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Abstract— This paper reports on an algorithm enabling an
autonomous underwater vehicle (AUV) to localize into a 3D
computer aided design (CAD) model of a ship hull in situ

using an optical camera and Doppler velocity log (DVL). The
precision of our localization algorithm allows the identification
of structural deviations between 3D structure inferred from
bundle-adjusted camera imagery and the CAD model. These
structural deviations are clustered into shapes, which allow
us to fuse camera-derived structure into a CAD-derived 3D
mesh. This augmented CAD model can be used within a
3D photomosaicing pipeline, providing a visually intuitive 3D
reconstruction of the ship hull. We evaluate our algorithm
on the Bluefin Robotics Hovering Autonomous Underwater
Vehicle (HAUV) surveying the SS Curtiss, and provide a 3D
reconstruction that fuses the CAD mesh with 3D information
corresponding to underwater structure, such as biofouling.

I. INTRODUCTION

Within the autonomous underwater vehicle (AUV) com-

munity, simultaneous localization and mapping (SLAM) is

a powerful technique to both correct for navigational drift

and provide a visually intuitive 3D reconstruction of the

environment [1–4]. In certain applications, such as in situ

underwater ship hull inspection, AUVs face several important

perceptual challenges while performing SLAM: the absence

of acoustic beacons, lack of a global positioning system

(GPS), and turbid water.

3D reconstruction remains a tremendous challenge in cer-

tain underwater environments due to several considerations

for underwater optical imaging. In particular, the water

column around ship hulls tends to be murky, making optical

imaging difficult unless the camera is physically very close

to the scene. Despite these challenges, the main benefit of

optical vision-based approaches is high spatial resolution and

cost savings as compared to acoustic-based systems.

To alleviate the challenges of underwater SLAM, our prior

work [5] leveraged a computer aided design (CAD) model

to assist in a 3D photomosaicing pipeline for an imaging

sonar. However, this previous approach only applied texture

to a 3D mesh, and did not identify structural differences

detected from the perceptual sensors. We build upon this

previous work by annotating a prior model with SLAM-

derived structure. We show experimental results taken from
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Fig. 1. Our algorithm allows an AUV, such as the Bluefin Robotics
HAUV, to precisely localize into a nominal CAD mesh of the inspected
ship (top). Unlike the approach by Trimble and Belcher [7], this localization
takes place without any acoustic beacons or pingers. The sparse visual
3D reconstruction, shown on the bottom-right, shows that significant 3D
structure exists in the imagery that does not exist in the CAD model (in this
case, biofouling). The color of each feature encodes the structural deviation
from the CAD model. An outline of clusters of these features is shown in
red, computed using DBSCAN.

the Hovering Autonomous Underwater Vehicle (HAUV) plat-

form for automated ship hull inspection [6]. An overview of

our approach can be found in Fig. 1. The contributions of

this paper allow our AUV to:

• Localize into a 3D CAD model of the ship hull be-

ing surveyed without the use of long-baseline naviga-

tion [7].

• Label visually-derived 3D shapes based on their devia-

tion from the nominal CAD mesh.

• Augment the nominal CAD mesh with visually-derived

3D information.

A. Related Work

Early work in ship hull inspection includes the use of long-

baseline navigation, where a robot localizes to a ship hull

using manually-deployed acoustic pingers [7]. More recently,

researchers have instead used underwater visual perception

and SLAM techniques, rather than acoustic localization

beacons, for AUV navigation. A survey of underwater visual

sensing modalities was provided by [8]. Some examples

of field robots that use visual perception include work by

Negahdaripour and Firoozfam [9], in which they used a



Fig. 2. Illustration of the various reference frames at time i. The vehicle
has a sensor tray that houses both the DVL and vertically-oriented stereo
rig. An onboard servo rotates the servo frame, si, which in turn rotates the
DVL and camera. The vehicle controls this angle so that these sensors
point approximately orthogonal to the ship hull surface. This angle is
instrumented, but must be treated as uncertain in our estimation framework
due to the mechanical slop in the servo.

stereo camera rig on a remotely operated vehicle (ROV) to

inspect the underwater portion of a ship hull. Visual mapping

of underwater infrastructure was also explored by Ridao

et al. [3] using an AUV with a calibrated underwater monoc-

ular vision system. In addition to mapping tasks, several

researchers have explored automated object identification

(such as corrosion or underwater mines) using both visual

sensors [10] and acoustic sensors [11].

