III-B and §III-C. Similarly, the
CLT’s root unary potential, pt(x1), can also be implemented as

1In this section, when we refer to marginal and conditional distributions,
they are with respect to the target information, Λt, not with respect to
the distribution represented by the full graph. See [3] for a summary of
marginalization and conditioning operations for Gaussian variables.

a GLC factor by using the target-information-derived marginal
information, Λ11, and the sames techniques.

2) Pseudo-inverse: As discussed in Section III-A, the target
information, Λt, is generally low rank. This is problematic for
the joint marginal (12) and conditioning (14)–(15) calculations
used to compute the CLT, as matrix inversions are required.
To address this issue, in place of the inverse we use the
generalized- or pseudo-inverse [16, §10.5], which can be cal-
culated via an eigen-decomposition for real, symmetric, posi-
tive semi-definite matrices. For full-rank matrices the pseudo-
inverse produces the same result as the true inverse, while
for low rank matrices it remains well defined. Calculating
the pseudo-inverse numerically requires defining a tolerance
below which eigenvalues are considered to be zero. We found
that our results are fairly insensitive to this tolerance and that
automatically calculating the numerical tolerance using the
machine epsilon produced good results. In our experiments
we use ε × n × λmax (the product of the machine epsilon,
the size of the matrix, and the maximum eigenvalue) as the
numerical tolerance.

3) Pinning: When calculating the pairwise mutual infor-
mation, the determinants of both the conditional and marginal
information matrices in (13) must be non-zero, which is again
problematic because these matrices are generally low-rank
as calculated from the target information, Λt. It has been
proposed to consider the product of the non-zero eigenvalues
as a pseudo-determinant [16], [19] when working with sin-
gular, multivariate, Gaussian distributions. Like the pseudo-
inverse, this requires determining zero eigenvalues numeri-
cally. Experimentally, however, we found that in some cases
the numerical instability in the pseudo-determinant’s reliance
on the numerical tolerance results in the edges being sorted
incorrectly. This results in a non-optimal structure when the
maximum mutual information spanning tree is built and,
therefore, a slightly higher KLD from the true marginalization
in some graphs.

Instead, we recognize that the CLT’s construction requires
only the ability to sort pairwise links by their relative mutual
information (13), and not the actual value of their mutual
information. A method that slightly modifies the input matrix
so that its determinant is non-zero, without greatly affecting
the relative ordering of the edges, would also be acceptable.
Along these lines we approximate the determinant of a singular
matrix using

|Λ| ≈ |Λ + αI|. (17)

This can be thought of as applying a low-certainty prior on
the distribution, and we therefore refer to it as “pinning”.2

Experimentally we found the quality of the results to be less
sensitive to the value of α than the numerical epsilon in the
pseudo-determinant. We, therefore, elected to use pinning with
α = 1 in our experiments when evaluating the determinants
in the pairwise mutual information (13).

2This is related to the derivation of the pseudo-determinant in [19], which
uses a similar form in the limit as α → 0.



TABLE I: Experimental Datasets

Dataset Robot Factor Types # Nodes # Factors Λ % NZ
Duderstadt Center Segway 6-DOF odometry, 6-DOF laser scan-matching 552 1,774 1.12%
EECS Building Segway 6-DOF odometry, 6-DOF laser scan-matching 611 2,134 1.20%
USS Saratoga HAUV 6-DOF odometry, 5-DOF monocular-vision, 1-DOF depth 1,513 5,433 0.35%

TABLE II: Experimental Results

Dense GLC Sparse GLC
% Nodes Removed 25.0 % 33.3 % 50.0 % 66.6 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 %

Duderstadt Center KLD 2.481 0.515 0.009 1.710E-8 7.295 5.793 4.219 5.855 5.939
EECS Building KLD 7.630 3.882 1.679E-8 8.207E-8 13.170 11.944 7.313 11.204 16.540
USS Saratoga KLD 108.040 77.000 0.708 2.682 113.481 94.836 10.216 3.907 1.837

Duderstadt Center time (ms/node) 5.2 17.4 78.5 3.2E4 10.1 10.0 7.4 7.3 7.0
EECS Building time (ms/node) 840.8 538.1 4.6E4 6.0E4 78.5 49.9 16.4 11.7 15.2
USS Saratoga time (ms/node) 6.4 1.1E3 4.5E3 1.2E4 7.3 7.2 6.0 4.9 4.4

Dense Pairwise Measurement Composition Sparse Pairwise Measurement Composition
% Nodes Removed 25.0 % 33.3 % 50.0 % 66.6 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 %

Duderstadt Center KLD 204.200 473.213 3.544E4 N/A 7.198 7.176 23.461 24.399 158.209
EECS Building KLD 9.984E4 2.871E4 N/A N/A 19.282 13.188 33.840 414.370 411.717

