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Abstract—In many robotic applications, especially long-term
outdoor deployments, the success or failure of feature-based
image registration is largely determined by changes in lighting.
This paper reports on a method to learn visual feature point
descriptors that are more robust to changes in scene lighting
than standard hand-designed features. We demonstrate that,
by tracking feature points in time-lapse videos, one can easily
generate training data that captures how the visual appearance of
interest points changes with lighting over time. This training data
is used to learn feature descriptors that map the image patches
associated with feature points to a lower-dimensional feature
space where Euclidean distance provides good discrimination
between matching and non-matching image patches. Results
showing that the learned descriptors increase the ability to
register images under varying lighting conditions are presented
for a challenging indoor-outdoor dataset spanning 27 mapping
sessions over a period of 15 months, containing a wide variety
of lighting changes.

I. INTRODUCTION

Standard hand-designed visual features such as scale invari-

ant feature transform (SIFT) [1] and speeded up robust features

(SURF) [2] detect key-points in an image and then describe

the local visual appearance of these key-points as a vector.

Image registration can then be performed by matching the key-

points between images by comparing the L2 distance between

the descriptors. In order for matching to be successful, the

key-point detector and descriptors must be at least partially

robust to common image variations such as scale, rotation,

view-point, and lighting changes. Invariance with respect to

scale and rotation are usually accounted for at the feature de-

tection stage, where key-points will be detected at a canonical

scale and orientation. The description stage then focuses on

representing the appearance of the local region around the key-

point such that the descriptor is discriminative while being

robust to view-point and illumination changes.

In this paper we focus on increasing the illumination robust-

ness of feature point description to lighting changes. Hand-

designed descriptors such as SIFT and SURF have limited

lighting invariance—often allowing for affine transformations

in image intensity by considering the gradient of intensity,

and through other mechanisms such as mean subtraction and

normalization. However, in general, the change in appearance
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Fig. 1: Sample images from 3 of the 500 locations in the North
Campus dataset used for testing. Imagery was collected in 27 sessions
over the course of 15 months with lighting conditions ranging from
early morning to just after dusk. The success or failure of feature-
based image registration in this dataset is largely determined by the
similarity of lighting conditions.

caused by lighting affects the image intensity in a complex,

nonlinear way.

In many robotic applications, the success or failure of

feature-based image registration is largely determined by

changes in lighting. This is especially true for medium to

long-term outdoor applications, where the scene structure

has not changed dramatically, but images separated by even

a few hours may be unmatchable due to cyclical changes

in lighting. This phenomenon is illustrated in Fig. 1, which

shows example imagery from three different locations in our

experimental dataset. In this dataset, only a small fraction of

the possible matches are successfully registered using standard

features, largely because of cyclical changes in lighting.

In this work, we seek to learn a feature descriptor that is

more robust to changes in local image appearance caused

by lighting (Fig. 2). To observe how the local appearance

of image patches changes under dynamic lighting condi-

tions, we first track key-points and their associated image

patches through time-lapse video using a representative train-

ing dataset. We then train a feature descriptor using matching

and non-matching pairs of image patches sampled from these

patch tracks. A contrastive cost function is used so that

matching patches are mapped close together (in terms of

Euclidean distance in feature space) while separating non-

matching patches. The resulting descriptor is more robust to

the types of lighting variation observed in the training data.



Fig. 2: Illustration of the learning method. Pairs of image patches
labeled either as matching (green) or non-matching (red) are supplied
as input to a feature descriptor function, fθ( · ), parameterized by
θ, that maps the input patch to a feature vector. A contrastive cost
function, l( · ), based on the Euclidean distance between the feature
vectors, encourages matching feature vectors to be close together
in feature space while encouraging non-matching features to be far
apart. By learning parameters θ that minimize this cost function,
we produce a mapping to a feature space where Euclidean distance
captures the similarity and differences amongst the training pairs. By
training with data that includes variation due to changes in lighting,
the feature descriptor learns to be robust to lighting variation.