The computer vision and graphics community have studied

fusing optical range measurements to form a reconstruction

of a 3D surface for several decades [12–14]. The seminal

work by Curless and Levoy [13] used running averaging

to fuse range measurements into an implicit surface. This

simple approach is still used in state-of-the-art surface recon-

struction and pose tracking algorithms using a commodity

depth camera [15, 16]. We differentiate our work in three

ways. First, we assume the availability of a nominal mesh of

the surface being constructed and that the camera pose with

respect to this mesh is unknown. Second, we assume that

the object can only be observed at a very close distance—

i.e., the observations are locally planar and so using iterative

closest point (ICP) (or its variants) to estimate relative poses

between keyframes is ill-constrained [17–19]. Third, we do

not assume the availability of range images. Though we

use a stereo camera for our experimental analysis (from

which a disparity map can be easily converted to a range

image), we instead use sparse feature-based registration so

that this approach is also applicable to monocular (bearing-

only) cameras.

B. Outline

This paper is organized as follows. In Section II, we de-

scribe the mathematical components of our localization and

bundle adjustment framework, followed by an overview of a

visual feature clustering algorithm. In addition, we describe

an algorithm to annotate the nominal CAD-derived 3D mesh

with visually-derived 3D structure. In Section III, we provide

experimental results for our approach, and in Section IV we

offer some concluding remarks.

Fig. 3. Our localization and bundle adjustment pipeline can be repre-
sented as a factor-graph. Each factor node (black dot) is labeled with the
corresponding conditional distribution (1 through 6) from Section II-A. The
variable nodes correspond to the unknowns we are estimating: robot poses
(blue), servo angles (cyan), vehicle-to-servo relative pose (green), visual
features (orange), and pose of the prior CAD model (purple).

II. APPROACH

The notation for this section is as follows. Let g be

the hull-relative global coordinate frame, and lj be the 3D

position of a visual feature indexed by j, as expressed

in the global frame. We denote the 6-degree of freedom

(DOF) relative-pose between frames i and j with the notation

xij = [ti⊤ij , φij , θij , ψij ]
⊤, where tiij = [xiij , y

i
ijz

i
ij ]

⊤ is the

translation vector from i to j as expressed in frame i. φij ,

θij , and ψij are Euler angles about the x, y, and z axis,

respectively, that describe the rotation from i to j. Let M
denote a triangular mesh consisting of a set of vertices, edges

between vertices, and triangular faces. Mprior is the prior

(i.e., nominal) mesh, and Mnew is the updated mesh (i.e.,

the final output of our algorithm).

A. Localization and Bundle Adjustment

Our localization and bundle adjustment pipeline estimates

the pose of the vehicle at time i, xgvi , the static servo-to-

camera transform, xscT , the angle of the servo at time i,

θvisi , the pose of the CAD model, xgm, and the 3D position

of scale invariant feature transform (SIFT) [20] features

indexed by j, lj . Here, the servo refers to a simple actuator

that rotates both the camera and Doppler velocity log (DVL)

to point orthogonal to the ship hull, as shown in Fig. 2. These

unknown parameters are jointly estimated using a factor-

graph SLAM framework [21]. An illustration of the factor-

graph encoding the parameter’s probabilistic distribution is

shown in Fig. 3.

Dellaert and Kaess [21] showed that a factor-graph can

represent the joint distribution over all unknowns in the

SLAM problem. A factor-graph is a bipartite graph consist-

ing of variable nodes (unknowns) and factor nodes (obser-

vations) that encodes the joint distribution of all unknowns:

P (X) ∝
∏

i

Ψi(Si),

where X is a stacked vector of unknowns and Si is the subset

of unknowns that support (i.e., are connected to) the ith factor

node with potential Ψi. The product of these factors can be

easily converted into a nonlinear least-squares optimization



Fig. 4. Illustration of ray-casting constraint. Given pose of the vehicle frame
at time i, xgvi , the servo angle, θvisi , the pose of the CAD frame, xgm, and
the prior mesh, Mprior, the four DVL range returns can be computed with
an efficient octree-based ray-casting approach. At time i, the four ranges
are predicted as ri1 , ri2 , ri3 , and ri4 .

problem corresponding to a maximum a posteriori (MAP)

estimate of X:

X∗ = argmax{X} P (X)

= argmin{X} −
∑

i logΨi(Si).

The factor potentials represent conditional distributions

of the observed measurement given the unknowns. Below,

we elaborate on each factor used in our formulation (from

Fig. 3). The covariance matrix for each factor is assumed

known, as is standard practice. We use the Ceres library to

solve the above nonlinear optimization problem [22].

