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Abstract

This paper reports on a fast multiresolution scan matcher for local vehicle localization of self-driving cars. State-of-
the-art approaches to vehicle localization rely on observing road surface reflectivity with a three-dimensional (3D) light
detection and ranging (LIDAR) scanner to achieve centimeter-level accuracy. However, these approaches can often fail
when faced with adverse weather conditions that obscure the view of the road paint (e.g., puddles and snowdrifts),
poor road surface texture, or when road appearance degrades over time. we present a generic probabilistic method for
localizing an autonomous vehicle equipped with a 3D LIDAR scanner. This proposed algorithm models the world as
a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we
rasterize to facilitate fast and exact multiresolution inference. Results are shown on a collection of datasets totaling
over 500 km of road data covering highway, rural, residential, and urban roadways, in which we demonstrate our
method to be robust through heavy snowfall and roadway repavements.

1 Introduction

In order to navigate autonomously, the prevalent ap-
proach to self-driving cars requires precise localization
within an a priori known map. Rather than using the
vehicle’s sensors to explicitly extract lane markings, traf-
fic signs, etc., metadata is embedded into a prior map,
which reduces the complexity of perception to a localiza-
tion problem. State-of-the-art methods (Levinson et al.,
2007; Levinson and Thrun, 2010) use reflectivity mea-
surements from three-dimensional (3D) light detection
and ranging (LIDAR) scanners to create an orthographic
map of ground-plane reflectivities. Online localization is
then performed with the current 3D LIDAR reflectivity
scans and an inertial measurement unit (IMU).

Reflectivity-based methods alone can fail when the
road appearance is degraded over time or occluded by
harsh weather. In this work, we seek a fast, optimal
scan matcher that allows us to quickly localize a vehicle
within a prior map by exploiting the 3D structure of the
scene in addition to ground-plane reflectivities.

We propose the use of a pair of Gaussian mixture
maps—a two-dimensional (2D) grid structure where
each grid cell contains a Gaussian mixture model. One
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Fig. 1: Overview of our proposed LIDAR localization scheme. We pro-
pose the use of Gaussian mixture maps—a 2D grid over xy where each
cell in the grid holds a one-dimensional Gaussian mixture model that
accurately models the distribution of points contained in this infinite-
height cell. We consider two representations that independently model
z-height and reflectivity of points, then perform registration in these
maps by formulating a branch-and-bound search over multiresolution,
rasterized versions of the Gaussian mixture maps where coarser resolu-
tions provide an upper-bound over the finer resolutions. This method-
ology finds the guaranteed optimal registration over a user-specified
search space. The figure on the left depicts a z-height Gaussian mix-
ture map, where the grid is colored by the difference between the two
Gaussian modes in the cell, blue indicates 2 overlapping mixture com-
ponents around the ground-plane and purple indicates two distinct
modes captured including ground-plane and superstructure; the figure
on the right shows the multiresolution look-up tables that our method
uses.

such map characterizes the distribution over z-height
(i.e., vertical structure) and another for capturing the dis-
tribution over reflectivity (appearance). Gaussian mix-
ture maps allow us to fully extract all point cloud data
while mapping and compressing the distributions into a
compact, parametric representation.

When used for localization, we can again use all online



point cloud data to register against these maps, thus im-
proving robustness of our method by avoiding the need
to extract higher level features to perform registration.
While this registration may appear expensive, we present
a novel upper-bound through rasterizations of the sum
of Gaussian mixtures that enables us to formulate the
scan matching problem as a branch-and-bound search.
See Fig. 1 for a sample of these maps.

The key contributions of this paper over our previous
conference paper (Wolcott and Eustice, 2015) include:

• Data reduction of large point clouds to a compact
mixture of Gaussians, capturing both the structure
and appearance of a point cloud.

• Online rasterization of these parametric maps that
enables fast branch-and-bound registration formula-
tion for real-time, guaranteed-optimal registration,
using generic upper-bound rasterizations.

• Robust registration that jointly considers structure
and point appearance using a robust cost function
for discarding outliers.

• Implementation of our algorithms on a graphics
processing unit (GPU) that yields 40× speedup over
the central processing unit (CPU), which allows us
to localize using all measured 3D points without
spatial downsampling.

• Extensive evaluation over several hundred kilome-
ters of road data, in which we demonstrate success-
ful localization through diverse environments in-
cluding heavy snowfall, construction, and asphalt
repaving—all demonstrating robustness to appear-
ance changes.

2 Related Work

Automated vehicles require robust localization algo-
rithms with low error and failure rates. One of the
most pervasive strategies relies on observation of ground
plane reflectivities, a signal that captures lane markings,
pavement variation, tar strips, etc. Levinson et al. (2007)
initially proposed using a 3D LIDAR scanner to observe
the ground-plane reflectivities, with which they were
able to build orthographic maps of ground reflectivities
and perform localization using the current 3D LIDAR
scans and an IMU. Baldwin and Newman (2012) em-
ployed a similar approach by using a 2D LIDAR scanner
to build 3D swathes as the vehicle traversed the environ-
ment. In previous work, we demonstrated that ground-
plane reflectivities can also be used to localize a monocu-
lar camera in a 3D LIDAR reflectivity map (Wolcott and
Eustice, 2014).

