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Abstract—This paper reports on optimization-based methods
for producing a sparse, conservative approximation of the dense
potentials induced by node marginalization in simultaneous
localization and mapping (SLAM) factor graphs. The proposed
methods start with a sparse, but overconfident, Chow-Liu tree
approximation of the marginalization potential and then use
optimization-based methods to adjust the approximation so that
it is conservative subject to minimizing the Kullback-Leibler
divergence (KLD) from the true marginalization potential. Re-
sults are presented over multiple real-world SLAM graphs and
show that the proposed methods enforce a conservative approxi-
mation, while achieving low KLD from the true marginalization
potential.

I. INTRODUCTION

Graph-based simultaneous localization and mapping

(SLAM) [1–7] has been used to successfully solve many

challenging SLAM problems in robotics. In graph SLAM,

the problem of finding the optimal configuration of historic

robot poses (and optionally the location of landmarks), is

associated with a Markov random field or factor graph. In

the factor graph representation, variables are represented

by nodes, and measurements between nodes by factors.

Under the assumption of Gaussian measurement noise the

graph represents a least squares optimization problem.

The computational complexity of this problem is dictated

by the density of connectivity within the graph, and by

the number of nodes and factors it contains. Therefore, the

computational complexity of the graph’s optimization problem

can be reduced by removing nodes (variable marginalization)

and by removing edges from the Markov random field

(sparsification).

Methods that directly sparsify the graph connectivity in an

information filtering framework include [8–10]. In Thrun et al.

[8], weak links between nodes are removed to enforce spar-

sity. Unfortunately, this removal method causes the resulting

estimate to be overconfident (i.e., inconsistent) [11]. In Walter

et al. [9], odometry links are removed in order to enforce

sparsity in feature-based SLAM.

Methods that remove nodes from the graph include [12–

16]. True node marginalization induces dense connectivity

between nodes in the elimination clique. In Folkesson and

Christensen [12], and in the dense-exact version of generic

linear constraints (GLCs) presented by Carlevaris-Bianco and

*This work was supported in part by the National Science Foundation under
award IIS-0746455, the Office of Naval Research under award N00014-12-
1-0092, and Ford Motor Company via the Ford-UM Alliance under award
N015392.

N. Carlevaris-Bianco is with the Department of Electrical Engineering &
Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
carlevar@umich.edu.

R. Eustice is with the Department of Naval Architecture & Ma-
rine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
eustice@umich.edu.

(a) Original Graph (b) Node Marginalization

(c) Chow-Liu Tree Approx. (d) Conservative Approx.

Fig. 1: Method overview. Starting with the original factor graph
(a), the red node is marginalized. This induces a densely connected
factor over the marginalization clique (b). The true uncertainty
ellipses (dashed blue lines) are not affected by marginalization. The
dense marginalization potential is then approximated using a sparse
Chow-Liu tree (c). The uncertainty ellipses after the Chow-Liu tree
approximation (red lines) are overconfident (note the yellow regions
that are no longer probabilistically plausible). The sparse Chow-Liu
tree approximation is adjusted so that it is conservative (d), modifying
the uncertainty ellipses (green lines).

Eustice [14], a linearized factor exactly reproducing the ef-

fect of marginalization at the given linearization point is

introduced over the elimination clique. Unfortunately, when

removing many nodes, the dense connectivity induced by

true marginalization quickly compounds, causing a loss of

sparsity and greatly increasing the computational complexity

of the graph optimization problem. This quickly outweighs the

computational benefits of node removal, making these methods

impractical for many applications.

Kretzschmar and Stachniss [13] propose using a Chow-

Liu tree (CLT) [17] approximation, calculated over the con-

ditional distribution of the elimination clique, to guide sparse

measurement composition in producing new non-linear factors

over the elimination clique. This heuristic approximates true

marginalization while maintaining sparsity. However, because

measurement composition is used to compute the new factors,

the true CLT approximation is not computed. Additionally,

information may be double counted during measurement com-

position, producing an inconsistent estimate [14].