1) Prior factors: A full-state prior on all six degrees of

freedom for a particular variable node, xij , is given by the

conditional distribution of the measurement zfull
xij

:

P
(
zfull
xij

∣∣∣xij

)
∼ N

(
xij ,Σzfull

xij

)
. (1)

The initial guess for the pose of the CAD model, xgm,

is determined using the generalized iterative closest point

(GICP) algorithm for aligning two point clouds [19]. In our

case, one point cloud consists of vertices in Mprior, while the

other point cloud consists of DVL range returns expressed

in the global frame, which are SLAM-corrected using the

method described in [2]. This GICP alignment is added as a

prior factor on xgm.

The onboard depth and inertial measurement unit (IMU)

sensors allow us to directly observe a bounded-error mea-

surement of the vehicle’s depth, pitch, and roll. This observa-

tion, denoted zzpr
xij

, has the following conditional distribution:

P
(
zzpr
xij

∣∣∣xij

)
∼ N

([
ziij , φij , θij

]⊤
,Σz

zpr
xij

)
. (2)

Finally, we model the servo angle at time i as being

directly observed with a prior factor. The corresponding

observation model is simply:

P (zvisi | θvisi) ∼ N
(
θvisi , σ

2
zsi

)
. (3)

2) Odometry factors: Our factor-graph formulation mod-
els odometry measurements as a sequential relative-pose
observation, zodo

i(i+1). The conditional distribution of this

measurement is

P
(

z
odo
i(i+1)

∣

∣

∣
xgi,xg(i+1)

)

∼ N

(

⊖xgi ⊕ xg(i+1),Σz
odo
i(i+1)

)

, (4)

where ⊕ and ⊖ are pose composition operators following

the conventions of Smith et al. [23].

3) Camera factors: The observed pixel locations at time

i corresponding to the kth feature are denoted as zTik and zBik
for the top and bottom cameras, respectively:

P

([
zTik

⊤
zBik

⊤
]⊤∣∣∣∣xgvi ,xscT , θvisi , lk

)

∼ N
(
hc (xgvi ,xscT , θvisi , lk) , σ

2
c I4×4

)
. (5)

The observation model, hc, corresponds to two pinhole cam-

eras in a calibrated and rectified vertical stereo configuration

(from Fig. 2):

hc (xgvi ,xscT , θvisi , lk) =

[
dehom (K (Rlk + t))
dehom (K′ (R′lk + t′))

]
.

dehom( · ) denotes the dehomogenization of a three-

dimensional vector, R and t represent the transformation of

points from the global frame to the top camera, (i.e., they cor-

respond to the rotation and translation of the composed pose

(xgvi ⊕ xvisi ⊕ xscT ), where xvisi = [0, 0, 0, 0, θvisi , 0]
⊤),

and R′ and t′ transform points in the global frame to the bot-

tom camera (i.e., they correspond to the rotation and transla-

tion of the composed pose (xgvi ⊕ xvisi ⊕ xscT ⊕ xcT cB ),
where xcT cB is the transformation from the top camera frame

to the bottom camera frame). This transformation is taken

from stereo camera calibration.

4) DVL raycast factors: A critical component of our

factor-graph formulation are factors modeling the intersec-

tion of DVL beams to the prior mesh—doing so allows us

to significantly constrain both the unknown vehicle poses and

servo angles. The conditional distribution takes the form:

P (zrin |xgm,xgvi ,xscT , θvisi)

∼ N
(
hrn (xgm,xgvi ,xscT , θvisi ;Mprior) , σ

2
zrin

)
, (6)

where hrn corresponds to raycasting the nth beam for a DVL

in a four-beam Janus configuration [24]. This observation

model is illustrated in Fig. 4. Since the prior mesh may

consist of hundreds of thousands of triangles, we use an effi-

cient octree-based raycast implementation [25]. In addition,

when evaluating the Gaussian distribution from (5) and (6)

we apply a Huber M-estimator to the squared loss term to

automatically reject outliers.

B. Identifying Shapes by Clustering Features

Once the MAP estimate of all unknowns is computed from

the previous section, we can easily compute the structural

deviation from the CAD model for each feature as follows. If

the 3D position of a visual feature is within the field of view

of a given camera pose, then we compute a ray originating at

the camera center of projection and extending toward infinity.

We use a raycasting approach to compute the intersection

on the CAD model surface. The structural deviation is

the difference between the bundle-adjusted position and the

position at which the ray intersects the CAD model.