Despite attempts by Levinson and Thrun (2010) to
model slight changes in appearance of these ground

(a) Good Weather (b) Light Snow on Roads

(c) Poor Texture in Road

Fig. 2: Common snapshots of orthographic LIDAR reflectivity maps.
Notice the severe degradation of quality in the snow covered roads
and the hallucination of lane markings caused by tire tracks through
snow. Also, poor texture is a common occurrence on two-lane roads,
which often result in laterally constrained cost functions.

plane maps by considering the variance of the prior
map (in addition to previous methods that only captured
the mean), appearance based methods can fail when
harsh weather is present in the environment—for ex-
ample, rain puddles and snowdrifts can build up and
occlude the view of the informative ground signal, see
Fig. 2. Additionally, long two-lane roads with a dou-
ble lane-marker between them can allow longitudinal
uncertainty to grow unbounded due to lack of texture
perpendicular to the road. Thus, to increase robustness to
these types of scenarios, we are interested in augmenting
these appearance methods by exploiting the 3D structure
of the scene that is observed with a LIDAR scanner in a
fast and efficient manner.

Specifically, we are interested in registering a locally
observed point cloud to some prior 3D representation
of our environment. Many similar robotic applications
use iterative closest point (ICP) (Besl and McKay, 1992),
generalized iterative closest point (GICP) (Segal et al.,
2009), normal distributions transform (NDT) (Magnus-
son, 2009), or other similar variants to register an ob-
served point cloud to another point cloud or distribu-
tion. Registration using these methods typically requires
defining a cost function between two scans and evalu-
ating gradients (either analytical or numerical) to itera-
tively minimize the registration cost. Due to the nature
of gradient based optimization, these methods are highly
dependent on initial position and are subject to local

2



minimums.

To overcome local minima and initialize searches near
the global optimum, several works have been proposed
that extract distinctive features and perform an align-
ment over these first. For example, Rusu (2009) and
Aghamohammadi et al. (2007) presented different fea-
tures that can be extracted and matched from a raw point
cloud. Pandey et al. (2011) bootstrap their registration
search with visual feature correspondences (e.g., SIFT).
However, these feature-based approaches rely on extract-
ing robust features that are persistent from various view-
points.

Other research has instead considered using RANSAC
to solve the global alignment problem, as is done with
the 4-Points Congruent Sets (4PCS) method of Aiger et al.
(2008), Mellado et al. (2014)’s Super-4PCS algorithm, and
the congruent pyramids of Krishnan and Saripalli (2014).
While all of these methods can handle large displace-
ments and low-overlap of point clouds, they only solve
global registration and require a refinement using ICP
methods for local registration; therefore, many of these
methods cannot be considered for real-time application
on an autonomous car.

As an alternative to searching for a single best registra-
tion for each scan, Chong et al. (2013), Kümmerle et al.
(2007), and Maier et al. (2012) all demonstrated localiza-
tion implementations built upon a Monte Carlo frame-
work. Their approach allows particles to be sampled
throughout the environment and evaluated relative to a
prior map. This filtering methodology should be more ro-
bust to local minima because the particles should ideally
come to a consensus through additional measurements—
though this is dependent on random sampling and can
make no time-based optimality guarantees.

Finally, multiresolution variations on the above algo-
rithms have been proposed that allow expanded search
spaces to be explored in a coarse-to-fine manner in hopes
of avoiding local minima. This has been applied to ICP
(Granger and Pennec, 2002), NDT (Magnusson, 2009;
Ulaş and Temelta, 2013; Ripperda and Brenner, 2005),
and occupied voxel lists (Ryde and Hu, 2010). These
searches use heuristics to greedily guide the coarse-to-
fine steps that yield good results in practice, but still
cannot guarantee global optimality.

We employ techniques presented by Olson (2009, 2015)
to formulate the multiresolution search as a branch-and-
bound problem that can guarantee global optimality over
our search space. In this work, we extend Olson (2009)
to handle full-3D point clouds by creating efficient Gaus-
sian mixture maps for fast and accurate inference, which
is quite similar to the Gaussian mixture point cloud rep-
resentation of Jian and Vemuri (2011). As in Maddern
et al. (2015), we formulate a joint cost function that al-
lows LIDAR localization using z-height and reflectivity
maps, though our approach captures the full distribution

rather than just a mean and a fixed variance.

3 Prior Maps from Pose Graphs

The first portion of our localization framework is the
offline mapping stage, which generates the map to be
used for online localization. Our goal here is to gen-
erate a map that is metrically accurate to the environ-
ment. To do this, we use the state-of-the-art in nonlinear
least-squares, pose-graph simultaneous localization and
mapping (SLAM) and measurements from a 3D LIDAR
scanner to map the 3D structure in a global frame.