E. Computational complexity

The core operations that GLC relies on, in and of them-
selves, are computationally expensive. The CLT approximation
has a complexity of O(m2 logm), where m is the number of
nodes. Matrix operations on the information matrix with n
variables, including the eigen-decomposition, matrix multipli-
cation, and inversion operations, have a complexity of O(n3).
Fortunately, the input size for these operations is limited to
the number of nodes within the elimination clique, which in
a SLAM pose-graph is controlled by the perceptual radius. In
general, the number of nodes and variables in an elimination
clique is much less than the total number of nodes in the full-
graph, which makes GLC’s calculations easily feasible.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was implemented using iSAM
[5], [20] as the underlying optimization engine. The code
is available for download within the iSAM repository [21].
For comparison, a dense measurement composing method as
described in §II, and a sparse measurement composing method
based upon CLT-guided node removal, as proposed in [15],
were also implemented. For evaluation we use three SLAM
pose-graphs: The first two graphs were built using data from
a Segway ground robot equipped with a Velodyne HDL-32E
laser scanner as the primary sensing modality. The third graph
was produced by a Hovering Autonomous Underwater Vehicle
(HAUV) performing monocular SLAM for autonomous ship
hull inspection [22]. These graphs are characterized in Table I
and a depiction of each are shown in Fig. 1, Fig. 6 and
Fig. 7. In the following experiments, the original full graph is
first optimized using iSAM. Then the different node removal
algorithms are each performed to remove a percentage of
nodes evenly spaced throughout the trajectory. Finally, the
graphs are again optimized in iSAM. For each experiment
the true marginal distribution is recovered by obtaining the
linearized information matrix about the optimization point
and performing Schur complement marginalization, which
provides a ground-truth distribution.

(a) EECS original graph

(b) Dense GLC (c) Sparse GLC

Fig. 6: Comparison of the original graph, dense-exact GLC, and
sparse-approximate GLC node removal for the EECS graph. 33.3% of
original nodes are removed. Blue links represent 6-DOF constraints,
and green links represent new GLC constraints.

A summary of our results are provided in Table II, which
shows the KL-divergence from the true marginalization and
average computation time per node removed, as an increasing
percentage of nodes are removed from the graph. Results for
dense-exact and sparse-approximate GLC are provided for all
three graphs, while results for dense and sparse-approximate
measurement composition are provided only for the Duder-
stadt and EECS datasets. The Saratoga graph is excluded as it
contains 5-DOF monocular relative-pose constraints for which
measurement composition is ill-defined.

A. Dense GLC node removal

We first consider the results for our method when perform-
ing exact node removal with dense fill-in. Visual depictions
of the resulting dense GLC graphs for the Duderstadt, EECS,
and Saratoga datasets are shown in Fig. 1(b), Fig. 6(b), and
Fig. 7(b), respectively.

To put GLC’s KLD values from Table II into perspective,
we look at the case with the highest KLD, which is the
Saratoga graph with 25% of nodes removed (i.e., KLD =
108.040). Under these conditions the reconstructed graph has



(a) USS Saratoga original graph

(b) Dense GLC

(c) Sparse GLC

Fig. 7: Comparison of the original graph, dense-exact GLC, and
sparse-approximate GLC node removal for the Saratoga graph. 50%
of original nodes are removed. Blue, red and green links represent 6-
DOF constraints, 5-DOF monocular vision constraints, and new GLC
constraints, respectively.

0 200 400 600 800 1000 1200
−5

0

5

10
x 10

−6

Pose NumberM
in

 a
n
d
 M

a
x
 E

ig
e
n
v
a
lu

e
s
 o

f 
Σ

G
L
C

ii
 −

 Σ
T

R
U

E

ii

 

 
Dense GLC λ

min
 & λ

max

Sparse GLC λ
min

 & λ
max

Fig. 8: Accuracy of GLC-derived marginals for the Saratoga data
set with 25% of nodes removed. The min and max eigenvalues of
the difference between the GLC marginals and the true marginals
for each pose are plotted for both dense and sparse GLC. Note the
eigenvalue scale is O(10−6).

a mean squared error in translation and rotation of 0.64 mm
and 1.2 mrad, respectively, when compared to the original
baseline pose-graph SLAM result. To more systematically
investigate the accuracy of GLC’s marginal pose uncertainties,
a plot of the minimum and maximum eigenvalues of the
difference between the GLC marginals and the true marginals,
ΣGLC
ii − ΣTRUE

ii , is shown in Fig. 8. In the ideal case all
eigenvalues of this difference will be zero, indicating perfect
agreement between GLC and the true marginalization. Eigen-
values larger than zero indicate conservative estimates while
those less than zero indicate over-confidence. For dense GLC
we see that these eigenvalues are on the order of 10−6 in
magnitude, indicating excellent agreement between GLC and
the true marginalization.