Once the deviations of each feature are computed, we

apply Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) to nonlinearly separate the features’ posi-

tions into clusters [26]. These clusters of points are converted



Algorithm 1 Detect shapes at a given camera pose at time i

Require: Camera pose (posei), visible features (Fvi), and mesh
(Mprior)

1: Pi = ∅ {Set of points to cluster.}
2: Ci = ∅ {Set of clusters from DBSCAN.}
3: Si = ∅ {Set of detected shapes.}
4: for feature f = [fx, fy, fz] in Fvi, expressed in camera frame

do
5: d = deviation(f , raycast(posei, f ,Mprior))
6: if d > τ then
7: Pi = Pi ∪ {fx, fy, d}
8: end if
9: end for

10: Ci = DBSCAN(Pi)
11: for cluster in Ci do
12: MSi

= alpha shape(cluster)
13: Si = Si ∪MSi

14: end for
15: return Si

(a) Feature locations (b) Distance from camera

(c) Deviation to Mprior (d) Alpha-shaped clusters

Fig. 5. Visual overview of Algorithm 1. For a particular keyframe, the
bundle adjusted features, (a) and (b), are assigned a deviation by computing
the intersection of the ray to the CAD model (c). These values are clustered
using DBSCAN, and meshed using alpha-shapes. In (d), the three detected
clusters have their alpha-shapes shown as white triangular meshes.

to shapes using a simple extension to Delaunay triangulation

known as alpha-shapes [27]. This algorithm is summarized

in Algorithm 1, with an accompanying example in Fig. 5. As

shown in Fig. 5(d), the detected shapes can be projected as

two-dimensional triangular meshes in the camera imagery.

Note that a single physical object on the hull will have

multiple shapes associated with it. In Algorithm 2, these

shapes are combined across multiple views and fused into

Mprior.

C. CAD Model Remeshing Step

The final step of our approach is to fuse the shapes

detected in Algorithm 1 with the prior mesh, Mprior, re-

sulting in a new mesh, Mnew. To this end, we compute a

ray originating from the top camera’s center and extending

toward a vertex in Mprior. Again, we use raycasting to

compute the intersection with any detected shapes. Once

Algorithm 2 Fuse shapes into prior mesh

1: Mnew = Mprior {Make a deep copy of the prior mesh}
2: for pose in poses do
3: Fv = is visible(pose,F) {Visible features}
4: Sd = Algorithm1(pose,Fv,Mprior) {Detected shapes}
5: Vn = nearby vertices(pose, vertices(Mprior))
6: for shape Ms in Sd do
7: for vertex vi ∈ Vn indexed by i do
8: ray = make ray(pose,Vn[i])
9: if ray.intersects with(Ms) then

10: pi = ray.intersection(Ms)
11: moving avg(Mnew, i,p

i) {Using Eqn. (7)}
12: end if
13: end for
14: end for
15: end for
16: return Mnew

(a) DBSCAN mesh
overlayed on prior mesh

(b) Augmented CAD
mesh

Fig. 6. Visualization of Algorithm 2. A 3D shape, S, derived
from Algorithm 1 can be fused into the prior CAD mesh by intersecting
rays from the camera frame. For a particular camera pose, we choose a
CAD mesh vertex, Vn[i], and then compute the intersection of the camera-
to-vertex ray as p

i. The various intersections at different camera poses are
fused into a new mesh, Mnew, using a moving-average filter.

the intersection point corresponding to the ith vertex, pi, is

calculated, we update the corresponding vertex in Mnew, v̂
i
,

with a recursive moving average filter:

v̂
i
n+1 =

pi + nv̂
i
n

n+ 1
(7)

v̂
i
0 = get ith vertex(Mprior, i),

where the ith vertex’s counter, n, is incremented after every

evaluation of line 11 from Algorithm 2.

This process is repeated for every pose. A summary of

this algorithm is provided in Algorithm 2. Note that we

conservatively and efficiently determine the visible features

and nearby vertices (lines 3 and 5 of Algorithm 2), using a

k-d tree-based radius search.

III. EXPERIMENTAL TRIALS

In this section, we provide an overview of the experimental

trials used to analyze the methods proposed. Various statistics



(a)

Ship Length 183 m

Ship Beam 27 m

Ship Draft 9.1 m

AUV trajectory length 0.963 km

Number of images 44,868

Number of DVL raycasts 96,944

Number of feature reprojections 170,802

Number of vertices in Mprior 2,573,366

Number of faces in Mprior 5,052,456

(b)

Fig. 7. The field data in this paper was obtained from underwater surveys
of the SS Curtiss, shown in (a). Various statistics for the amount of data
processed, including the size of the bundle adjustment step, are shown in
the table in (b).

for the physical size of the surveyed vessel, the SS Curtiss,

and the amount of processed data is summarized in Fig. 7.