Prior to the offline mapping stage, our robot has no a
priori knowledge of the environment, thus, we must em-
ploy SLAM to build a model of the environment while
simultaneously localizing within that environment. We
construct a pose-graph to solve the full SLAM problem
as shown in Fig. 3, where nodes in the graph are poses
(X) and edges are either odometry constraints (U ), laser
scan matching constraints (Z), or global positioning sys-
tem (GPS) prior constraints (G). These constraints are
modeled as Gaussian random variables; therefore, we
model the joint distribution over poses and constraints
as

P (X,U,Z,G) =

M
∏

i=1

P (xi|xi−1,ui)

K
∏

k=1

P (zk|xik ,xjk)

A
∏

a=1

P (ga|xa),

(1)

where there are M poses, K loop closures, and A GPS
prior constraints. Thus, to solve the SLAM problem, we
seek to find the maximum a posteriori (MAP) estimate
over the robot poses by minimizing the negative log of
the joint probability:

X∗ = argmax
X

P (X,U,Z,G) (2)

= argmin
X
− logP (X,U,Z,G) (3)

= argmin
X

M
∑

i=1

‖fi(xi−1,ui)− xi‖
2
Σi

+

K
∑

k=1

‖hk(xik ,xjk)− zk‖
2
Σk

+
A
∑

a=1

‖ha(xa)− ga‖
2
Σa
,

(4)

where fi( · ) is our process model, hk( · ) is our scan
matching measurement model, and ha( · ) is our GPS
measurement model. Each is corrupted by normally
distributed noise with covariance Σi, Σk, and Σa, respec-
tively. This summation equates to solving a nonlinear
least-squares problem. We use incremental smoothing
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Fig. 3: Factor graph of the pose-graph SLAM problem that we solve in the off-line mapping stage. Here, xi represents states of the robot, um

represents incremental odometry measurements, zk represents laser scan-matching constraints, and ga are GPS prior measurements.

and mapping (iSAM) (Kaess et al., 2008), which uses in-
cremental QR factorization to solve this nonlinear least-
squares problem.

Since map construction is an offline task, we do not
construct our pose-graph temporally. Instead, we first
construct a graph with only odometry and GPS prior con-
straints. With this skeleton pose-graph in the near vicin-
ity of the global optimum, we use Segal et al. (2009)’s
GICP to establish 6-degree of freedom (DOF) laser scan-
matching constraints between poses; adding both odom-
etry constraints (temporally neighboring poses) and loop
closure constraints (spatially neighboring poses) to our
pose-graph.

4 Gaussian Mixture Maps

The key challenge to fast localization is a prior represen-
tation of the world that facilitates efficient inference. We
propose using Gaussian mixture maps that discretize the
world into a 2D grid over the xy plane, where each cell in
the grid contains a Gaussian mixture that characterizes
the 3D points contained within this infinite column. To
capture both structure and appearance, we construct a
pair of independent Gaussian mixture maps that cap-
ture the z-height and reflectivity distribution of each cell,
respectively.

The Gaussian mixture map over z-height offers a
compact representation that is quite similar to a 2.5D
map, with the flexibility of being able to simultaneously
and automatically capture the multiple modes preva-
lent in the world—including tight distributions around
the ground-plane and wide distributions over super-
structure. This representation is quite similar to NDT
maps—we see Gaussian mixture maps existing in the
space between the 2D-NDT (Biber, 2003) and the 3D-
NDT (Magnusson, 2009). Like these approaches, Gaus-
sian mixture maps can be viewed as a Gaussian mixture
over the environment, though our maps are a collection
of discontinuous one-dimensional Gaussians rather than
a continuous multivariate Gaussian. This means that,
when registering a point, likelihood evaluation is a func-
tion of z conditioned on the corresponding xy cell the
point falls in.

Moreover, the z-height Gaussian mixture map is also

similar to multi-level surface (MLS) maps from Triebel
et al. (2006), which cluster the point cloud into horizontal
and vertical structure components using distance-based
heuristics. Rather than reducing our point cloud into
similar discrete intervals to characterize the z-height dis-
tribution, we instead run expectation-maximization (EM)
to fit a Gaussian mixture model for each grid cell to cap-
ture the true probabilistic distribution of our observed
point cloud.

The reflectivity Gaussian mixture map is a generalized
version of the probabilistic reflectivity maps presented
by Levinson and Thrun (2010). Their approach fits a
single Gaussian per cell, while Gaussian mixture maps
can fit more than one mode to capture above-ground
appearance features (e.g., signs, building facades, foliage)
as well as accurately capture the true distributions at the
edge of lane markers.

The reminder of this section details construction of
these maps and how they are used in a joint framework
for robustly registering a vehicle equipped with LIDAR
sensors.

4.1 Map Construction

Beginning with our skeleton pose-graph detailed in
Section 3, we have a ground truth set of poses, X =
{xi}

M
i=0 optimized into a locally consistent frame. Each

ground truth pose has a corresponding point cloud,

Pi = {pj}
n
j=1, where pj = [xj , yj , zj , rj ]

⊤ is the met-
ric position of a point in space and its corresponding
reflectivity as measured by our laser scanner. Each point
is motion compensated according to our odometry to
account for motion during point cloud acquisition.