The sparse approximate version of GLC proposed in [14]

addresses these issues using linear factors to accurately imple-

ment the CLT approximation without double counting mea-

surement information. This method was successfully applied

to control the computational complexity in long-term multi-

session SLAM [15].
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Fig. 2: Sample factor graph where node x1 is to be removed (a). Here Xm = [x0,x1,x2,x3]. The factors Zm = [z0, z01, z12, z23, z13]
(highlighted in red in (a)) are those included in calculating the target information over the marginalization clique Xt = [x0,x2,x3] (b).
The original distribution associated with the target information, p(x0,x2,x3|Zm), is approximated using the Chow-Liu maximum mutual
information spanning tree as p(x0|Zm)p(x2|x0,Zm)p(x3|x0,Zm) (c). The pairwise potentials are reparameterized with respect to x0 to
avoid linearization in the world-frame (d). New GLC factors are computed and inserted into the graph replacing Zm (highlighted in green
in (e)). Note that node removal only affects the nodes and factors within the Markov blanket of x1 (dashed line). The methods proposed
in this paper modify the CLT step (c) in order to ensure that the approximation is conservative.

The CLT produces an approximation with the lowest

Kullback-Leibler divergence (KLD) among all tree structures.

Unfortunately, achieving minimum KLD often requires that

the CLT approximation be slightly overconfident with re-

spect to the true distribution, as illustrated in Fig. 1(c). In

most SLAM applications, conservative estimates are strongly

preferred to overconfident estimates. During map building,

overconfidence can adversely affect data association, causing

the system to miss valid loop closures. Additionally, when

using the resulting map, overconfident estimates can lead to

unsafe path planning and obstacle avoidance [18]. Here, as in

[10] and [16], we define a conservative estimate as one where

the covariance of the sparsified distribution is greater than or

equal to that of the true distribution, i.e., Σ̃ ≥ Σ.

Recently, Vial et al. [10] and Huang et al. [16] have

proposed methods that explicitly ensure conservative approx-

imations during graph sparsification. In Vial et al. [10], an

optimization-based method is proposed that, given a desired

sparsity pattern, minimizes the KLD between the sparsified

distribution and the true distribution while ensuring that the

sparsified distribution is conservative. This method performs

favorably in comparison with [8] and [9], however, as the

authors of [10] acknowledge, the computational cost of the

optimization grows quickly with the size of the matrix being

sparsified. To avoid this they propose a problem reduction

that allows their method to be applied to a subset of the

graph’s variables. The problem reduction still involves the

expensive inversion of the block of the information matrix

associated with the entire graph beyond the subproblem’s

Markov blanket, which will also be intractable for large

graphs.

The method proposed by Huang et al. [16] performs node

marginalization by inducing a densely connected linear factor

as in [12] and dense-exact GLC [14]. To perform edge

sparsification, the authors formulate an optimization problem

that seeks to minimize the KLD of the approximation while

requiring a conservative estimate and encouraging sparsity

through L1 regularization. This optimization problem is then

applied to the linearized information matrix associated with the

entire graph, which limits its applicability to relatively small

problems, and prevents relinearization after sparsification. Us-

ing L1 regularization to promote sparsity is appealing because

it does not require the sparsity pattern to be specified—instead,

it automatically removes the least important edges. However,

because the sparsity pattern produced is arbitrary, it is unclear

how the resulting information matrix might be decomposed

into a sparse set of factors, which is important if one wishes

to exploit existing graph SLAM solvers such as iSAM [7, 19].

In this paper we explore optimization-based methods for

conservative sparsification of the dense cliques induced by

node marginalization. The proposed methods are integrated

within the GLC framework proposed in [14] and are designed

to maintain the advantages of sparse-approximate GLC. Our

proposed methods address some of the aforementioned short-

comings of the methods proposed in [10] and [16].