The remainder of this paper is outlined as follows: In

Section II, we discuss existing work related to the proposed

method. The descriptor learning method is described in Sec-

tion III. Section IV contains details of the training process,

including the collection of training data. Experimental results

are provided in Section V. Finally a discussion and concluding

remarks are provided in Sections VI and VII.

II. RELATED WORK

Given the limitations of existing visual feature descriptors,

several proposed methods address the difficulties in matching

images collected under varying lighting conditions at a sys-

tems level. In a mapping and navigation context, both Konolige

and Bowman [3] and Churchill and Newman [4] add new

example views or visual “experiences” when the current view

cannot be registered against previous views. This addresses the

problem of changing lighting by capturing several examples of

how a location might look under different lighting conditions.

Similarly, in Johns and Yang [5, 6], locations are modeled

with a collection of features observed at different points in

time. These works are mostly orthogonal to the proposed

method, and would benefit from features that are more robust

to lighting change, because better features reduce the number

of samples needed to model a location.

Several recent works have investigated whole image place

recognition under changing appearance conditions, including

[6–9]. In Lategahn et al. [8], a set of standard descriptor

“building blocks” is defined. Place recognition performance is

then optimized by searching the space of possible descriptors

constructed from these building blocks. Neubert et al. [7]

attempt to predict how a location will look at a different point

in time by learning a mapping between appearance codewords.

They then perform place recognition between the current

image and the predicted image. The formulation, however,

focus on changes between two distinct states (e.g., summer

and winter) and not continual changes such as those caused by

lighting. In Milford et al. [9], whole image place recognition is

performed over extreme changes in lighting from day to night

by aggressively down-sampling and contrast normalizing the

images before comparison.

In this work, we focus on geometric registration through

point correspondence as opposed to whole image place recog-

nition. For some applications, like loop-closure detection in

metric mapping, even if one can recognize places under a

high degree of lighting variation, it may not be useful if one

cannot extract a metric estimate of the motion between the

camera views [10]. It is worth noting that the feature descrip-

tors learned using our proposed method could be used in a

bag-of-words model [11, 12] for place recognition, however,

evaluating if this would improve the robustness with respect

to lighting remains future work.

Many methods have been proposed that leverage machine

learning to improve the performance of feature descriptors

[10, 13–18]. In Babenko et al. [13], feature matching is

cast as a binary classification problem where one attempts to

determine if two image patches do or do not match. Boosting

is then used with a set of simple hand-designed features to

learn a classifier appropriate for a specific domain. In Hua

et al. [14], Winder and Brown [15], Winder et al. [16], and

Brown et al. [17], the parameters of fixed descriptor pipelines

(often a variant of the DAISY descriptor [19]) are optimized

to improve descriptor performance. Similarly, in Stavens and

Thrun [20], the parameters of standard descriptors, including

SIFT, are optimized for specific domains. Ranganathan et al.

[10] use the fine vocabulary method of [21] to learn a

probability distribution over visual words in an attempt to

capture which visual words can be produced by the same

scene feature under various lighting conditions. Standard place

recognition and feature matching are then reformulated to

account for the learned distribution. Both Philbin et al. [22]

and Shakhnarovich [23] learn an embedding on top of SIFT

features. This is similar to the proposed method except that

we learn an embedding directly from the raw pixel input as

opposed to on top of a hand-designed feature descriptor. The

recent work by Trzcinski et al. [18], which uses boosting

to learn a binary descriptor, is most similar to our proposed

method in that it learns a descriptor directly from raw pixel

data in a supervised setting. However, our proposed method

differs in its learning method, descriptor model, and also in

its focus on robustness to changes in lighting.

To learn an illumination robust feature descriptor we employ

a training scheme referred to as a “Siamese” network [24–

28], with the goal of minimizing a contrastive cost function

[25, 26, 28] that encourages a nonlinear mapping to a lower-

dimensional space where matching features are close together

and non-matching features are far apart in Euclidean distance.

