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Abstract— This paper reports on the problem of map-based
visual localization in urban environments for autonomous
vehicles. Self-driving cars have become a reality on roadways
and are going to be a consumer product in the near future.
One of the most significant road-blocks to autonomous vehicles
is the prohibitive cost of the sensor suites necessary for
localization. The most common sensor on these platforms, a
three-dimensional (3D) light detection and ranging (LIDAR)
scanner, generates dense point clouds with measures of surface
reflectivity—which other state-of-the-art localization methods
have shown are capable of centimeter-level accuracy. Alter-
natively, we seek to obtain comparable localization accuracy
with significantly cheaper, commodity cameras. We propose to
localize a single monocular camera within a 3D prior ground-
map, generated by a survey vehicle equipped with 3D LIDAR
scanners. To do so, we exploit a graphics processing unit to
generate several synthetic views of our belief environment.
We then seek to maximize the normalized mutual information
between our real camera measurements and these synthetic
views. Results are shown for two different datasets, a 3.0 km
and a 1.5 km trajectory, where we also compare against the
state-of-the-art in LIDAR map-based localization.

I. INTRODUCTION

Over the past several years, fully autonomous, self-driving

cars have grown into a reality with progress in the simultane-

ous localization and mapping (SLAM) research community

and the advent of consumer-grade three-dimensional (3D)

light detection and ranging (LIDAR) scanners. Systems such

as the Google driverless car use these LIDAR scanners,

combined with high accuracy GPS/INS systems, to enable

cars to drive hundreds of thousands of miles without user

control [1].

In order to navigate autonomously, these robots require

precise localization within an a priori known map. Rather

than using the vehicle’s sensors to explicitly perceive lane

markings, traffic signs, etc., metadata is embedded into a

prior map, which transforms the difficult perception task into

a localization problem. State-of-the-art methods [2], [3] use

reflectivity measurements from 3D LIDAR scanners to create

an orthographic map of ground-plane reflectivities. Online

localization is then performed with the current 3D LIDAR

scans and an inertial measurement unit (IMU).

The cost of 3D LIDAR scanners is prohibitive for con-

sumer grade automobiles. Quite likely the greatest near-term

*This work was supported by a grant from Ford Motor Company via the
Ford-UM Alliance under award N015392; R. Wolcott was supported by The
SMART Scholarship for Service Program by the Department of Defense.

R. Wolcott is with the Computer Science and Engineering
Division, University of Michigan, Ann Arbor, MI 48109, USA
rwolcott@umich.edu.

R. Eustice is with the Department of Naval Architecture & Ma-
rine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
eustice@umich.edu.

NMI

Test Platform

3D Prior Map

Synthetic Views

Live Camera Data NMI Cost Map

Fig. 1: Overview of our proposed visual localization system. We
seek to localize a monocular camera within a 3D prior map
(augmented with surface reflectivities) constructed from 3D LIDAR
scanners. Given an initial pose belief, we generate numerous
synthetic views of the environment, which we then evaluate using
normalized mutual information against our live view from camera
imagery.

enabler for self-driving cars is the increased use of camera

systems in place of expensive LIDAR scanners. Cameras

provide a low-cost means to generate extremely rich, dense

data that is suitable for localization.

Our approach leverages a graphics processing unit (GPU)

so that we can generate several synthetic, pin-hole cam-

era images, which we can then directly compare against

streaming vehicle imagery. This differs from other visual

localization approaches, like [4], which rely on sophisticated

feature sets. This significantly simpler approach avoids over-

engineering the problem by formulating a slightly more

computationally expensive solution that is still real-time

tractable on a mobile-grade GPU and capable of high ac-

curacy localization.

In this paper, we propose exploiting 3D prior maps (aug-

mented with surface reflectivities) constructed by a survey

vehicle equipped with 3D LIDAR scanners. We localize a

vehicle by comparing imagery from a monocular camera

against several candidate views, seeking to maximize nor-

malized mutual information (NMI) (as outlined in Fig. 1).

The key contributions of our paper are:

• We present a multi-modal approach that allows us to use

LIDAR-based ground maps, which accurately depicts

the metric and surface reflectivity of the ground.

• We demonstrate that our projective framework can pre-



dict and evaluate appearance with a single, monocular

camera.

• We benchmark our visual localization method with

state-of-the-art LIDAR-based localization strategies.

• We show a GPU implementation that can provide real-

time localization at ∼ 10 Hz.

