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Abstract— This paper reports on the use of planar patches as
features in a real-time simultaneous localization and mapping
(SLAM) system to model smooth surfaces as piecewise-planar.
This approach works well for using observed point clouds to
correct odometry error, even when the point cloud is sparse.
Such sparse point clouds are easily derived by Doppler velocity
log sensors for underwater navigation. Each planar patch
contained in this point cloud can be constrained in a factor-
graph-based approach to SLAM so that neighboring patches
are sufficiently coplanar so as to constrain the robot trajectory,
but not so much so that the curvature of the surface is lost
in the representation. To validate our approach, we simulated
a virtual 6-degree of freedom robot performing a spiral-like
survey of a sphere, and provide real-world experimental results
for an autonomous underwater vehicle used for automated ship
hull inspection. We demonstrate that using the sparse 3D point
cloud greatly improves the self-consistency of the map. Fur-
thermore, the use of our piecewise-planar framework provides
an additional constraint to multi-session underwater SLAM,
improving performance over monocular camera measurements
alone.

I. INTRODUCTION

The classic approach to the simultaneous localization and
mapping (SLAM) problem uses landmark measurements,
either bearing-only or coupled with range, to estimate both
the locations of environment features and the trajectory
of a mobile robot. These features are often included with
the vehicle pose in a state vector that is estimated using
an extended Kalman filter (EKF) [1], particle filter [2], or
nonlinear least-squares solver [3]–[5].

As robot sensors become more data-rich, like high-
resolution light detection and ranging (LIDAR) scanners
or depth cameras, including every point observed by these
sensors into the state vector can quickly become burdensome.
Instead, researchers have used feature-cloud matching so
that landmark detections at two robot poses are used to
compute a single relative transformation between the two
poses. For 2D or 3D scanners, algorithms like iterative
closest point (ICP) [6] or correlative scan matching [7] have
been shown to work well for many widespread applications.
Feature-cloud matching also preserves the sparsity of the
information matrix in graph-based visual SLAM [8], which
has inspired a number of successful works for camera-
equipped autonomous underwater robots [9]–[14].
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Fig. 1. Treating large ship hulls as a collection of piecewise-planar surface
features augments our visual SLAM system to produce more self-consistent
maps, even with a very sparse 3D DVL point cloud (twenty 3D points
per second). In (a), a 160 m vessel, the SS Curtiss, is surveyed by the
HAUV [12] shown in (b), which is equipped with an actuated DVL sensor.
A reconstructed underwater view of the HAUV’s trajectory (solid line) and
the ship hull (gray surface) is shown in (c).

The Doppler velocity log (DVL) sensor is common for
precise navigation in underwater vehicles, and it can pro-
vide an accurate, though very sparse, 3D point cloud. For
underwater robots, active range scanners like the DVL are
simply not as data-rich as other sensors, like multibeam
sonar or LIDAR scanners. For comparison, a RD Instruments
Workhorse DVL [15] senses about twenty 3D points per
second, whereas a high-end Velodyne HDL-64E scanner for
ground vehicles [16] returns over a million points per second.
Due to the sparsity of these point clouds, the DVL has
simply not been able to take advantage of the aforementioned
feature-cloud matching that is so widespread in modern
mobile robotics. In this work, we leverage the sparse DVL
point cloud by fitting local planar patches to a moving time
window of points, and show how this can significantly con-
strain the trajectory of a Hovering Autonomous Underwater
Vehicle (HAUV) performing automated ship hull inspection,
as shown in Fig. 1.

A. Related Work

Despite the inability of underwater robots to perform
feature-cloud-based SLAM using a DVL, there are still a
wide variety of viable techniques for underwater SLAM.
Barkby et al. [17] perform SLAM on the seabed using a



particle filter that weights particles based on sonar beam
measurement agreement with previous observations. By fit-
ting a Gaussian process to the past sonar beam observations,
they are able to detect loop closures even with little overlap
between the current sonar swath and past swaths.