This goal is often referred to as embedding learning, manifold

learning, or distance metric learning.

Siamese networks have been employed in a wide range

of applications including signature verification in Bromley

et al. [24], face recognition in Chopra et al. [25], and object

recognition in Hadsell et al. [26] and Mobahi et al. [27]. An

especially compelling result was presented in Taylor et al.



[28] where a system was trained that could recognize similar

human poses while being highly invariant to other distractors,

including changes in lighting.

Beyond Siamese networks, auto-encoder frameworks can

also be used to learn nonlinear embeddings as shown in Hinton

and Salakhutdinov [29] and [30]. However, with auto-encoders

the goal is to produce a lower-dimensional embedding that can

be decoded with minimal reconstruction error, which does not

necessarily produce embeddings where Euclidean distance is

useful for discrimination [28]. Salakhutdinov and Hinton [31]

provide an interesting model that blends a Siamese network

with an auto-encoder for regularization.

The contrastive cost function employed here is just one

option for learning an embedding. In Goldberger et al. [32], a

linear model is optimized in order to minimize a probabilistic

version of k-nearest neighbors classification error. A prob-

abilistic loss function based on Kullback-Leibler divergence

(KLD) is provided in Hinton and Roweis [33].

III. METHOD

In this section, we first describe the Siamese network frame-

work that can be used to learn a wide variety of feed-forward

descriptor models (Fig. 2). We then discuss the specific feature

descriptor models considered in this work. As in [13–17], we

focus on the description of the image patch associated with

key-points provided by an existing key-point detector1. We

assume that the detector provides us with a pixel location,

a scale, and optionally a canonical orientation to allow for

rotation invariance2. Given this information we extract an

appropriate patch from the image for each key-point. The

image patch then becomes the input for the learned descriptor.

At this point we assume that we have pairs of patches labeled

as either matching or non-matching. We detail how these pairs

can be easily generated in §IV.

A. Learning A Feature Descriptor

First, we define a feature descriptor that maps an image

patch x to a feature vector y as

y = fθ (x) ,

where θ parameterizes the descriptor. During training we work

with pairs of training examples that are known to be matching

or non-matching. Let xi and xj be two training image patches.

The current function is then used to describe each patch,

yi = fθ (xi) and yj = fθ (xj) .

We then consider the squared Euclidean distance in feature

space

d2ij = ‖yi − yj‖
2
2.

Using the contrastive cost function from [26],

lθ
(

yi,yj

)

=

{

sijd
2
ij , if matching

max
(

1.0− d2ij , 0
)

, if non-matching
(1)

1We use the SURF detector throughout our experiments.
2In our experiments we do not exploit the canonical orientation as we focus

on robotic applications where the imagery does not undergo large rotations.
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Fig. 3: Plot of the contrastive cost function in (1). The cost for
matching pairs is shown in green and the cost for non-matching
pairs in red. The dashed green lines show the matching cost function
using similarity weighting (2) with α = 1/8 h for |ti − tj | =
[2, 4, 5, 6, 10] h.

but with the similarity score sij between the matching pairs

set as proposed in [28]3 (since we are training with temporal

sequences), we define sij based on the difference in time

between when the two patches were observed,

sij =
1

1 + α|ti − tj |
, (2)

where ti and tj are the observation times of the training

patches in hours and α is a scale factor controlling the time

scale of the similarity weight. In our experiments, we selected

α = 1/8 h. Taylor et al. [28] experimentally demonstrated that

this “soft” similarity allows the embedding to better capture

the temporal similarity in appearance. They also experimen-

tally showed that this soft similarity improved training results.

The resulting cost function (1) is illustrated in Fig. 3.