• Like [10] and [16] our proposed methods ensure that the

sparse approximation remains conservative while provid-

ing a low KLD from the true distribution.

• Our methods produce a new set of factors using only

the current factors as input, and do not require the full

linearized information matrix as input as in [10] and [16].

• The computational complexity of our method is depen-

dent only upon the size of the elimination clique, and

not on the size of the graph beyond the clique. We

do not require a large matrix inversion to formulate the

subproblem as in [10], nor do we operate over the entire

graph as in [16].

The remainder of this paper is outlined as follows: In

Section II we briefly review the GLC node removal framework

within which our proposed methods are implemented. The

proposed conservative sparsification techniques are described

in Section III. In Section IV the proposed methods are eval-

uated over a variety of real-world SLAM datasets. Finally, a

discussion and concluding remarks are provided in Section V

and Section VI.

II. GENERIC LINEAR CONSTRAINT NODE REMOVAL

The conservative sparsification methods proposed in this

paper are developed within the GLC node removal framework.

Therefore, we first provide an overview of GLC node removal.

For a full discussion and derivation we refer the reader to

[14]. Here we focus on the CLT-based sparse-approximate

version of GLC, as the goal of the proposed methods are

to produce a sparse approximation with low KLD, with the



additional constraint that the approximation is conservative.

Sparse-approximate GLC node removal, illustrated in Fig. 2,

is performed as follows:

1) The potential induced by marginalization over the elim-

ination clique is computed.

2) The potential is approximated using a Chow-Liu tree.

3) The variables in the CLT potentials are reparameterized

as relative transforms.

4) The CLT potentials are implemented as linear factors,

referred to as generic linear constraints, replacing the

original factors over the elimination clique in the graph.

The methods proposed in this paper modify the CLT step

(step (2), Fig. 2(c)) in order to ensure that the approximation

is conservative.

III. METHOD

The first step in the GLC node removal process is to identify

the potential induced in the graph by marginalization. This

potential is characterized by its information matrix, which we

refer to as the target information, Λt. Letting Xm ⊂ X be

the subset of nodes including the node to be removed and the

nodes in its Markov blanket, and letting Zm ⊂ Z be the subset

of measurement factors that only depend on the nodes in Xm,

we consider the distribution p(Xm|Zm) ∼ N−1
(

ηm,Λm

)

.

From Λm we can then compute the desired dense target infor-

mation, Λt, by marginalizing out the elimination node using

the standard Schur-complement form [5]. Because marginal-

ization only affects the elimination clique, a factor, or set of

factors, which induces the potential characterized by Λt, will

induce the same potential as true node marginalization at the

given linearization point.

It is important to note that the constraints in Zm may be

purely relative and/or low-rank (e.g., bearing or range-only)

and, therefore, may not fully constrain p(Xm|Zm). As a result,

Λt, and distributions derived from Λt, may be low rank.

As in Vial et al. [10] and Huang et al. [16], we wish

to minimize the KLD of the sparse approximation while

producing a consistent estimate. When the distribution means

are equal (i.e., ηt = Λtµt and η̃t = Λ̃tµt), the KLD between

the marginalization-induced factor characterized by Λt and its

approximation characterized by Λ̃t is given by

DKL

(

N−1
(

ηt,Λt

)

‖N−1
(

η̃t, Λ̃t

)

)

=
1

2

(

tr(Λ̃tΛ
−1
t ) + ln

|Λt|

|Λ̃t|
− dim(ηt)

)

.
(1)

Noting that Λt and the state dimension are constant, the KLD

optimization objective with respect to Λ̃t can be written as

fKL(Λ̃t) = tr(Λ̃tΛ
−1
t )− ln |Λ̃t|. (2)

However, as previously mentioned, Λt will, in general,

be low rank, making the KLD ill defined. In [10], a full

rank subproblem is defined, but its implementation requires

inverting the information matrix associated with the rest of

the graph beyond the subproblem’s Markov blanket. In [16],

optimization is performed over the full information matrix,

which will always be full rank for well-posed SLAM graphs.