We then reproject each of these point clouds into
the SLAM optimized frame, accumulating into a sin-
gle, global point cloud, P = {xi ⊕ Pi}

M
i=0, where ⊕ de-

notes the head-to-tail composition operation (Smith et al.,
1990) transforming each body-frame point cloud into the
SLAM frame. Accumulating every point directly would
be inefficient in memory and computation, so we instead
use a sparse histogram implemented with a hash table.
Thus, we incrementally build two separate sparse his-
tograms Hz(x, y, z) and Hr(x, y, r) whose hash key is a
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bitwise concatenation of cell locations,

keym(x, y,m) = ⌊x/qxy⌋⌊y/qxy⌋⌊m/qm⌋ (5)

where qxy is the corresponding Gaussian mixture map
grid resolutions that will be analyzed in Section 7.2,
m ∈ {z, r}, and qm is the resolution set to the desired
fidelity of z and r. The corresponding hash value is a
histogram count that is gradually incremented as more
points are added to the sparse histogram. In order to
capture the variance of our LIDAR scanner and reduce
discretization errors, we blur each point by incrementing
neighboring histogram cells according to a Gaussian ker-
nel with standard deviation of 5 cm. This helps us later
account for measurement uncertainty in our likelihood
evaluation.

Next, we perform weighted EM for each “column” in
Hz and Hr to construct Gaussian mixture maps for z-
height, Gz ← Hz , and reflectivity, Gr ← Hr. These two
reductions are independent and can again be generalized
as Gm ← Hm for clarity.

For a specific cell (x̂, ŷ), we extract the corresponding
histogram “column” of data,

Em(x̂, ŷ) =
{

e
(x̂,ŷ)
i

}f

i=1
= Hm(x = x̂, y = ŷ, :), (6)

where e
(x̂,ŷ)
i = [ci,mi]

⊤ is the ith histogram entry with
count ci for the cell centered at (x̂, ŷ,mi); f is the number
of cells observed in this histogram column.

We are then interested in condensing this column of
data into a Gaussian mixture, Gm(x = x̂, y = ŷ) =
{

g
(x̂,ŷ)
j

}g

j=1
, where g

(x̂,ŷ)
j = [wj , µj , σj ]

⊤ is the jth com-

ponent of g Gaussians, parameterized by weight, mean,
and standard deviation, respectively. This is achieved
using the EM algorithm to iteratively estimate likelihood
of Gaussian components given the data (Expectation)
and re-estimate new components that maximize this ex-
pected likelihood (Maximization). Histogram counts, ci,
are used to weight the expected likelihood derived in the
expectation step.

Contrary to our previous work that iterated through
multiple numbers of Gaussians, g, choosing the num-
ber of parameters that best fit the data while penalizing
proportional to number of mixture components to avoid
overfitting (Wolcott and Eustice, 2015), we found that
this approach does not scale well with creating large
maps and overcomplicates the online usage of the maps.
We instead suggest a fixed number of Gaussians so that
EM only needs to be run once per map cell. In the worst
case, this results in redundant Gaussians summing to the
same resulting likelihood distribution. We provide dis-
cussion and recommendations in Section 7.2.1 for how
many Gaussians to choose and a visual depiction of what
each map is capturing can be seen in Fig. 13, Fig. 14, and
Fig. 15.

In this work, we present two methods for deriving
the Gaussian mixture map over reflectivity. First, we
consider the reflectivity of the entire point cloud result-
ing in Gr ← Hr. Alternatively, we can use the 3D posi-
tion of each point in space to extract the ground-plane
only using a region growing method emanating from
the known ground height around the vehicle; this results
in a Gaussian mixture over ground surface reflectivities
Gr,grd ← Hr,grd. This is a general representation that is
identical to the probabilistic maps presented by Levinson
and Thrun (2010) when the number of Gaussian compo-
nents is g = 1.

4.2 Registration Formulation

Given a point cloud, P , we seek to find the optimal
transformation that maximizes the likelihood of being
drawn from the underlying Gaussian mixture maps,
G = {Gz,Gr}. This is directly formulated as the maxi-
mum likelihood estimate (MLE) to find the optimal align-
ment T *,

T ∗ = argmax
T

L(P|T,G), (7)

where T = [x, y, z, φ, θ, ψ]
⊤ is a 6-DOF transformation

that transforms points of P into G.