If we consider a training set of N training pairs the learning

objective becomes

θ̂ = argmin
θ

L(θ) = argmin
θ

1

N

N
∑

n=1

lθ
(

yn
i ,y

n
j

)

. (3)

This objective can be optimized using stochastic gradient

descent, the details of which are described in §IV.

B. Feature Descriptor Models

In our experiments we consider two standard model classes

for the learned feature descriptor; a multi-layer perceptron

(MLP) and a convolutional multi-layer perceptron (CMLP)

[34] (Fig. 4). The MLP consists of multiple fully-connected

layers, each performing a nonlinear transformation on the

output of the previous layer. If we denote the input to each

hidden layer as hi−1 and the output as hi then

hi = g (Wihi−1 + bi) ,

where Wi is a matrix defining a linear transform, bi is a

bias vector, and g( · ) is a nonlinear activation function applied

in an elementwise fashion to its input vector. This layer is

parameterized by θi = [Wi,bi], which it contributes to the

3Hadsell et al. [26] set sij = 1 to treat all matching pairs evenly.



(a) Multi-Layer Perceptron (MLP) (b) Convolutional Multi-Layer Perceptron (CMLP)

Fig. 4: Feature descriptor models.

parameters of the overall model. For the first layer the input

will simply be the raw image patch as a vector h0 = x.

The CMLP expands upon the MLP by adding convolutional

and pooling layers. The convolutional layers exploit the fact

that the statistics of natural images can be considered sta-

tionary over the location in the image. Instead of learning

the parameters of a function of the whole image, weights

are learned for kernels that are convolved with the image to

produce a number of feature maps. This greatly reduces the

number of parameters in the model without significantly reduc-

ing its representational capacity. For a detailed description we

refer the reader to [34]. The pooling layers perform a spatial

subsampling that reduces the size of the input for subsequent

layers and provides invariance to small translational shifts in

the input. In the proposed models we use non-overlapping max

pooling, which performed slightly better than mean pooling.

It is interesting to note that the CMLP structure is very

similar to that of many hand-designed feature descriptors

[1, 2, 19], which often include a convolution filtering stage

(e.g., computing orientated gradients) and a pooling stage (e.g.,

spatial binning or averaging).

In both the MLP and CMLP we use rectifying nonlinearity,

referred to as a linear rectified unit (LRU) [35],

s(x) = max (x, 0) ,

which we found to be quicker to train than hyperbolic tangent,

or sigmoid nonlinearities. Additionally, both the MLP and

CMLP have a linear output layer.

IV. TRAINING

In this section, we describe how we produce training data by

tracking interest points in time-lapse videos. We also provide

the details of the stochastic gradient descent learning.

A. Generating Training Data

Many methods have been proposed to generate a training

set of image patches. In [14–17], 3D reconstructions are used

to establish correspondence between patches in the source

images. In [22], image-to-image feature-based matching with

outlier rejection is used in order to generate training data, since

they seek only to learn an encoding on top of existing feature

descriptors. Images with known pose are used in [8]. It is also

possible to generate sequences of image patches by tracking

Fig. 5: Sample images from five locations in the webcam dataset.
Note that the images have been sub-sampled so the difference in
time between images is larger than the 20 minutes used during patch
extraction

interest points in video [20, 36] or by sliding a window through

static images [37].

In this work we elect to generate patches by tracking interest

points in video. In order to capture the changes in appearance

caused as the lighting changes with time, we use time-lapse

videos. To generate these videos we downloaded imagery from

stationary webcams at a fixed rate. In total, 230 different

webcam locations were used, including mostly outdoor natural

and urban scenes, as well some indoor scenes. Imagery was

downloaded every 20 minutes for 72 hours. Sample imagery

from five locations is shown in Fig. 5. Of the 230 locations,

184 were used to generate training data, 23 for validation and

23 for testing in §V.