Cameras have also proven to be a viable sensor for
performing SLAM in underwater environments. In [13],
Kim and Eustice use a monocular camera on a HAUV to
efficiently bound odometry error by only considering visu-
ally salient keyframes. This works to great effect for good
underwater visibility conditions and sufficiently feature-rich
ship hulls, however these conditions are not always available.
In that work, the DVL was used only for measuring velocity-
derived odometry—the resulting 3D point cloud was not
used. This work will show that incorporating this information
into a SLAM backend is very useful for correcting odometry
error, particularly when good imagery is not available.

Our algorithm relies on the use of planes as features for
performing SLAM, rather than the standard Cartesian point-
features or feature-clouds. Planar features have been used in
real-time SLAM systems for a number of years [18]–[20].
In [18], Weingarten and Siegwart use a vehicle equipped
with multiple SICK LIDAR scanners to detect planar feature
patches in an office building using an EKF framework. They
use a rotating SICK scanner to acquire a dense 3D scan, from
which planar patches are detected and fused. These fused
planes are used as a single feature measurement, keeping
the number of features small in the resulting maps. Trevor
et al. [19] implemented planar features as factors in a factor-
graph-based SLAM framework. Effectively, these efforts
have re-introduced feature-based maps for LIDAR-equipped
robots rather than using feature-cloud scan-matching for
laser odometry. In both of these works, a robot traverses an
office building-like environment, and observes planar walls
and tables with high-resolution 3D and 2D scanners. In
unstructured environments using low-resolution scanners, it
is unclear if these approaches would work.

In [21], Ruhnke et al. propose a system that avoids treating
feature-clouds as rigid bodies and instead performs offline
optimization of both the pose and environment surfaces in a
joint optimization framework. Besides a laser range scanner,
their sensor suite includes a RGB-D camera and they are able
to construct accurate, high-resolution models. Similar to [21],
we use planar patches to approximate a curved surface in a
piecewise-planar fashion, however our approach is designed
for real-time applications on much sparser 3D point clouds.

B. Outline

In §II, we cover the theory behind the use of planar
features in our SLAM system. We frame the problem using
factor-graphs, which can be integrated into the incremental
smoothing and mapping (iSAM) framework [4], and we
detail the weight matrices used in the sparse optimization.
In §III, we present a simulation framework in which a robot
in 3D surveys a spherical object, showing that our approach
is capable of successfully modeling surfaces that are curved
everywhere. In §IV, we apply this framework to a real-world

autonomous ship hull inspection experiment, and present an
improvement in the map consistency. Moreover, we provide
initial results in a multi-session SLAM system in which the
reliability is greatly improved by the addition of anchor node
support [22] in our planar feature framework. Finally, in
§V, we offer some concluding remarks and address areas
for improvement and future work.

II. APPROACH

A. Parameterization of Planes in 6-DOF SLAM

Let xi = [xi, yi, zi, φi, θi, ψi]
> be the 6-degree of freedom

(DOF) relative-pose of the vehicle in the global frame at time
i, where x, y, z are the Cartesian translation components, and
φi, θi, and ψi denote the roll (x-axis), pitch (y-axis), and yaw
(z-axis) Euler angles, respectively. Let πik = [aik, e

i
k, d

i
k]>

be the plane indexed by k, expressed in the frame of xi.
This plane is represented by the azimuth and elevation of the
direction of the surface normal, and the orthogonal distance,
or standoff, of the vehicle to the plane (i.e., aik, eik, and
dik, respectively). For convenience, let nik be the Cartesian-
coordinate unit-norm vector corresponding to the azimuth
and elevation of the surface normal of πik. This normal vector
is computed as

nik =

nikxniky
nikz

 = h

([
aik
eik

])
=

cos(eik) cos(aik)
cos(eik) sin(aik)

sin(eik)

 . (1)
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]
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√
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2

ky

)] .
(2)

Parameterizing a plane using a 3-DOF vector, πik, avoids
problems associated with over-parameterized representations
of variable nodes in iSAM. The plane, πik, is determined as
the least-squares fit of a sliding-window of N stacked 3D
points in pose i’s frame, pik ∈ R3N . By reshaping pik into a
3×N data matrix and applying principal component analysis
(PCA), the unit-norm can be determined, up to sign, as the
left singular vector corresponding to the smallest singular
value [23]. The standoff, dik, is computed by dotting the
unit normal with the centroid of pik. Finally, the azimuth
and elevation are computed directly from (2). The process is
illustrated in Fig. 2(a). We model the plane’s uncertainty as
a first-order approximation, described in §II-D.