The point cloud is made up of a set of n points, P =

{pi}
n
i=1, where pi = [xi, yi, zi, ri]

⊤ is the metric position
and reflectivity of each point. We assume independence
between points to arrive at

T ∗ = argmax
T

∏

i

L(pi|T,G). (8)

We further assume independence between z-height of a
point and its reflectivity, and use the chain rule over xi
and yi,

L(pi|T,G) = L(zi|T,Gz, xi, yi)L(ri|T,Gr, xi, yi)L(xi, yi).
(9)

We further marginalize out xi and yi, realizing that this
distribution is fully captured by the blurring in our
maps—thus, the corresponding distribution L(xi, yi) is
already accounted for in the likelihood measure. This
results in the joint likelihood over structure and appear-
ance as

L(pi|T,G) = L(zi|T,Gz, xi, yi)L(ri|T,Gr, xi, yi). (10)

These likelihoods are computed by first transforming

the point [xi, yi, zi]
⊤ by T , resulting in [x′i, y

′

i, z
′

i]
⊤
= T ⊕

[xi, yi, zi]
⊤. This allows us to compute each likelihood by

indexing into the corresponding Gaussian mixture maps
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and summing over the mixture components,

L(zi|T,Gz, xi, yi) = L(z
′

i|Gz(x
′

i, y
′

i))

=
∑

j

wz
ij

√

2πσz
ij

2
exp

(

−
(z′i − µ

z
ij)

2

2σz
ij

2

)

,

(11)
and

L(ri|T,Gr, xi, yi) = L(ri|Gr(x
′

i, y
′

i))

=
∑

j

wr
ij

√

2πσr
ij

2
exp

(

−
(ri − µ

r
ij)

2

2σr
ij

2

)

,

(12)
where wz

ij , µz
ij , and σz

ij are the weight, mean, and stan-

dard deviation, respectively, of the jth component of
Gz(x

′

i, y
′

i) and wr
ij , µr

ij , and σr
ij are the weight, mean, and

standard deviation, respectively, of the jth component of
Gr(x

′

i, y
′

i).
However, we notice that these points may be drawn

from the underlying Gaussian mixture maps or are obsta-
cles drawn from a separate distribution. To limit the ef-
fect of outliers in our registration formulation, we modify
(11) and (12) by mixing them with a uniform distribution.
Specifically, the robust likelihoods take the form

L′(zi|T,Gz, xi, yi) = αL(zi|T,Gz, xi, yi) + (1− α)U(zi),
(13)

and

L′(ri|T,Gr, xi, yi) = βL(ri|T,Gr, xi, yi) + (1− β)U(ri),
(14)

where α and β are mixing parameters that control the
region of influence of the underlying Gaussian mixture—
having the effect of truncating the Gaussian distribution
outside this region of influence. Further, the range of the
uniform distributions are inconsequential, though are set
to the range of the data ([−100, 100] for zi, and [0, 255]
for ri). The resulting maximization including robust cost
functions then looks like

T ∗ = argmax
T

∏

i

L′(zi|T,Gz, xi, yi)L
′(ri|T,Gr, xi, yi).

(15)

The addition of the robust cost function is quite impor-
tant for points in the roadway where Gaussian mixtures
of the ground plane z-height typically have an extremely
small variance. Without the robust formulation, these
points would dominate the cost function and force the
registration to overfit to outliers (e.g., obstacles). More-
over, we compute the log-likelihood for numerical stabil-
ity, which allows us to compute a running sum indepen-
dently as a parallel reduction.

Further, if the reflectivity Gaussian mixture map is
modeled using the ground plane only (Gr,grd is used),
then we only evaluate the reflectivity likelihood using

Algorithm 1 Full Registration

Input: GMM G = {Gz,Gr}, Point Cloud P , guess T0 =
(x0, y0, z0, φ0, θ0, ψ0), search space X , Y , Ψ

Output: Optimal registration, T ∗ = (x∗, y∗, z∗, φ∗, θ∗, ψ∗)

1: (x̂, ŷ, z0, φ0, θ0, ψ̂) = SEARCH(x0, y0, z0, φ0, θ0, ψ0)
2: (x∗, y∗, z∗, φ∗, θ∗, ψ∗) = HILL-CLIMB (x̂, ŷ, z0, φ0, θ0, ψ̂)

Algorithm 2 Exhaustive Search

Input: GMM G = {Gz,Gr}, Point Cloud P , guess T0 =
(x0, y0, z0, φ0, θ0, ψ0), search space X , Y , Ψ

Output: Best 2D registration = (x̂, ŷ, ψ̂)
1: best = −∞
2: for ψi in ψ0 +Ψ do
3: apply rotation ψi to P
4: for xi, yi in {x0, y0}+XY do
5: likelihood = L(P|xi, yi,G) ⊲ (15)
6: if likelihood > best then
7: best = likelihood
8: (x̂, ŷ, ψ̂) = (xi, yi, ψi)
9: end if

10: end for
11: end for

ground points from P . Online we use the same region
growing method to extract the local ground plane; points
not belonging to the ground plane will have a fixed like-
lihood that has no impact on the cost function. Note,
however, that the z likelihood is still computed for all
points in P .

Considering now the optimization to find T ∗, we make
the observation that a typical wheeled-robotic platform
is well constrained in roll, pitch, and height because (i)
most IMUs constrain roll and pitch to within a few de-
grees due to observation of the gravitational force (note
that wheeled platforms only traverse minor roll/pitch)
and (ii) any wheeled vehicle must be resting on the
ground surface, which constrains height with a prior
map. Thus, (7) can be maximized by exhaustively search-
ing over a range of x, y, and heading transformations.
As in Olson (2009), we can efficiently compute these
by applying the heading rotation to all points first, then
evaluate at xy translations.