1) Tracking interest points in time-lapse videos: Given a

sequence of webcam frames, we track features through time

as follows:

• We detect interest points in each incoming image. In

our experiments we use the SURF detector, however,

any detector that provides location and scale would be

acceptable. (Note that we do not use the SURF descriptor

for tracking). One could also use the canonical orientation

of an interest point detector in order to achieve some

degree of rotation invariance; however, we do not in

our experiments as our target application uses a ground

robotic platform that does not undergo large rotations.



Fig. 6: Sample patch tracks extracted from the webcam dataset. Note
that the tracks will be of varying lengths, and only a subsections are
shown here.

• For each interest point we attempt to associate it with an

existing track. Because the imagery is collected from a

static viewpoint we can use several simple criteria, similar

to those proposed in [16, 17]. First, the interest point

must be within 5 pixels of the most recent observation

of the track. Second, the scale of the interest point must

be within ±50% of the most recent observation’s scale.

Third, the difference in time between a new patch and

the most recent observation of a track can be no more

than 1 hour. These criteria are often enough to uniquely

associate a new patch with an existing track. If there

there are still multiple candidates, we select the track that

minimizes
r + rt − ‖x− xt‖2

2max(r, rt)
,

where r and rt are the radii of the interest point and

track, respectively, and x and xt are the locations of the

interest point and track, respectively. If we cannot find

a valid existing track, a new track is created based upon

that patch.

• After processing each image we consider the current

tracks. Tracks that have been updated recently are kept for

association in future images. Tracks that have not been

updated in an hour are no longer updated and are wrapped

up and saved.

• Because we wish to emphasize the temporal change in the

dataset, we subsample the final tracks by two, increasing

the time between each sample in the track from 20
minutes to 40 minutes.

The results of this process are illustrated in Fig. 6. Using this

processing pipeline on the entire webcam dataset produced

approximately 3.1 million feature tracks (2.5 million for

training, 0.3 million for validation and 0.3 million for testing)

with an average of approximately 5 patches per track.

2) Generating training pairs from tracks: Given a set

of patch tracks, it is easy to generate a very large set of

matching and non-matching pairs for training. Starting with

all feature tracks we randomly sample pairs of tracks without

replacement. From a pair of tracks we then randomly select

two matching pairs (one from each set) and two non-matching

pairs (from between the two sets). This produces an even

number of matching and non-matching pairs in the dataset.

We repeat this process until all patch tracks have been used

at least once. This ensures that each track is used.

Given the combinatorially huge number of possible pairs of

tracks, and possible pairs within each track, this process can

be repeated multiple times. During training we continuously

sample new pairs.

3) Augmenting the training data with viewpoint variation:

The webcam dataset does a good job of capturing the changes

patches undergo with respect to lighting; however, because the

videos are captured from static locations, they do not contain

any view-point variance. To account for the lack of viewpoint

variance we augment the patches extracted from the webcam

dataset using the viewpoint variant patches provided in Brown

et al. [38]. This dataset provides an additional 0.9 million patch

pairs (which we divide evenly between training, testing, and

validation). Another option would be to use the existing image

patches with synthetic affine warps, which has been shown to

produce good results in [39].

B. Training Descriptor Models

Batch stochastic gradient descent was employed in order to

optimize the model parameters in (3). We used a batch size

of 1000 pairs with a learning rate of λ = 0.1 and momentum

of β = 0.9, producing an update procedure at step k of

vk+1 = βvk − λ
∂Lk

∂θk

θk+1 = θk + vk+1,

where ∂Lk

∂θk

is the gradient of the objective function (3) with

respect to the parameters θ over the kth batch of training

data. Training was implemented using Theano [40], which

allows for automatic differentiation of the objective function

and GPU-based evaluation of the feature descriptor models.

V. EXPERIMENTAL RESULTS

We evaluate the proposed feature descriptor on two datasets.

The first consists of 23 webcam locations not used during

training. This dataset is used to evaluate how temporal changes

in lighting affects matching. The second dataset consists of

data collected by a ground robot and allows us to compare

the descriptor’s performance in a challenging real-world envi-

ronment.