B. Constraining Planes and Poses with Factors

The widely-used factor-graph representation of the SLAM
problem uses variable nodes and factors in a bipartite graph
representation [3]. We introduce a planar node, parame-
terized by the three values described in §II-A: azimuth,
elevation and distance.

To initialize a planar node, we fit a least-squares plane as
described in §II-A. This gives us a measurement, zπi

k
, of the

plane, indexed by k, in the frame of a pose indexed by i.
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Fig. 2. Simple example of simulated least-squares fit of 3D points to a
plane. In (a), we fit a plane to the sparse DVL point cloud by taking the
principal component that captures the least variation in the data. This least-
squares fit is shown by the blue arrow. In (b), the propagation of the point
cloud covariance, Σp, is well-approximated by numerically linearizing the
least-squares fit described in §II-A, so long as the point cloud uncertainty
is small.

Then, a unary factor is added to the initialized plane node
with the following potential:

Ψ(πik; zπi
k
,Σπi

k
) = ‖zπi

k
− πik‖2Σ

πi
k

, (3)

where Σπi
k

is the measurement covariance matrix, to be
discussed in §II-D.1.

Once two plane nodes are observed either from the same
pose or two different poses and deemed sufficiently coplanar,
a quaternary factor is added that constrains the two planes
and the two poses from which they were observed. The
potential for this factor, computed as in [19] by the difference
between the predicted plane k expressed in pose i’s frame
and the plane l expressed in pose j’s frame, is given by:

Ω(xi,π
i
k,xj ,π

j
l ; Σπkl

) = ‖π̂jk − πjl ‖2Σπkl
, (4)

where Σπkl
is a weight matrix, to be discussed in §II-D.2.

The plane prediction, π̂jk, is computed as follows:

n̂jk = Rj
in

i
k

d̂jk = ti>ij n
i
k + dik,

where Rj
i is the rotation matrix that rotates vectors in i’s

frame to vectors in j’s frame, and tiij is the translation from
i to j expressed in i’s frame. It is important to note that
if this factor is left out of the graph, planar nodes have no
impact on the optimization of the robot poses i and j.

A simple example of the graph layout for our approach
is shown in Fig. 3(a). A detailed description of the weight
matrices used in (3) and (4) is provided in §II-D.

C. 9-DOF Vehicle State Nodes

For the simulation and experimental results in §III and
§IV, the planes are fit from a very sparse 3D scanner so
we assume for convenience that there is only one observed
planar patch per robot pose. We therefore combine the
vehicle pose and planar patch into a single node in our factor-
graph using the 9-DOF vehicle state nodes of the form

x′i =

[
xi
πii

]
.

(a) Separate 6-DOF pose and 3-DOF plane nodes

(b) Combined 9-DOF state pose and plane nodes

Fig. 3. Small example of factor-graphs using our piecewise-planar approach
(best viewed in color), with black representing unary prior factors and binary
odometry factors. In (a), planes π1

1 , π1
2 , and π2

3 are represented as their
own nodes in the factor-graph, along with pose nodes x1 and x2. In this
example, pose 1 observes planes 1 and 2, while pose 2 observes plane
3 (blue factors). The addition of the quaternary yellow factor constrains
the trajectory so that planes 2 and 3 are sufficiently coplanar. In (b), we
conveniently assume that each pose observes one plane, so we lump the 6-
DOF pose node together with the 3-DOF plane node into a 9-DOF vehicle
state node. In this case, we can use binary factors (yellow) to constrain the
robot trajectory.