II. RELATED WORK

Early visual SLAM methodologies employ filtering frame-

works in either an extended Kalman filter (EKF) [5] or Fast-

SLAM framework [6], to generate a probability distribution

over the belief pose and map of point features. In order

to accurately localize within these point feature maps, one

relies on co-observing these features. However, these features

frequently vary with time of day and weather conditions,

as noted in [7], and cannot be used without an intricate

observability model [8].

In the context of autonomous vehicles, Wu and Ran-

ganathan [4], [9] try to circumvent this by identifying and

extracting higher fidelity features from road markings in

images that are far more robust and representative of static

infrastructure. Their method is able to densely and compactly

represent a map by using a sparse collection of features for

localization. However, their method assumes a flat ground,

whereas our projective registration allows for more complex

ground geometries and vertical structures.

Rather than relying on specific image features in our

prior map (and complicated, hand-tuned feature extractors),

our method is motivated by the desire to circumvent point

features entirely and do whole image registration onto a

static, 3D map captured by survey vehicles.

In work by Stewart and Newman [10], the use of a 3D

map for featureless camera-based localization that exploits

the 3D structure of the environment was explored. They

were able to localize a monocular camera by minimizing

normalized information distance between the appearance of

3D LIDAR points projected into multiple camera views.

Further, McManus et al. [11] used a similar 3D map with

reflectivity information to generate synthetic views for visual

distraction suppression.

This approach has been previously considered, but meth-

ods thus far rely on the reconstruction of the local ground

plane from a stereo camera pair. Senlet and Elgammal [12]

create a local top-view image from a stereo pair and use

chamfer matching to align their reconstruction to publicly

available satellite imagery. Similarly, Napier and Newman

[7] use mutual information to align a live camera stream

to pre-mapped local orthographic images generated from

the same stereo camera. With both of these methods, small

errors in stereo pair matching can lead to oddly distorted

orthographic reconstructions, thus confusing the localization

pipeline. Further, our multi-modal approach allows us to

take advantage of LIDAR scanners to actively capture the

true reflectivity of our map, meaning our prior map is not

susceptible to time of day changes in lighting and shadows.

The use of mutual information for multi-modal image

registration has been widely used in the medical imaging

Fig. 2: Factor graph of the pose-graph SLAM problem that we
solve in the off-line mapping stage. Here, xi represents states of
the robot, um represents incremental odometry measurements, zk
represents laser scan-matching constraints, and ga are GPS prior
measurements.

domain for several decades [13], [14]. More recently, the

idea has been transferred to robotics for calibration of

visual cameras to LIDAR scanners [15], [16]. This sensor

registration has mostly been considered an offline task due

to the expense of generating synthetic views for calibration.

To move this into real-time localization, we propose using

a GPU to generate synthetic views, which we can then use a

normalized measure of mutual information to optimize over

our vehicle’s pose. The GPU has been frequently used in

robot localization for precisely this reason, including: Kinect

depth-SLAM [17], image feature correspondence search for

SIFT features [18], and line features [19].

III. PRIOR MAP

The first part of our localization framework is the offline

mapping stage, which generates the map to be used for

online localization. Our goal here is to generate a map that

is metrically accurate to the surrounding structure. Prior to

the offline mapping stage, our survey vehicle has no a priori

knowledge of the environment, thus, we employ SLAM to

build a model of the environment.

We use the state-of-the-art in nonlinear least-squares, pose-

graph SLAM and measurements from our survey vehicle’s

3D LIDAR scanners to produce a map of the 3D structure in

a self-consistent frame. We construct a pose-graph to solve

the full SLAM problem, as shown in Fig. 2, where nodes

in the graph are poses (X) and edges are either odometry

constraints (U ), laser scan-matching constraints (Z), or GPS

prior constraints (G). These constraints are modeled as Gaus-

sian random variables; resulting in a nonlinear least-squares

optimization problem that we solve with the incremental

smoothing and mapping (iSAM) algorithm [20].

Since map construction is an offline task, we do not

have to construct our pose-graph temporally. Instead, we

first construct a graph with only odometry and global po-

sitioning system (GPS) prior constraints. With this skeleton

pose-graph in the near vicinity of the global optimum, we

use Segal et al.’s generalized iterative closest point (GICP)

[21] to establish 6-degree of freedom (DOF) laser scan-

matching constraints between poses; adding both odometry

constraints (temporally neighboring poses) and loop closure

constraints (spatially neighboring poses) to our pose-graph.

Moreover, we augment our GPS prior constraints with an

artificial height prior (z = 0) to produce a near-planar graph.