In addition to the proposed descriptors, we compare against

SIFT [1], SURF [2], and DAISY [19]. For the DAISY descrip-

tor we use learned parameters provided by [16], specifically

the “T1-4-2r8s” version as it has an output dimension of 68
and computation time comparable with our learned descriptors.

In comparison, SIFT has a dimension of 128 while SURF

and both of the learned descriptors produce 64 dimensional

vectors. We also attempted to compare with another learned

descriptor, DIRD [8]; however, DIRD was optimized with

respect to whole image place recognition and was not effective

for point-to-point geometric image registration. In order to

focus on the properties of the descriptors, the same key-points

(which were detected using the SURF detector) were used for

all feature descriptors.
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(a) 1 h Between Images
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(b) 4 h Between Images
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(c) 8 h Between Images
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Fig. 7: Precision and recall curves for pairs from the 23 test webcam locations. By comparing the precision-recall curves for pairs
approximately 1 h, 4 h, 8 h, and 12 h apart, we see that the performance of the proposed learned features degrades gracefully as the
time between images increases, especially in the region above 90% precision.
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Fig. 8: Matching results for webcam dataset. Results are averaged
from exhaustive pairwise matching at 23 webcam locations.

A. Webcam Dataset

We first explore the performance of the feature descriptors

using imagery from 23 webcam locations that were not used

during training. Because the webcam data was collected fre-

quently, it allows us to evaluate performance with respect to

the time between images.

Using matching and non-matching pairs from this test set

we sweep out the precision and recall curve for a descriptor

by classifying points as matching or non-matching with a

varying distance threshold. We see in Fig. 7 that when the

time between image pairs is small, all of the methods perform

well, with the learned descriptors and DAISY having the best

performance. However, as we increase the time between image

pairs, the two learned methods degrade gracefully, maintaining

good precision-recall curves in the challenging region around

12 hours. Note that this is especially true in the region

above 90% precision where we would like to operate so that

matching is not overwhelmed by outliers.

To evaluate the features in an image registration context we

attempt to register all pairs of images at each location that were

collected within 24 hours of each other. The ability to match

images in this situation is driven primarily by the change in

lighting throughout the day. So over the course of 24 h, the

ability to register images will start high, and gradually reduce

as the time between images increases, hitting a minimum at

about 12 h before increasing as time-of-day lighting conditions

return to those most similar after 24 h. For indoor locations the

patterns might be less distinct, but still, many indoor locations

go through similar cycles caused by working hours and light

through windows.

When matching features we perform nearest neighbor

matching based on Euclidean distance and only include

matches that pass a second-nearest-neighbor test [1] with a

threshold of 0.7. Inliers and outliers can be easily determined

based on a distance threshold of 10 pixels because images in

this dataset were collected from a static viewpoint.

In Fig. 8 we consider the percentage of pairs that could

be registered with a minimum of 15 inliers (essentially a

practical “bare-minimum” to reliably compute an estimate

of camera motion). We see that, in the most challenging

region, around 12 h between image pairs, the learned feature

descriptors (CMLP and MLP) successfully match over 40%
of possible pairs. DAISY performed ever-so-slightly better in

this region matching just under 45%. SIFT and SURF match

significantly fewer pairs, about 30%. Similar patterns were

observed with other minimum inlier thresholds, though the

percentage of matches decreases significantly as the minimum

required number of inliers increases.

Note that Fig. 8 is smooth because it averages many dif-

ferent pairs, from different locations, with different starting

points throughout the day. With smaller sample sizes the

relationship between matching and time between images can

vary dramatically, i.e., two images collected 8 hours apart at

night might match easily, while two images collected 1 hour

apart before and after sunset will not be matched.

B. North Campus Long-Term Dataset

One caveat of the previous experiment is that the webcam

imagery was taken from a static viewpoint. In order to evaluate

the feature descriptors in a more realistic setting we consider

their performance on imagery collected by a robotic platform.