The planar components of this vehicle state node are initial-
ized in the same manner as (3). Then, the 9-DOF co-planar
factor potential, Ω′, is computed by evaluating (4) with k = i
and l = j:

Ω′(x′i,x
′
j ; Σπij

) = Ω(xi,π
i
i ,xj ,π

j
j ; Σπij

) (5)

D. Weight matrices

1) Least-Squares Plane Fit: The weight matrix Σπi
k

used
in (3) can be interpreted as the covariance of a least-
squares fitted plane. To compute this covariance matrix, we
assume the sliding window of 3D points for the kth plane as
expressed in pose i’s frame is corrupted by Gaussian noise.
The propagation of this uncertainty is modeled by linearizing
the function f( · ) that fits πik from pik:

πik = f(pik)

where pik ∼ N (µpi
k
,Σpi

k
).

This function is the PCA-based method described in §II-A,
which is numerically differentiable when care is taken to
guarantee that the unit normal consistently faces toward
the robot, since typical singular value decomposition (SVD)
libraries may return singular vectors with flipped signs when
the input matrix is slightly perturbed. Then, upon initializa-
tion, the plane’s covariance is given by

Σπi
k
≈ FΣpi

k
F>, (6)

where F is the Jacobian of f( · ) evaluated at the observed
value of pik. If Σpi

k
is small, this first-order approximation

performs well as shown in Fig. 2(b). For our experimental
underwater robot, the uncertainty of this point cloud was
estimated to be 0.02 m by computing the sample variance
when the sensor is pointed towards a known surface (for



instance, the very bottom of a ship hull where the depth
error is small).

2) Co-planar Factor Potential : The norm ‖π̂ik − πjl ‖2
based on the potential from (4) will be small if the two planes
k and l are perfectly coplanar. Of course, these planes may
not be perfectly coplanar for two reasons: (i) propagation
of sensor noise discussed in the previous section, and (ii)
the surface from which the two planes are measured is not
exactly planar. Both of these, if not accounted for, will cause
the backend optimizer to over-compensate for the factor’s
potential. For the remainder of this section, we use 9-DOF
representation of poses and planes to keep the notation
simpler; i.e., k = i and l = j.

To account for nonplanar surfaces, we define an additional
weight matrix to account for the surface curvature. This
weight matrix is modeled by user-provided characteristic
radii for both the azimuth and elevation dimensions. We
compute the expected difference in azimuth, elevation, and
distance given the circular curvature model (which consti-
tutes a diagonal set of weights), and a forward-propagation
of the covariance of the 9-DOF nodes i and j as follows:

Wπij
= diag(∆a2,∆e2,∆d2) + C

[
Σii Σij
Σji Σjj

]
C>,

(7)
where C is the Jacobian of the function c( · ) that is a simple
curvature model of the surface being observed. It predicts
the difference of the normal direction and standoff between
two poses:∆a

∆e
∆d

 = c(x′i,x
′
j ; ra, re),

where
[
∆a
∆e

]
=

[
aii
eii

]
− h−1

(
Rj
ih

([
aii + tiijy/ra
eii + tiijz/re

]))
,

∆d =

(
h

([
aii + tiijy/ra
eii + tiijz/re

])
− h

([
aii
eii

]))>
tiij .

Here, ra and re are the user-defined characteristic radii in the
azimuth and elevation axes, respectfully, tiij is the translation
vector and h( · ) is defined in (1). Fig. 4 illustrates this simple
curvature model in 2D.

The matrix used in the factor potential from (4) is the sum
of the covariance of the jth measured plane from (6) and the
weight matrix from (7):

Σπij = Σπj
j

+ Wπij .

Importantly, this matrix should be interpreted as a weight
matrix, and not as a covariance matrix. The aim of this
weight matrix is to avoid over-penalization of errors from
(4) that are due to surface curvature, taking into account
the uncertainty of the pose and planar measurements. This
determination of weights clearly depends on the state of the
vehicle and the uncertainty of the relevant robot poses at
the time the factor is added to the graph. Thus, the weight
matrix tends to provide conservative posterior covariances.
Furthermore, the nonlinear least-squares problem we are

{

Fig. 4. An overview of how the weight matrix used in (4) is computed
between two poses and two planes. Treating the translation from i to j as an
approximate arc-length, the change in azimuth, ∆a, between the two poses
can be computed given the characteristic radius, ra. The uncertainty of the
poses, shown by the blue ellipses, also plays a role into the computation of
∆a, so this is also included in the weight matrix.

providing to iSAM is clearly not the maximum likelihood
estimate (MLE) of the robot trajectory and surface, because
the measurement “covariance” matrix depends on the state,
as formulated. However, so long as the trajectory does
not drastically change during the optimization, we achieve
good results. In particular, we have found that assuming
depth, pitch, and roll uncertainty as bounded improves this
approach, even with large translational and yaw uncertainty.
This will be shown in our simulation environment in §III.