Constraining the graph to a plane simplifies localization to

a 3-DOF search over x, y, and θ.
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Fig. 3: Sample ground mesh used to generate synthetic views of
the environment. In (a), we show a 400 m× 300 m ground mesh
colored by surface reflectivity, with a zoomed in view shown in (b)
(this region is highlighted in red in (a)). We show the same zoomed
view, colored by z-height to demonstrate the height variation we
are able to capture with our ground-mesh in (c); yellow-to-red
represents ∆z = 30 cm.

Algorithm 1 Pose-Graph to Ground-Mesh

Input: Optimized pose-graph, G = {x0, x1, · · · , xM−1, xM}
Output: Triangle ground-mesh, T = {t0, · · · , tN}

1: Initialize 10 cm sparse grid, grid
2: for xi in G do
3: // Extract ground point cloud (pj and rj correspond to
4: // metric location and reflectivity, respectively)
5: {{p0, · · · , pn} {r0, · · · , rn}} = ExtractGround(xi)
6:

7: // Drop extracted ground points into surface grid
8: for j = 0 → n do
9: Add {pj , rj} to running mean at grid [pj ]

10: end for
11: end for
12: Spatially connect grid to form 10 cm triangle mesh, T

From the optimized pose-graph, we construct a dense

ground-plane mesh using Algorithm 1. Our algorithm is

logically equivalent to extracting the ground-plane at each

pose and draping an orthographic texture over a varying z-

height map. A sample prior map can be seen in Fig. 3.

Note that our system is not limited to ground-only maps.

We originally intended to incorporate the full 3D structure

in our prior map, including buildings, street poles, etc., but

found that the added structure did not appreciably increase

registration quality enough to warrant the additional render-

ing cost (the 3D structure doubled scene prediction time).

However, we did find that it was extremely important to use

a mesh-surface as opposed to a strict planar texture because

the planar texture did not accurately depict the curvature of

the road (e.g., gutters sunken), as can be seen in the map

colored by z-height in Fig. 3(c).

IV. PROJECTIVE IMAGE REGISTRATION

The goal of our image registration problem is to, given

some initial pose prior xk, find some relative offset ∆xi that

optimally aligns the projected map, Pi, against our camera

measurements, Ck. This optimization is framed as a local

search problem within the vicinity of xk and could be done in

a brute-force manner by generating a predicted view for the

entire dom(x)× dom(y)× dom(θ) search volume to avoid

local maxima of hill-climbing searches. The remainder of

this section details our method for generating these predicted

views (Pi) and our NMI evaluation metric.

A. Generating Predicted Views

Given a query camera pose parameterized as [R|t], where

R and t are the camera’s rotation and translation, respec-

tively, our goal is to provide a synthetic view of our world

from that vantage point. We use OpenGL, which is com-

monly used for visualization utilities, in a robotics context

to simulate a pin-hole camera model, similar to [17].

All of our ground-mesh triangles are drawn in a world

frame using indexed vertex buffer objects. These triangles are

incrementally passed to the GPU as necessary as the robot

traverses the environment—though the maps in our test set

can easily fit within GPU memory. We pass the projection

matrix,

P = M ·K ·

[

R t

0 1

]

, (1)

to our OpenGL Shading Language (GLSL) vertex shader for

transforming world vertex coordinates to frame coordinates.

Here,

M =









2
w

0 0 −1
0 − 2

h
0 1

0 0 − 2
zf−zn

−
zf+zn
zf−zn

0 0 0 1









(2)

and

K =









fx α −cx 0
0 fy −cy 0
0 0 zn + zf zn × zf
0 0 −1 0









, (3)

where w and h are the image’s width and height, zn and

zf are the near and far clipping planes, and the elements of

K correspond to the standard pinhole camera model. Note

that the negative values in K’s third column are the result of

inverting the z-axis to ensure proper OpenGL clipping.

For efficient handling of these generated textures, we

render to an offscreen framebuffer that we then directly

transfer into a CUDA buffer for processing using the CUDA-

OpenGL Interoperability. Sample synthetic views can be seen

in Fig. 4.

B. Simplified Rotational Search

A naı̈ve approach to this local search problem would

be to use the OpenGL pipeline to generate a synthetic

view for each discrete step within the search volume,

dom(x)× dom(y)× dom(θ). However, this would result

in generating nx ×ny ×nθ synthetic views. Because the



Fig. 4: Sample synthetic views generated by our OpenGL pipeline.
These views were generated by varying longitudinal and lateral
translation around the optimally aligned image (center).