With our solution within the vicinity of the opti-
mum, we then perform a simple, constrained 6-DOF
hill-climbing to lock into the global optimum over our
search space, T ∗. This allows for the small, but necessary
refinements of height, roll, and pitch. Because our regis-
tration problem is parameterized by the search bound-
aries, we are able to use pose priors to improve run-time
performance. A detailed overview of registration into
our Gaussian mixture map can be found in Algorithm 1
and Algorithm 2.
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Algorithm 3 Multiresolution Search

Input: Base and Multires GMM G = {Gz,Gr}, Point Cloud P ,
guess (x0, y0, z0, φ0, θ0, ψ0), search space X , Y , Ψ

Output: Best registration = (x̂, ŷ, ψ̂)
1: // init. priority queue with search over coarse resolution
2: Initialize PriorityQueue ⊲ priority = log-likelihood
3: coarsest = N
4: Prot = empty ⊲ rotated point clouds
5: for ψi in h0 +Ψ do
6: // store rotated clouds — do transformations once
7: T = f(0, 0, z0, φ0, θ0, ψi) ⊲ [x, y] applied later
8: Prot [ψi] = T ⊕ P
9: for xi in x0 +X/2coarsest do

10: for yi in y0 + Y/2coarsest do
11: cur.layer = coarsest
12: cur. [x, y, ψ] = [xi, yi, ψi]
13: cur.L = L(Prot [ψi] |xi, yi,G [coarsest]) ⊲ (15)
14: PriorityQueue.add(cur)
15: end for
16: end for
17: end for
18: // iterate priority queue, branching into finer resolutions
19: while prev = PriorityQueue.pop() do
20: if prev.layer == 0 then
21: // at finest resolution, can’t explore anymore
22: // this is the global optimum

23: (x̂, ŷ, ĥ) = prev. [xi, yi, ψi]
24: return(x̂, ŷ, ψ̂)
25: end if
26: // branch into next finer resolution
27: for xi in

[

prev.x, prev.x+ 2prev.layer−1
]

do

28: for yi in
[

prev.y, prev.y + 2prev.layer−1
]

do
29: cur.layer = prev.layer − 1
30: cur. [x, y, ψ] = [xi, yi, prev.ψ]
31: cur.L = L(Prot [prev.ψ] |xi, yi,G [cur.layer]) ⊲

(15)
32: PriorityQueue.add(cur)
33: end for
34: end for
35: end while

5 Multiresolution Branch-and-Bound

Typically, exhaustively searching for the maximum like-
lihood is not a realistic, tractable solution. In this section,
we replace the expensive, exhaustive search with an effi-
cient multiresolution branch-and-bound search.

5.1 Multiresolution Formulation

The idea behind our multiresolution search is to use a
bounding function that can provide an upper-bound
over a collection of cells in our reference map. This
means that a majority of the search can be executed at a
coarser resolution that upper-bounds the likelihood at
finer scales. Using tight bounds can transform the ex-
haustive search presented in the previous section into a
tractable search that makes no greedy assumptions. The

branch-and-bound strategy achieves exactly the same re-
sult as the exhaustive search, only arrives at it in a more
efficient manner.

For evaluating a single transformation (i.e., (Tx, Ty)),
one must evaluate the log-likelihood of each point in
a point cloud, then sum all of these for a total log-
likelihood. Therefore in the exhaustive case, each point
is evaluated against a single Gaussian mixture. In order
to search a range of transformations, such as (Tx, Ty) to
(Tx +Nqxy, Ty +Nqxy), each point is evaluated against
a total of (N + 1)2 Gaussian mixtures. However, each
cell in our map is quite spatially similar, meaning that
inference into (Tx, Ty) yields a similar log-likelihood as
(Tx + qxy, Ty), so the exhaustive search can often spend
unnecessary time in low-likelihood regions that can ide-
ally be ruled out quicker.

We formulate a branch-and-bound search that exhaus-
tively searches over the coarsest resolution providing
upper-bounds over a range of transformations. These
coarse search results are then added to a priority queue,
ranked by upper-bound likelihoods. We then iterate
through this priority queue, branch to evaluate the next
finer resolution, and add back to the priority queue. The
search is then complete once the finest resolution is re-
turned from the priority queue.

We propose a slightly different multiresolution map
structure than is traditionally considered. In many do-
mains, multiresolution searches imply building coarser
versions of your target data and making evaluations on
that (e.g., the image pyramid). However, our approach
creates many overlapping coarse blocks (as depicted in
Fig. 4) to better compute tight upper-bounds. We could
use the traditional multiresolution scheme, though our
technique trades off for better bounds as opposed to a
smaller memory footprint.