We know that Λt will be a real, symmetric, positive semi-

definite matrix due to the nature of its construction. In general

then, it has an eigen-decomposition given by

Λt =
[

u1 · · · uq

]
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= UDU⊤,

(3)

where U is a p × q orthogonal matrix, D is a q × q matrix,

p is the dimension of Λt, and q = rank(Λt). Noting that the

KLD is invariant under parameter transformations, we rewrite

the KLD objective as

fKL(Λ̃t) = tr(U⊤Λ̃tUD−1)− ln |U⊤Λ̃tU|. (4)

When Λt is full rank

fKL(Λ̃t) = tr(Λ̃tUD−1U⊤)− ln |U⊤||Λ̃t||U|

= tr(Λ̃tΛ
−1
t )− ln |Λ̃t|,

which is exactly equivalent to (2). When Λt is low rank (4)

computes the KLD over the subspace where Λt is well defined.

This allows us to work with the low-rank target information

and limit the extent of the optimization problem to the elimi-

nation clique. Intuitively, this parameter transformation can be

thought of as using the pseudo-inverse [20] of Λt to compute

the KLD. However, it is important that the transformation

be applied to Λ̃t so that, during optimization, ln |U⊤Λ̃tU| is

evaluated instead of ln |Λ̃t|, which will be undefined because

the optimal Λ̃t will also be low-rank.

A. Chow-Liu Tree Approximation

The original version of sparse-approximate GLC approx-

imated the marginalization-induced factor using a Chow-Liu

tree. The CLT produces the minimum KLD among all trees by

computing the pairwise mutual information between all nodes,

and building the maximum mutual information spanning tree.

The CLT can be expressed as

N−1
(

ηt,Λt

)

≈ N−1
(

η̃t, Λ̃CLT

)

=
∏

i

p(xi|xp(i)), (5)

where xp(i) is the parent of xi, and for the root of the CLT

p(x0|xp(0)) = p(x0). The information added to the graph by

the CLT approximation can then be written as

Λ̃CLT =
∑

i

Ψi, (6)

where each Ψi is the information associated with one of the

unary or binary factors in the tree, padded with zeros so that

the appropriate dimensions are achieved.

The methods proposed in this paper all start with the CLT

approximation and then use optimization methods to “adjust”

the approximation to ensure that it is conservative. Intuitively,

this can be thought of as numerically growing the uncertainty

of the CLT so that it is conservative, while minimizing the

additional KLD from the true distribution. Each method will

produce, by construction, an approximation with the same

sparsity pattern as the CLT.



TABLE I: Experimental Datasets

Dataset Node Types Factor Types # Nodes # Factors

Intel Lab 3-DOF pose 3-DOF odometry, 3-DOF laser scan-matching 910 4,454
Killian Court 3-DOF pose 3-DOF odometry, 3-DOF laser scan-matching 1,941 2,191
Victoria Park 3-DOF pose, 2-DOF Landmark 3-DOF odometry, 2-DOF landmark observation 7,120 10,609
Duderstadt Center 6-DOF pose 6-DOF odometry, 6-DOF laser scan-matching 552 1,774
EECS Building 6-DOF pose 6-DOF odometry, 6-DOF laser scan-matching 611 2,134
USS Saratoga 6-DOF pose 6-DOF odometry, 5-DOF monocular-vision, 1-DOF depth 1,513 5,433 %

(a) Intel Lab (b) Killian Court (c) Victoria Park

(d) Duderstadt Center (e) EECS Building

(f) USS Saratoga

Fig. 3: Graphs used in evaluation. Blue links represent full-state (3-
DOF or 6-DOF) relative-pose constraints from odometry and laser
scan-matching. Red links represent 5-DOF relative-pose constraints
modulo-scale from monocular vision. Cyan links represent landmark
observation factors.