Fig. 5: Sample pre-warping applied to images to reduce the overall
search space for image registration; pictured here are warps of
θ = {−6◦,−4.5◦,−3◦,−1.5◦, 0◦, 1.5◦, 3◦, 4.5◦, 6◦} By rotating
each source image in place, we can optimally pull out as much
information from a single OpenGL rendered image.

predicted view rasterization is the primary bottleneck of the

system (taking nearly 1 ms for each render), here we propose

an alternative method of pre-warping the camera measure-

ment to explore the θ space (warpings can be performed

at 0.1 ms instead and can be parallelized with the serial

OpenGL rasterizations).

We can leverage the infinite homography, H∞ = KRK−1,

and apply a bank of precomputed rotational mappings to the

source image,

u
i′ = KRK−1

u
i. (4)

This technique allows us to use the OpenGL pipeline to

generate only nx ×ny synthetic views, first, then compare

each against nθ (warped) measurements. We still evaluate

the same number of candidate pairs, though we significantly

reduce our OpenGL pipeline overhead. A sample of these

rotations can be seen in Fig. 5.

C. Normalized Mutual Information Image Registration

Mutual information has been successfully used in various

fields for registering data from multi-modal sources. Mutual

information provides a way to statistically measure the

mutual dependence between two random variables, A and

B. Most commonly, mutual information is defined in terms

of the marginal and joint entropies of each:

MI(A,B) = H(A) +H(B)−H(A,B), (5)

where these entropies can be realized by evaluating the

Shannon entropy over the random variables A and B:

H(A) = −
∑

a∈A

p(a) log p(a), (6)

H(B) = −
∑

b∈B

p(b) log p(b), (7)

H(A,B) = −
∑

a∈A

∑

b∈B

p(a, b) log p(a, b). (8)

This mutual information formulation clearly demonstrates

that maximization of mutual information is achieved through

the minimization of the joint entropy of A and B. This

optimality coincides with minimizing the dispersion of the

two random variable’s joint histogram.

By viewing the problem in this information theoretic

way, we are able to capture more interdependency between

random variables than with simple similarity or correlation-

based measures. For example, tar strips in the road frequently

appear dark in LIDAR reflectivity, yet bright in visual

imagery. Correlative methods can only measure either a

negative or positive correlation and often fails under vary-

ing illumination. However, because maximization of mutual

information is concerned with seeking tightly compact joint

distributions, we can successfully capture this mutual depen-

dence (see Fig. 6(b)). Note that it would be quite difficult to

create a hand-tuned feature detector that could identify this

type of information for localization.

Because our source imagery and predicted views have

varying amount of overlap (largely due to our pre-warping

technique), we instead employ a normalized mutual informa-

tion measure. The amount of overlap between two candidate

images can bias the standard mutual information measure

toward lower overlap image pairs [22]. To avoid these effects,

Studholme et al. proposed an overlap invariant measure of

mutual information, normalized mutual information (NMI):

NMI(A,B) =
H(A) +H(B)

H(A,B)
. (9)

This measure shares the same desirable qualities of the

typical mutual information shown in (5), but is more robust

to overlap changes.

In summary, our image registration amounts to the follow-

ing optimization:

(

x̂k, ŷk, θ̂i

)

= argmax
(xk,yk,θi)

NMI (Ci, Pk), (10)

where θi spans the pre-warping of source imagery, Ci, and

〈xk, yk〉 explores the local search around our prior belief by

generating synthetic views, Pk.



V. FILTERING FRAMEWORK

Our image registration is fairly agnostic to filtering frame-

work, so here we briefly present an EKF localization frame-

work. Due to the near-planar surface model, we are able to

treat localization as a 3-DOF optimization, with the state

vector µk = {xk, yk, θk}.

We define a discrete time process model and incorporate

only image registration corrections into our state filter.

Predict µ̄k = Fk−1µk−1

Σ̄k = Fk−1Σk−1F
⊤
k−1 +Qk−1

Update Kk = Σ̄kH
⊤
k (HkΣ̄kH

⊤
k +Rk)

−1

µk = µ̄k +Kk

(

zk − hk(µ̄k)
)

Σk = (I−KkHk)Σ̄k(I−KkHk)
⊤ +KkRkK

⊤
k

Here, Fk−1 represents our plant model that integrates mea-

surements from an Applanix IMU with uncertainty Qk−1,

Hk is a linear observation model (identity matrix), and Kk is

the corrective Kalman gain induced by our image registration

measurement zk (with uncertainty Rk). The measurement zk
is exactly the output of our image registration in (10) and

Rk is estimated by fitting a covariance to the explored cost

surface, as is done in [23].