Because our maps are the same resolution through-
out each multiresolution layer, this results in us tak-
ing larger strides through the coarser resolutions, where
stride = 2layer · qxy. Branching factor and number of
multiresolution maps is completely user-defined. In
our experiments, we opted for a branching factor of 2;
that is, (Tx, Ty) branches into (Tx, Ty), (Tx + stride, Ty),
(Tx, Ty + stride), and (Tx + stride, Ty + stride) of the
finer resolution map. Refer to Algorithm 3 and Fig. 4 for
a more detailed overview.

5.2 Rasterized Gaussian Mixture Maps

Finding tight, parametric bounds for a collection of Gaus-
sians is a rather difficult task, so we instead opt for a
non-parametric solution in the form of rasterized lookup
tables. We take our parametric Gaussian mixture map
and compute a rasterized version by evaluating the log-
likelihood at a fixed discretization, generating a raster-
ization for each grid cell. Upper bounds can then be
exactly computed between neighboring grid cells by tak-
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Multires-3

Multires-2

ga gb gc gd ge gf gg gh

ga-b gb-c gc-d gd-e ge-f gf-g gg-h gh-i

ga-d gb-e gc-f gd-g ge-h gf-i gg-j gh-k

ga-h gb-i gc-j gd-k ge-l gf-m gg-n gh-o

a b c d e f g h

Fig. 4: A one-dimensional example of our multiresolution search formulation, where we demonstrate how a single 3D point would traverse
through the multiresolution tree. Given some knowledge that the best transformation aligns the point somewhere within a-h, we begin the
search at the coarsest resolution in cell a. Using branch-and-bound and computing upper-bounds over the Base GMM distribution in the
multiresolution layers, we can efficiently search large spaces by avoiding low likelihood registrations (as depicted by dashed lines and open
circles). In this figure, the notation ga-h refers to the fact that inference in that cell is an upper-bound over the distributions ga – gh, where g

x
is

the Gaussian mixture in cell x of the Base GMM. Note that contrary to several other multiresolution approaches, coarser resolutions in our
framework do not imply a coarser resolution map. We maintain uniform resolution by using many overlapping coarse blocks to facilitate tighter
upper-bounds; a truly coarser map in the Multires-1 layer would combine the first two cell into a single ga-c cell.

ga gb ge gf
gc gd gg gh

gi gj gm gn
gk gl go gp

(μa, σa) (μd, σd) 

(μb, σb) 

(μc, σc) 

Gaussian 
Mixture Map
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gc gd gg gh

gi gj gm gn
gk gl go gp

Rasterized
GMM

ga gb ge gf
gc gd gg gh

gi gj gm gn
gk gl go gp

Rasterized
Multires-1 GMM

ga gb ge gf
gc gd gg gh

gi gj gm gn
gk gl go gp

Rasterized
Multires-2 GMM

z

p(z)

z z

zga gb

gc gd

p(z) p(z)

p(z)

z ga-d

p(z)

z ga-p

p(z)

Fig. 5: Demonstration of the rasterization performed on the original Gaussian mixture map to facilitate exact upper-bounds. We begin with a
parametric 2D map that encodes a Gaussian mixture in each cell, where the grid is colored by the difference between the two Gaussian modes in
the cell, blue indicates 2 overlapping mixture components around the ground-plane and purple indicates two distinct modes captured including
ground-plane and superstructure. We then rasterize each cell (note we display the likelihood, not log-likelihood for clarity); these rasterized
representations can then be used to create rasterized upper-bounds for multiresolution search. The first step of this evaluates the upper-bound
at each discretization by taking the max of the underlying cell rasterizations. Note that as you continue to move to coarser resolutions the
distribution generalizes quite well—data for this figure was generated from looking at the edge of a tree, where the multiresolution map can
capture the two common modes of tree limbs and ground-plane. In this figure, the notation ga-d means the rasterization is an upper-bound over
the ga – gd rasterizations.

ing the max across each discretization in the rasterized
lookup table. While localizing, likelihoods at the finest
resolution are computed using the original Gaussian
mixture maps and the rasterized maps only facilitate fast
traversal through the search tree. See Fig. 5 for a visual
representation of these maps.

For a pure localization task such as ours, lookup tables
can be pre-computed offline. However, we decided to
store only the parametrized Gaussian mixture maps on
disk to avoid storing extremely large maps. We are then
able to efficiently compute rasterized multiresolution
maps online from our parameterized Gaussian mixture
map as a background job. This is done incrementally
using each successive multiresolution layer to build the
next.

Note that our rasterized multiresolution maps are a
generic representation that can also be used with other

map types including standard NDT, MLS maps, occu-
pancy voxels, etc. After converting one of these maps to
a rasterized multiresolution map, the remainder of our
proposed pipeline can be used for fast registration of a
point cloud.

A sample search through our multiresolution search
space can be seen in Fig. 6. The shown example explores
a 25 m× 25 m area at 16 cm resolution in approximately
2 seconds, while only needing to evaluate 1% of the trans-
formations necessary in the exhaustive search.