E. Data Association
Unlike the work from [18] and [19], we focus on exper-

iments where the differences in plane positions and surface
normals vary gradually on a smooth surface, rather than
surface normals which belong to, say, walls in a building.
To solve the data association problem, [18] checks the
Mahalanobis distance of the candidate plane observed from
the current pose to a plane that is already included in the
EKF state vector. If it is below a threshold, the current planar
measurement is associated with the filtered planar feature.

Finding the best association of planar patches on a smooth
surface is significantly more challenging because (i) there is
a large number of possible node pairs from which to add
coplanar factors, and (ii) most neighboring planar features
are all consistent in terms of Mahalanobis distance. Even
so, we use the same basic method as [18] when it comes to
adding a planar factor from (4) to the graph: for each nearest
neighboring planar patch to the current pose, we check that
the χ2-error from (4) is below a threshold corresponding to
a confidence region of 99%. We have found that this simple
method performs well—even when the odometry is quite
noisy as in §III.

III. SIMULATED TRIALS

To evaluate the proposed technique for modeling curved
surfaces, we simulated a robot with a sparse 3D scanner
surveying a sphere with radius r = 8 m at a standoff of 1 m.
Clearly, this experiment motivates the use of a piecewise-
planar model because the surface being observed is curved
everywhere.
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Fig. 5. Results of the SLAM simulation using a spherical surface and a 3D robot. In (a), the left plot shows a visualization of the coplanar factors
from (4) as yellow lines. The cyan region denotes the 99% positional confidence region. This confidence region grows at the beginning and end of the
simulation, when the surface normals are not capable of correcting odometry error. This explains why the center of the reconstructed sphere in (b) does not
align with ground-truth. In (c), the positional and orientational uncertainties are shown for each pose. For the first and last 100 poses, the surface normals
are approximately aligned with gravity, and this explains why uncertainty grows at the start and end of the simulation, but is bounded during the interim.

In this simulation, the robot traverses the surface of the
sphere in a spiral-like pattern in such a way that the robot
never observes the sphere from the same pose more than
once. We corrupt the ground-truth to provide odometry
measurements, but have the z, pitch, and roll measurement
uncertainties bounded (as would be the case from a pressure
depth sensor and gravity-derived roll/pitch measurements in
our application). The robot observes one planar patch for
each pose, so we use the 9-DOF graph representation that is
described in §II-C. The results of this experiment are shown
in Fig. 5.

Using our approach, the robot is able to reasonably re-
construct an estimate of its trajectory and surface of the
sphere. Interestingly, the robot accumulates most of the
pose uncertainty at the top and bottom of the sphere, as
shown in Fig. 5(c). At these portions of the sphere, the
surface normal measurements are unable to correct for lateral
and heading (x, y, yaw) error because the surface normals
align with gravity, which bounds the z, pitch, and roll
uncertainties. However, once the robot maps a sphere, the
robot is well-localized relative to the sphere, and uncertainty
in a global sense is bounded. This suggests the best approach
for robot mapping would be to minimize time spent accu-
mulating error in regions where the surface normals are not
providing any way to correct odometry error.