A. Localization and Shape Identification

Several characteristics of our localization and shape iden-

tification algorithms are summarized in Fig. 8. First, we

consider the importance of incorporating DVL range mea-

surements from (6). From Fig. 8(a) and Fig. 8(b), we can see

noticeable misalignment particularly on the side of the hull.

By examining the distribution of residuals in Fig. 8(c), we

quantitatively confirm that the alignment of the DVL trajec-

tory to Mprior is poor. However, by incorporating raycasting

in the factor-graph framework, we can significantly tighten

the distributions of these residuals.

Second, we empirically analyze how the incorporation

of raycasting factors directly translates to improved shape

detection performance in Algorithm 1. An illustrative exam-

ple is shown in Fig. 8(d) through Fig. 8(f). The algorithm

tends to falsely assign features as having significant deviation

to the nominal ship hull surface. Though we do not have

ground-truth, we know from human divers that the green

regions from Fig. 8(e) ought to be more flush with the hull.

However, by incorporating raycasting factors, the results

shown in Fig. 8(f) are more consistent with the geometry

reported by divers. Indeed, by closely examining Fig. 8(d),

we can see bare metal on the ship hull, suggesting little

deviation from the ship hull on either side of the large

biofouling in the center of the image.

B. Remeshing Results

The remeshed CAD model for a visual survey of the

SS Curtiss is provided in Fig. 9. We provide different results

for the threshold, τ , used for determining the eligibility

of features to be clustered with DBSCAN. For this ap-

plication, the preferred approach is to keep the threshold

zero (Fig. 9(b)), however for certain applications where false

positives are a concern, this can be raised (Fig. 9(c)). In

(a) DVL-to-CAD: GICP only

(b) DVL-to-CAD: GICP with raycasting
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(c) DVL beam residuals: (a) vs (b) (d) Sample raw image

(e) Clustering: GICP only (f) Clustering: GICP with raycast-
ing

Fig. 8. The improved consistency of our localization algorithm, shown
in (a) through (c), allows for the identification of structural anomalies
using underwater camera imagery, shown in (d) through (f). Note that (d)
through (f) correspond to the same image, which is taken from the region
of (a) and (b) circled in white. According to the CAD model, this region is
near-perfectly flat.

this figure, the rectangular-like structural anomalies shown

in Fig. 9(c) correspond to support areas used in drydocking.

C. Utility in 3D Photomosaic Visualization

In addition to providing visually intuitive false color maps,

the remeshed model can easily be used in a start-of-the-

art 3D photomosaicing framework [28]. An example of this

application is provided in Fig. 10. Unlike our previous work

in [5] that applied texture to the ship’s CAD model, this work

allows additional structural details at a relatively small scale.

In Fig. 10(b) and Fig. 10(c), we shade the regions of the 3D

photomosaic according to height in the z-direction. Clearly,



(a)

(b) τ = 0.0 m

(c) τ = 0.06 m

(d) Portion of photomosaic corresponding to (b) and (c)

Fig. 9. In (a), we show a heatmap of the remeshed CAD vertices. The red region is expanded in (b) and (c). In (b), the clustering threshold from Algorithm 2,
τ , is zero while in (c) it is relatively high. Lowering τ provides more details but potentially introduces false positives. We can see the red rectangular
region from (a) corresponds to a strip of biofouling at the ship’s centerline, shown in (d).

the approach proposed in this paper captures significantly

more information that is otherwise discarded if the ship hull

is assumed to match the CAD model shape exactly.

IV. CONCLUSION

We have shown that our localization and bundle adjust-

ment framework provides precise capabilities for identifying

visually-observed 3D structure that is absent from the CAD

model. In addition, we provide a remeshing algorithm to

fuse these shapes into a prior mesh using approaches in-

spired from the computer graphics community. This newly

remeshed model has several important benefits for data visu-

alization. In particular, the false-color figures shown in this

paper offer an intuitive visualization that is harder to discern

from image mosaics alone. In addition, the remeshed model

can easily be used in a 3D photomosaicing framework such

that the overall consistency of the ship hull reconstruction is

preserved, but captures details at a small scale.



(a) Birds-eye view: (b) and (c) correspond to white region

(b) Close-up: proposed method

(c) Close-up: method from [5]

Fig. 10. Our approach allows 3D photomosaicing approaches to combine
large-scale consistency in (a) with small-scale detail in (b). In (b), the
mosaic is shaded according to height. Using the approach from [5], where
a CAD model is used for photomosaicing, the small-scale details are lost
as evidenced by the region in (c) being near-perfectly flat.
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