B. Covariance Intersection

As discussed in §I, the CLT approximation is often over-

confident in practice. This is due to the fact that the tree

structure is not, in general, capable of capturing the full

correlation structure of the original distribution. The covari-

ance intersection algorithm, proposed in [21], can be used to

consistently merge measurements with unknown correlation

and can be used to weight the CLT factors so that their

sum is conservative. Clearly, we should be able to do better

than covariance intersection because the true correlation in the

original distribution, Λt, is known. Covariance intersection,

however, does provide an easy-to-compute lower bound on

the approximation performance to which we can compare

additional methods. Additionally, it provides a strictly-feasible

starting point for more complex optimization problems. The

approximate target information produced by covariance inter-

section is defined as a convex combination of the CLT factors,

Λ̃CI(w) =
∑

i

wiΨi, (7)

where each wi scales the information added by each factor.

The optimal weights can then be found by solving the convex

semidefinite program,

minimize
w

fKL(Λ̃CI(w))

subject to
∑

i

wi = 1.
(8)

C. Weighted Factors

Because the true distribution is known, we can relax co-

variance intersection’s requirement that weights sum to one.

Instead we constrain the weights to be between zero and one,

and add the conservative constraint proposed in [10] and [16].

We refer to this formulation as “weighted factors,” and its

approximate target information is defined as

Λ̃WF(w) =
∑

i

wiΨi. (9)

The optimal weights can then be found by solving

minimize
w

fKL(Λ̃WF(w))

subject to 0 ≤ wi ≤ 1, ∀i

Λt ≥ Λ̃WF(w),

(10)

which is again a convex semidefinite program.

D. Weighted Eigenvalues

Instead of weighting each factor by a single value, finer

grained control can be achieved by weighting each factor

along its principal axes independently. We refer to this for-

mulation as “weighted eigenvalues.” Each factor has an eigen-

decomposition given by

Ψi =
[

u
i
1 · · · u

i
qi

]







λi
1 0 0

0
. . . 0

0 0 λi
qi















u
i
1
⊤

...

u
i
qi

⊤









. (11)

Using the eigen-decomposition of each factor we can write

the approximate target information as

Λ̃WEV(w) =
∑

i

qi
∑

j=1

wi
jλ

i
ju

i
ju

i
j

⊤

=
∑

k

wkλkuku
⊤

k ,

(12)

with the optimal weights found by solving

minimize
w

fKL(Λ̃WEV(w))

subject to 0 ≤ wk ≤ 1, ∀k

Λt ≥ Λ̃WEV(w).

(13)
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Fig. 4: Sample 3-σ uncertainty ellipses for the Duderstadt graph with 50.0% node removal (top row) and the Intel graph with 33.3% node
removal (bottom row). True marginal ellipses are shown in cyan, while the marginal ellipses from the approximate distribution are shown
in red. For the Duderstadt graph both weighted factors (b) and weighted eigenvalues (c) produce distributions very similar to the CLT (d)
while remaining conservative. For the Intel graph both weighted factors (f) and weighted eigenvalues (g) produce similar distributions that
are noticeably more conservative than the CLT (h).

Note that the number of optimization variables has increased in

comparison to the covariance intersection and weighted factors

formulations. As will be demonstrated in §IV, this results in

a significant increase in the computational cost.

E. Implementation Considerations

Each of the proposed semidefinite programs are convex

and can be efficiently solved using interior point methods

[22–24]. Interior point methods require that a strictly-feasible

starting point be found before optimization, i.e., an initial

approximation, where 0 < wi < 1, ∀i and Λt > Λ̃t(w).
Covariance intersection with uniform weights provides an

easy-to-compute strictly-feasible starting point, and is used in

all experiments.