The imagery was collected in 27 sessions over the course of 15
months on University of Michigan’s North Campus (Fig. 9).

This dataset contains a wide variety of lighting conditions

ranging from early morning to just after dusk. Additionally,



(a) Segway Robot (b) Sample Session Trajectory

Fig. 9: North Campus Long-Term dataset. A Segway robotic platform
(a) was used to collect imagery in University of Michigan’s North
Campus. In total, 27 sessions (b) were captured over the course
of 15 months including a wide variety of lighting conditions and
other challenges including seasonal changes, dynamic objects, and
construction.
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Fig. 10: Average matching results over 500 locations in the North
Campus dataset.

(a) Sample Image Registration

(b) Sample Matching Patches

Fig. 11: Sample matching pair that was successfully registered by the
CMLP descriptor, but not SIFT, SURF, nor DAISY.

this data includes viewpoint variance and additional challenges

caused by moving objects, seasonal changes, and even con-

struction projects. Given known robot pose, the dataset is

split up into 500 locations with an average of 37 images per

location.

At each location we match all pairs of images. As before,

when matching features we perform nearest neighbor matching

based on Euclidean distance and employ the second-nearest-

neighbor test with a threshold of 0.7. Outliers are rejected

by fitting an Essential matrix using random sample consensus

[41].

In Fig. 10 we show the percentage of image pairs suc-

cessfully matched as a function of the minimum number of

inliers. Here, we see that again CMLP, MLP, and DAISY

provide the best results, matching around 30% of possible

pairs at the lowest threshold. SIFT and SURF are significantly

less successful. An example image pair that was successfully

registered using the CMLP descriptor, but not SIFT, SURF,

nor DAISY is shown in Fig. 11.

C. Computation Time

Finally, we provide the computation time of the learned

features in Table I. The learned descriptors were developed

using Theano and therefore can be computed using the CPU

or GPU. For SIFT and SURF we evaluated with OpenCV’s

CPU version and timing information is provided only as a

rough comparison—well optimized GPU versions of both are

readily available.

TABLE I: Mean Feature Extraction Time

CPU GPU

MLP 0.68 ms/feature 0.07 ms/feature
CMLP 1.34 ms/feature 0.27 ms/feature

SIFT 0.64 ms/feature —
SURF 0.20 ms/feature —

DAISY 0.65 ms/feature —

VI. DISCUSSION AND FUTURE WORK

Selecting the model parameters for the feature descriptors

presents a large number of design choices. This includes the

number of layers, the type and dimension of each layer, the

activation function, the type of pooling, etc. We feel that

the two models used in this work are reasonable and good

representatives of two points in the configuration space. How-

ever, many of the other model variations considered during

development produced very similar results—a more thorough

evaluation of the model choices with respect to performance

and complexity would be beneficial.

Additionally, we would like to more thoroughly evaluate

some of the other algorithm design choices, including the

effect of output dimension and the effect of the smooth

similarity measure and its time constant.

Beyond lighting invariance, we believe that a similar train-

ing scheme could be used in many applications to learn domain

specific features. Specifically, we plan to apply the method to

underwater imagery in future work.



Finally, it would be beneficial to compare the learned de-

scriptors against additional existing feature descriptors beyond

SIFT, SURF, and DAISY.

VII. CONCLUSIONS

In this paper, we have presented a method to learn visual

feature point descriptors that are more robust to changes

in scene lighting than standard hand-designed features. We

demonstrated that, by tracking feature points in time-lapse

videos, one can generate training data that captures how the

visual appearance of interest points changes with lighting over

time. With this training data we learned feature descriptors

that map the image patches associated with feature points

to a lower-dimensional feature space where Euclidean dis-

tance provides good discrimination between matching and

non-matching image patches. The learned features provided

better image registration performance on a challenging robotic

dataset than hand-designed features including SIFT and SURF.
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