Our filter is initialized in a global frame from a single

dual-antenna GPS measurement with high uncertainty, which

provides a rough initial guess of global pose with orientation.

We adaptively update our search bounds to ensure that we

explore a 3-σ window around our posterior distribution.

This dynamic approach allows us to perform an expensive,

exhaustive search to initially align to our prior map while

avoiding local maxima, then iteratively reduce the search

space as our posterior confidence increases. We restrict the

finest search resolution to be 20 cm over ± 1 m. Note that

aside from using GPS for initializing the filter, this proposed

localization method only uses input from inertial sensors, a

wheel encoder, and a monocular camera.

VI. RESULTS

We evaluated our theory through data collected on our

autonomous platform, a TORC ByWire XGV, as seen in

Fig. 1. This automated vehicle is equipped with four Velo-

dyne HDL-32E 3D LIDAR scanners, a single Point Grey

Flea3 monocular camera, and an Applanix POS-LV 420

inertial navigation system (INS).

Algorithms were implemented using OpenCV [24],

OpenGL, and CUDA and all experiments were run on a

laptop equipped with a Core i7-3820QM central processing

unit (CPU) and mid-range mobile GPU (NVIDIA Quadro

K2000M).

In collecting each dataset, we made two passes through

the same environment (on separate days) and aligned the

two together using our offline SLAM procedure outlined in

§III. This allowed us to build a prior map ground-mesh on

the first pass through the environment. Then, the subsequent

pass would be well localized with respect to the ground-

mesh, providing sufficiently accurate ground-truth in the

experiment (accuracy an order of magnitude greater than

our localization errors). Experiments are presented on two

primary datasets:

• Downtown: 3.0 km trajectory through downtown Ann

Arbor, Michigan in which multiple roads are traversed

from both directions and the dataset contains several

dynamic obstacles.

• Stadium: 1.5 km trajectory around Michigan Stadium in

Ann Arbor, Michigan. This dataset presents a compli-

cated environment for localization as half of the dataset

is through a parking lot with infrequent lane markings.

A. Image Registration

Since our odometry source has significantly low drift-rates,

image registration deficiencies can be masked by a well-

tuned filtering framework. Thus, we first look directly at the

unfiltered image registration within the vicinity of ground-

truth results.

To evaluate our image registration alone, we took our

ground truth pose belief over the Downtown dataset and tried

to perform an image registration to our map once a second.

Ideally, we should be able to perfectly register our prior map,

however, due to noise or insufficient visual variety in the

environment, we end up with a distribution of lateral and

longitudinal errors.

We present these results in two ways. First, we show

our vehicle’s trajectory through the prior map in which we

color our longitudinal and lateral errors at each ground-

truth pose, shown in Fig. 8. In this figure, larger and

brighter markers indicate a larger error in registration at

that point. One can immediately notice that we are not

perfectly aligned longitudinally on long, straight stretches;

during these stretches, the system frequently relies on a

double, solid lane marking to localize off of. To maintain

accuracy, the system requires occasional cross-streets, which

provide more signal for constraining our pose belief.

Second, we show the same results in histogram form, as

can be seen in Fig. 9, where we see that our registration

is primarily concentrated within ±30 cm of our ground-

truth. A common mode can be found in the tails of the

histograms. This is caused by areas that are visually feature

poor or obstructed by significant obstacles; for example, lane

markings can often be perceived by the survey vehicle’s

LIDAR scanners and captured in our prior map, yet the

subtle transition between pavement and faded lane markings

cannot be observed by our camera. In these scenarios, the

optimal normalized mutual information will try to pull the

registration toward the edges of our prior map—the edges

are often feature poor as well, and this alignment minimizes

the joint entropy of the two signals.

Finally, we present several scenarios of our image reg-

istration succeeding (Fig. 6) and common causes of failure

(Fig. 7). These figures were generated by exploring within a

local window around known ground truth.

B. Filtered Localization

We next looked at the filtered response of our system

that incorporates the projective image registration into an



(a) Typical observation, unaffected by dynamic obstacle

(b) Negative correlation captured (bright tar strips in imagery aligns with dark in prior map)

(c) Our method demonstrates robustness to shadows

Fig. 6: Successful image registrations. From left to right, we show the source image, the best predicted image by our image registration, an
alpha-blending of the source and predicted image, and the normalized mutual information cost map. Each cell in the cost map represents
a different θ-slice of the 3D cost surface (the maxima is marked with a green ‘+’).