For low rank target information, the conservative constraint,

Λt − Λ̃t(w), is semidefinite and will have at least one zero

eigenvalue, and therefore, no strictly-feasible starting point

exists. Additionally, it prevents the evaluation of the optimiza-

tion problem’s gradient and Hessian. Instead, the conservative

constraint is implemented as

Λt + ǫI ≥ Λ̃t(w),

so that a strictly-feasible starting point exists and the gradient

and Hessian can be evaluated. Our experimental evaluation

indicates that the actual value of ǫ has very little effect on the

results. All experiments are performed with ǫ = 0.1, though

values 10−5 ≤ ǫ ≤ 1 produced nearly equivalent results.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed methods, we test their performance

on a variety of SLAM graphs (summarized in Fig. 3 and

Table I), including:

• Two standard 3-degree of freedom (DOF) pose-graphs,

Intel Lab and Killian Court.

• The Victoria Park 3-DOF graph with both poses and

landmarks.

• Two 6-DOF pose-graphs built using data from a Segway

ground robot equipped with a Velodyne HDL-32E laser

scanner as the primary sensing modality, Duderstadt Cen-

ter and EECS Building.

• A 6-DOF graph produced by a Hovering Autonomous

Underwater Vehicle (HAUV) performing monocular

SLAM for autonomous ship hull inspection [25],

USS Saratoga.

The proposed algorithms were implemented using iSAM

[7, 19, 26] as the underlying optimization engine. For each

graph, the original full graph is first optimized using iSAM.

Then the different node removal algorithms are each used to

remove a set of nodes evenly spaced throughout the trajectory.

Finally, the graphs are again optimized in iSAM.

For each experiment the true marginal distribution is re-

covered by obtaining the linearized information matrix from

the full graph about the optimization point and performing

Schur complement marginalization. This provides a ground-

truth distribution that we can directly compare our conservative



TABLE II: Experimental KLD Results

Covariance Intersection Weighted Factors Weighted Eigenvalues Chow-Liu Tree

Dataset % Removed KLD CLT Ratio KLD CLT Ratio KLD CLT Ratio KLD

Intel Lab 33.3% 45,954.10 175.85× 4,191.73 16.04× 3,439.63 13.16× 261.33
Killian Court 66.7% 984.30 20.58× 194.85 4.07× 186.40 3.90× 47.82
Victoria Park 75.0% 3,062.49 15.85× 835.38 4.32× 599.00 3.10× 193.24

Duderstadt Center 50.0% 14,552.30 3,038.06× 60.82 12.70× 33.54 7.00× 4.79
EECS Building 25.0% 1,671.48 357.15× 32.31 6.90× 18.49 3.95× 4.68
USS Saratoga 33.3% 11,290.80 13,441.43× 12.13 14.44× 4.63 5.51× 0.84

distribution against. In order to provide a benchmark, the CLT

approximation as proposed in [14] is also evaluated.

The results for each method, in terms of KLD, are shown in

Table II. The “CLT ratio” columns provide a direct comparison

with the CLT, which is not guaranteed to be conservative, but

serves as a baseline as it is the minimum KLD distribution

among all spanning trees. As one would expect, covariance in-

tersection produces a very high KLD because it is excessively

conservative. The weighted factors formulation improves the

KLD significantly with respect to covariance intersection,

while the weighted eigenvectors formulation improves the

KLD further still.

For the Duderstadt, EECS, and Saratoga graphs the sub-

jective difference in the quality of the estimates is very

small, with weighted factors, weighted eigenvalues, and the

CLT producing visually indistinguishable results, see Fig. 4

top row. For the Intel dataset, and to a lesser extent the

Killian and Victoria datasets, there appears to be more room

for improvement, with a noticeable difference between the

weighted eigenvalues result and the CLT for the Intel graph,

see Fig. 4 bottom row.

To evaluate the “conservativeness” of the proposed methods,

we plot the minimum eigenvalue of the covariance-form

consistency constraint for each node marginal, i.e. minλ(Σ̃ii−
Σii), depicted in Fig. 5. Values below zero indicate overcon-

fidence, with only the CLT producing overconfident results.