Because initial odometry error in the simulation cannot
be corrected with planar measurements, we avoid evaluating
one-to-one error between ground-truth poses and SLAM
poses. For this simulation, we instead evaluate the closeness
of the SLAM map to the true sphere by fitting a least-squares
sphere for the estimated robot trajectory. We compute the
best-fit sphere center c and radius, ρ, by solving

argmin
r,c

N∑
i=1

(‖Pi − c‖ − ρ)
2
. (8)

For this simulation, P ∈ R3×N consists of the positions for
each of the N estimated poses. We evaluate this cost function
using the true radius, which indicates the closeness of the
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Fig. 6. The results of our simulation suggest that our approach produces
good SLAM estimates even if the characteristic curvature is not the ground-
truth value. We chose a variety of radii for our simulation, and we shaded
the corresponding circular regions above according to how well the ground-
truth sphere from Fig. 5(b) fits the estimated trajectory. All user-defined
radii between 3 and 19 m produce good SLAM estimates compared to the
true value, 8 m, which is marked with triangles.

positions to ground-truth. These values are shown in Fig. 6,
where we also analyze the sensitivity of our approach to the
characteristic radius of the sphere.

IV. EXPERIMENTAL TRIALS

A. Improvements to Visual SLAM

The HAUV, shown in Fig. 1, continuously observes the
underwater surface of a ship hull. The vehicle’s DVL sensor
is constantly pointed nadir to the hull so as to maintain a con-
stant standoff and orientation. This provides velocity-derived
hull-relative dead-reckoning, however in this experiment we
also apply our piecewise-planar model to the sparse 3D point
cloud produced by the sensor. The planar factors, as de-
scribed in §II-B work concurrently with 5-DOF bearing-only
camera measurements taken from the vehicle’s monocular
camera. These camera-derived measurements constitute the
crux of the visual SLAM system used on the HAUV [12],
[13].

The characteristic azimuth and elevation radii were user-
determined from the physical lengths of the ship. We estimate
these values by fitting least-squares circles to small side-to-
side and top-to-bottom portions of DVL point clouds. For the



(a) Planar factors only (b) Camera factors only (c) Planar and camera factors

Fig. 7. The results of the HAUV dataset on a 25 m × 15 m × 10 m section of the hull are shown in (a), (b), and (c). Each plot shows the qualitative
effects of the different factor types available to our SLAM system. Yellow lines denote the factors that enforce the piecewise-planar constraint from (4),
and red lines represent monocular camera measurements. The piecewise-planar constraint provides noticeable translational correction along the x-axis and
rotational correction about the z-axis. Furthermore, the use of piecewise-planar constraints offers far more visual loop closures, to be shown in Fig. 8.

Fig. 8. The use of planar factors produces a more geometrically-
consistent map, because we successfully capture more informative camera
measurements. This histogram shows the time difference between nodes that
are constrained by camera measurements. Larger times indicate larger loop
closures. Using our piecewise-planar approach, we can add more loop clo-
sures to the graph because the reconstruction is more self-consistent. On the
other hand, by disabling the planar factors the model becomes inconsistent
and we can only make successful camera measurements between nodes that
are closely separated in time.

ship used in this experiment, the azimuth (side-to-side) and
elevation (top-to-bottom) characteristic radii were 322 m and
7 m, respectively. In practice, we found that we can double or
half these parameters before noticing any significant change
in the performance, confirming that our approach is not
particularly sensitive to the characteristic radii.

As shown in Fig. 7, incorporating our method into the
SLAM system produces more consistent maps. We can
quantitatively measure consistency simply by counting the
number of large visual loop closures, as shown in Fig. 8.
More precisely, we count the number of camera measure-
ments between two nodes that are separated in time by more
than 300 s. Using our planar factors, we successfully add
401 such loop closures to the graph. Without using our
approach, we only add 2. This suggests that our approach
produces more geometrically consistent maps, which can be
understood by considering that the initial guess of the two-
view camera measurements are derived using the current
estimate of the vehicle poses. So, an inconsistent map
leads to inconsistent initialization, which in turn leads to
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Fig. 9. Marginal covariance over time for the experiment shown in Fig. 7.
The green, blue, and red curves denote the uncertainties of Fig. 7(a),
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based on the method from [24], which takes the sixth root of the 6-DOF
pose covariance, and has units m · rad. The addition of planar factors to the
visual SLAM graph (yellow lines from Fig. 7(c)) lowers the uncertainty of
the estimate substantially.

unsuccessful camera measurements. Moreover, the marginal
pose covariances are also significantly improved using our
planar factors. This is shown in Fig. 9, where covariances
from Fig. 7(b) and Fig. 7(c) are plotted over time.