(a) Our method is not robust to all dynamic obstacles, as shown in this figure

(b) Poor imagery relative to prior map prevents registration

(c) Only constrained laterally by double lane marker

Fig. 7: Failure modes of our image registration (see Fig. 6 for image descriptions).



(a) Longitudinal Errors (b) Lateral Errors

Fig. 8: Longitudinal and lateral errors in our image registration, sampled at each second of our trajectory; larger and brighter markers
indicate regions where image registration produced higher errors longitudinally (a) or laterally (b). In (a), we see that, especially on the
third street from the bottom, we are only well constrained longitudinally in and around intersections; quite often, we are only constrained
laterally due to a double, solid lane divider being the only feature in view. In (b), we see that our method provides good lateral registration—
the few bright spots seen are when the vehicle is stopped at an intersection with a vehicle obstructing our view. Note that in these two
figures, perfect longitudinal or lateral registration is indicated by dark red or green, respectively.
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Fig. 9: Histograms of longitudinal and lateral error that our pro-
jective image registration produces (i.e., we are not using our
localization filter to generate this). Most frequently, our proposed
method is able to stay within ±30 cm of ground truth. Large
frequency in the tails of the histograms are caused by feature poor
regions where the NMI biases towards the edges of the search limits
(which was ±1.5 m here).

EKF localization framework (see also the accompanying

video attachment). Moreover, we compare our localization

performance against our own implementation of the state-of-

the-art LIDAR-based localization proposed by Levinson et al.

in [2], [3]. Our LIDAR-based localizer builds orthographic

ground images using the four Velodyne HDL-32E’s onboard;

these orthographic ground images can then be aligned to an

orthographic prior map built using an accumulation of these

scans.

We present longitudinal and lateral errors over time for

GPS, LIDAR-based localization, and our proposed single

camera algorithm within the Downtown and Stadium datasets

(see Fig. 10). Our proposed solution is able to maintain

error levels at a similar order of magnitude as the LIDAR-

based options, while using a sensor that is several orders of

magnitude cheaper.

Note that the Stadium results show a rather large variance

in longitudinal error; this is because half of the dataset is

through a parking lot containing little visual variation. Also,

we are slow to initially converge longitudinally because the

first 20 s of the run is on a two-lane road containing only a

double, solid lane marker.

These results are also summarized in Table I. Here we

show that we are able to achieve longitudinal and lateral

root mean square (RMS) errors of 19.1 cm and 14.3 cm,

respectively, on the Downtown dataset. Further, we obtain

longitudinal and lateral RMS errors of 45.4 cm and 20.5 cm,

respectively, on the Stadium dataset.

Downtown RMS Error Stadium RMS Error

Method Longitudinal Lateral Longitudinal Lateral

GPS 91.0 cm 100.5 cm 81.7 cm 73.4 cm

LIDAR-based 12.4 cm 8.0 cm 14.3 cm 10.9 cm

Proposed 19.1 cm 14.3 cm 45.4 cm 20.5 cm

TABLE I: Comparison of RMS errors for GPS, LIDAR-based lo-
calization, and our proposed vision-only localization. Our method is
able to maintain sufficiently well localized for use in an automated
vehicle.

VII. CONCLUSION

In this paper, we showed that a single monocular camera

can be used as an information source for visual localization

in a 3D LIDAR map containing surface reflectivities. By

maximizing normalized mutual information, we are able to

register a camera stream to our prior map. Our system is
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(a) Downtown—Filtered Results.
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(b) Stadium—Filtered Results.

Fig. 10: Here we present our localization accuracy in terms of longitudinal and lateral error relative to SLAM-optimized ground-truth over
time. Our proposed solution achieves a similar order of magnitude performance as the state-of-the-art LIDAR-based solutions while being
several orders of magnitude cheaper. GPS alone is presented to show that it cannot provide reliable localization for automated vehicles.
Despite significant longitudinal errors in the Stadium dataset, we are still able to maintain lateral alignment, which is critically important
for lane-keep.

aided by a GPU implementation, leveraging OpenGL to gen-

erate synthetic views of the environment; this implementation

is able to provide corrective positional updates at ∼ 10 Hz.

Moreover, we compared our algorithm against the state-of-

the-art LIDAR-only automated vehicle localization, revealing

that our approach can achieve a similar order of magnitude

error rate, with a sensor that is several orders of magnitude

cheaper.
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