Considering the results for dense measurement composi-
tion, Table II shows that it performs quite poorly—as more
nodes are removed, the KLD increases. This is because dense
pairwise measurement composition fails to properly track the
correlation that develops between composed measurements (as
demonstrated in §II); thus, the higher the connectivity in the
graph, the more measurement information gets double counted
when compounding. This results in overconfidence as well as
a shift in the optimal mean (Fig. 9(b)). In fact, for both the
EECS and Duderstadt graphs, a point was reached where the
constraints were so overconfident due to node removal that
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(a) Dense GLC
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(b) Dense measurement composition

Fig. 9: Sample 3-σ uncertainty ellipses for the EECS graph with
33.3% node removal using dense GLC and dense measurement
composition. The true marginalization uncertainties are shown in red.

−24 −22 −20 −18 −16 −14 −12 −10
−3

−2

−1

0

1

2

3

4

5

6

x [m]

y
 [
m

]

(a) Sparse GLC
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(b) Sparse measurement composition

Fig. 10: Sample 3-σ uncertainty ellipses for the EECS graph with
75% node removal using sparse GLC and sparse measurement com-
position, as proposed in [15]. The true marginalization uncertainties
are shown in red.

the iSAM optimization diverged—these cases are labeled as
“N/A” in Table II.

B. Sparse-approximate GLC node removal

Next we consider the results for sparse-approximate GLC
marginalization. Table II shows that in many instances the
KLD for sparse-approximate GLC is only slightly worse
than that of dense-exact GLC—indicating that very little
graph information is lost due to CLT sparsification. Visual
examples for sparsification on the Duderstadt, EECS, and
Saratoga graphs are shown in Fig. 1(c), Fig. 6(c) and Fig. 7(c),
respectively.

Considering the results for sparse measurement composi-
tion, Table II shows that, unlike dense measurement com-
position, sparse measurement composition performs reason-
ably well, especially when removing a smaller percentage of
nodes. This is because information double counting during
measurement composition accumulates to a lesser extent than
in the dense case because of sparsification. However, as the
percentage of removed nodes increases, we see that sparse
measurement composition produces a significantly less accu-
rate and more inconsistent result than sparse GLC (Fig. 11).
Visually, however, sparse composition’s marginal 3-σ uncer-
tainty ellipses appear to be quite reasonable, as depicted in
Fig. 10 for the EECS graph, though, we see that they are less
accurate than sparse GLC.

V. DISCUSSION AND FUTURE WORK

When considering the application of the proposed method,
there are a few things to consider, some of which we hope
to address in future work. First, when performing GLC, a
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(a) Duderstadt Sparse (75% Removed)
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(b) EECS Sparse (75% Removed)

Fig. 11: Comparison of marginal distribution accuracy between sparse
GLC and sparse measurement composition, as proposed in [15], for
the Duderstadt and EECS graphs. The min and max eigenvalues of the
difference between the sparsified marginals and the true marginals for
each pose are plotted. The results show that sparse GLC consistently
outperforms sparse measurement composition in approaching the true
marginal.

good linearization point for the relative transforms within the
elimination clique must exist. This affects when it is appro-
priate to remove nodes, especially if performing online node
removal. Second, because the target information is low rank,
we use “pinning” to compute the mutual information when
building the CLT and therefore, cannot guarantee that this
yields a minimum KLD from the true distribution (though our
experimental results show that we achieve a significantly lower
KLD than other state-of-the-art methods). Third, because the
CLT approximation itself is not guaranteed to be conservative,
we cannot guarantee a conservative estimate when performing
sparse approximate GLC node removal.

In fact, our results showed that CLT-based GLC sparse
approximation can be either slightly conservative (Fig. 8 and
Fig. 11(a)), or slightly over-confident (Fig. 11(b)). While our
proposed GLC method avoids inconsistency pitfalls associated
with measurement compounding, and accurately recreates the
CLT, it may still be slightly overconfident if the CLT approx-
imation is. In this regard, the method proposed in [10], which
optimizes the KLD of a sparse distribution while enforcing a
consistency constraint, could provide a way forward toward
this end.

VI. CONCLUSIONS

We presented a factor-based method for node removal in
SLAM pose-graphs. This method can be used to alleviate
some of the computational challenges in performing inference
over long-term pose-graphs by reducing the graph size and
density. The proposed method is able to represent either
exact marginalization, or a sparse approximation of the true
marginalization, in a consistent manner over a heterogeneous

collection of constraints. We experimentally evaluated the
proposed method over several real-world SLAM graphs and
showed that it outperformed other state-of-the-art methods in
terms of Kullback-Leibler divergence.
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