Finally, as a sanity check, we can define a roughness
measure for the hull surface reconstruction by computing
PCA over small neighborhoods of the DVL point cloud. The
roughness measure around a point is defined as the smallest
singular value of a data matrix consisting of the 20 nearest
neighbors. Smaller values denote smoother surfaces. These
values are overlaid onto a meshed point cloud in Fig. 10 for
a visual comparison.

B. Multi-Session SLAM

The use of planar and camera factors extends naturally to
the multi-session SLAM problem with the support of anchor
nodes [22]. In short, we can co-register two sessions, ‘A’
and ‘B’, with the addition of two nodes to the factor-graph,
each representing an unknown 6-DOF transformation. These
unknown transformations simply relate the global frame to
A’s frame, and the global frame to B’s frame. We then



5

10

15

20
−15

−10
−5

0

2
4
6

 

y (m)
x (m) 

z
 (

m
)

R
o

u
g

n
e

s
s
 (

m
)

0

0.2

0.4

0.6

0.8

(a) With planes

5

10

15

20

25

−15
−10

−5
0

2
4
6

 

y (m)

x (m) 

z
 (

m
)

R
o

u
g

n
e

s
s
 (

m
)

0

0.2

0.4

0.6

0.8

(b) Without planes

Fig. 10. Roughness measures of the DVL point cloud after SLAM optimization, with smaller values encoding smoother surfaces (best viewed in color).
(a) The addition of our planar factors to the graph makes the DVL point cloud roughness measures very small. (b) Disabling our planar factors, the
roughness measure increases drastically because the planar patches are not being explicitly optimized in the SLAM backend.

incorporate the anchor node to the planar factor from (4)
by applying a root-shift to each pose before evaluating the
potential.

For the HAUV, each session is separated in time and
the robot is tasked with aligning the current survey to a
previously-completed survey. Anchor nodes require that the
current SLAM session observes a full 6-DOF transformation
to another session before rank-deficient measurements like
the planar factors can constrain the anchor nodes. For the
HAUV, this full transformation is approximated with a
bearing-only monocular camera measurement by assigning
a rough estimate of scale. The covariance of the camera
measurement is properly inflated along the rank-deficient
eigenvector to ensure that the matrix is full-rank.

The addition of anchor node support to planar factors
provides improved results for multi-session SLAM with the
HAUV. We globally aligned two surveys that occur on the
same day, with each survey having its own global frame.
The reset of the global frame happens each time the vehicle
completes a survey. We initialize the global alignment with
a camera measurement, and add planar factors between the
two surveys to refine the alignment, which typically leads
to the addition of more camera measurements. These results
are shown in Fig. 11.

V. CONCLUSION

We introduced a technique using planar patches as a way
to approximate smooth, curved surfaces for real-time factor-
graph-based SLAM. We presented and verified a simple
model to incorporate a notion of a surface’s characteristic
curvature when using our planar factors to constrain planar
patches and 3D robot poses. This model was verified in
simulation and showed that a robot with high odometry
uncertainty can reconstruct a sphere using only planar surface
measurements.

The commonly-used DVL sensor for underwater vehicle
navigation produces a useful by-product: a sparse 3D point
cloud. We have shown that this information can be quite

useful for SLAM applications involving continuous obser-
vations of mostly-smooth surfaces, like ship hulls. Using
data from the HAUV, we have shown an increase in map
consistency and a decrease in pose uncertainty using our
approach. Finally, the use of anchor nodes for multi-session
SLAM can be easily incorporated into our planar factors, and
we have shown a noticeable improvement in multi-session
SLAM using the HAUV.

Our approach models the characteristic curvature of the
surface being observed by the robot. The two user-provided
parameters, the characteristic radii in the azimuth and el-
evation dimensions, are held as fixed for the simulation
and experimental trials in this paper. Though this achieves
good results for our experiments, future work could involve
the online segmentation of the observed planar patches into
separate characteristic radii. This would be necessary if the
observed surface curvature is not well-approximated by a
fixed parameter.
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