Covariance intersection, weighted factors, and weighted eigen-

values all produce conservative estimates, with each producing

a slightly tighter estimate (closer to zero) than the previous.

Finally, we consider the computational cost of the proposed

methods. A plot showing the node removal time as a function

of the number of variables in the elimination clique is shown

in Fig. 6. The average node removal times for covariance

intersection, weighted factors, weighted eigenvalues and the

CLT were 7, 32, 448, and 5 milliseconds, respectively. Even

though covariance intersection and weighted factors were both

solving optimization problems over the same number of vari-

ables, weighted factors is more expensive. This is due to the

fact that the equally-weighted covariance intersection solution,

used as the initial point for all optimizations, was often

very close to the optimal covariance intersection solution and

therefore, covariance intersection converged quickly. Weighted

eigenvalues solves a larger optimization problem and therefore

is substantially slower. Still, the weighted eigenvalues formu-

lation will often have significantly fewer variables than [10]

(which optimizes all non-zero entries in the upper triangle of

the information matrix) and [16] (which optimizes every entry
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(a) Intel 33.3% Removed
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(b) Killian 66.7% Removed
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(c) Victoria Park 75.0% Removed
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(d) Duderstadt 50.0% Removed
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(e) EECS 25.0% Removed
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(f) Saratoga 33.3% Removed

Fig. 5: Minimum eigenvalue of the consistency constraint for each

pose marginal (i.e., minλ(Σ̃ii − Σii)). Covariance intersection,
weighted factors, and weighted eigenvalues all produce conservative
estimates (values greater than zero), with each producing a slightly
tighter estimate (closer to zero) than the previous.

in the upper triangle of the information matrix) for a given

information matrix size.

We note that the computational cost of the proposed meth-

ods increases quickly with the size of the node removal

cliques. However, as experimentally shown in [15], sparse ap-

proximate node removal maintains small cliques in real-world

SLAM graphs even when removing a very high percentage

of nodes. This, in turn, results in essentially constant node

removal time regardless of the the number of nodes removed

and size of the graph beyond the elimination clique.

V. DISCUSSION

The proposed algorithms are presented in the context of

sparsifying the dense cliques produced by node marginaliza-

tion. However, these techniques could be applied to portions of

the graph to perform sparsification, without removing nodes.

All of the presented methods start with the Chow-Liu tree
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Fig. 6: Node removal processing time as a function of the number
of variables in the elimination clique. Average node removal times
(solid lines) for covariance intersection, weighted factors, weighted
eigenvalues and the CLT were 7, 32, 448, and 5 milliseconds,
respectively.

as their basis. We believe that this is a reasonable starting

point as it is the minimum KLD spanning tree. However,

there is no guarantee that, after using the optimization based

methods to ensure a conservative estimate, the CLT’s sparsity

pattern remains optimal. Furthermore, other non-tree sparsity

patterns may be of interest. This is one strongly appealing

aspect of the L1 regularization method proposed in [16] in

that it automatically selects the sparsity pattern.

Finally, there is a trade off between the complexity of the

optimization problem and the accuracy of the approximation

it is able to achieve. Based upon our experimental results, we

feel that the weighted factors formulation provides the best

trade off between KLD and computation time, as weighted

eigenvalues only performs marginally better while being sub-

stantially more computationally expensive.

VI. CONCLUSIONS

This paper explored several optimization-based methods

that can be used to produce a sparse, conservative approxima-

tion of potentials induced by node marginalization in SLAM

graphs. Starting with the sparse, but overconfident, CLT ap-

proximation of the marginalization potential, these methods

adjust the CLT approximation so that it is conservative, while

minimizing the KLD from the true marginalization potential.

Using results from multiple real-world SLAM graphs, we have

shown that the algorithm enforces a conservative approxima-

tion, while achieving low KLD.
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