6 Localization Filter

Our localization task is framed as an estimation problem
over the full 6-DOF dynamics of our vehicle, where our
state vector is µk = {xk, yk, zk, φk, θk, ψk}. We propose
to use an extended Kalman filter (EKF) to estimate our
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Multires-5
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Multires-3

Multires-2

Multires-1

Multires-6

hi hi+3 hi+6 hi+9 hi+12 hi+15hi-3hi-6hi-9hi-12hi-15

Fig. 6: Sample multiresolution search space traversal. Top-bottom represents coarse-to-fine searching, left-right represents different slices
through our heading search, and each pixel depicts an xy translation searched. Log-likehoods are colored increasingly yellow-black, purple and
non-existent cells are areas not needed to be explored by the multiresolution search, and the optimal is indicated in green. We exhaustively
search the coarsest resolution, then use branch-and-bound to direct our traversal through the tree. For typical scan alignments, we only have to
search approximately 1% of the transformations in the finer resolutions, doing a majority of the work in the coarser resolutions.

vehicle state from various measurement sources. An EKF
provides a simple way to fuse information from multi-
ple sensing modalities; though in this section we only
consider integrating our vehicle odometry and multires-
olution registrations into our EKF estimation.

We define a discrete time process model and incorpo-
rate our registration corrections into our state filter:

Predict µ̄k = f(µk−1,uk)
Σ̄k = FkΣk−1F

⊤

k +Qk

Update Kk = Σ̄kH
⊤

k (HkΣ̄kH
⊤

k +Rk)
−1

µk = µ̄k +Kk

(

zk − hk(µ̄k)
)

Σk = (I−KkHk)Σ̄k(I−KkHk)
⊤ +KkRkK

⊤

k

Here, f( · ) is our nonlinear plant model that integrates
odometry measurements from an Applanix IMU, uk,
with uncertainty Qk and linearized Jacobian Fk. Hk is a
linear observation model (identity matrix) and Kk is the
corrective Kalman gain induced by our registration mea-
surement with uncertainty Rk. The measurement zk is
exactly the output of our multiresolution registration de-
tailed in Section 5, zk = T ∗. We use fixed measurement
uncertainties, Rk, that were empirically determined (dis-
cussed in Section 7.4); however, one could fit a conserva-
tive covariance using the explored search space as shown
by Olson (2009).

One issue with this formulation is that when measure-
ments arrive there is a non-zero latency associated with
registering the measurements. This presents a problem
when we attempt to add the measurement to our EKF
because the measurement would be applied to the future
state of the robot. Thus, as soon as the measurement
is received (near zero latency), we augment our EKF
with a delayed-state (Leonard and Rikoski, 2000). In our
discrete model, this leads to an expanded state belief as:

xk =
[

µ
⊤

k ,µ
⊤

k−1

]⊤

.

Thus, we can continue to apply odometry prediction di-
rectly to the most recent state, but apply the registration

correction on the associated delayed-state. The corre-
lation inherent between temporal poses will allow the
effect of this measurement to then propagate to the cur-
rent state belief. We then marginalize this delayed-state
as it is no longer necessary to maintain in our state vector.
This formulation also facilitates the integration of more
measurements from various sources to increase robust-
ness, despite the fact that these sources can have varying
latencies associated with them.

Our filter is initialized in a global frame from a sin-
gle dual-antenna GPS measurement with high uncer-
tainty, which provides a rough initial guess of global
pose with orientation. We adaptively update our mul-
tiresolution search bounds to ensure that we explore a
4σ window around our posterior distribution. This dy-
namic approach allows us to improve performance as our
posterior confidence increases, while leaving room to sta-
tistically eliminate outlier measurements by evaluating
the corresponding measurement normalized innovation
squared (NIS). Note that aside from using GPS for ini-
tializing the filter, our proposed localization method only
uses input from inertial sensors, a wheel encoder, and
3D LIDAR scanners.

7 Evaluation

In this section, we present a thorough evaluation of our
proposed theory covering a diverse set of real-world ex-
periments. All algorithms were implemented in C/C++
using CUDA and, unless otherwise specified, experi-
ments were run on a workstation computer equipped
with an Intel Xeon E5-2670 CPU and an NVIDIA GeForce
GTX TITAN X GPU. For parallelization in CUDA, we
parallelized the inner-loop calculation of registration like-
lihood (implemented as a parallel sum reduction).

7.1 Platforms and Datasets

We evaluate our proposed methods using data collected
on our autonomous platforms, a TORC ByWire XGV
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(a) TORC ByWire XGV (b) Ford Fusion Hybrid Autonomous
Research Vehicle

Fig. 7: Test platforms used for evaluation of multiresolution Gaussian
mixture map localization: a TORC ByWire XGV and a Ford Fusion
Hybrid Autonomous Research Vehicle. Both platforms are equipped
with 4 Velodyne HDL-32E LIDAR scanners and an Applanix POS-LV
420 INS.

(Fig. 7(a)) and a Ford Fusion Hybrid Autonomous Re-
search Vehicle (Fig. 7(b)). These automated vehicles are
equipped with four Velodyne HDL-32E 3D LIDAR scan-
ners and an Applanix POS-LV 420 IMU. Given the use
of four independent LIDAR scanners, it is crucial to per-
form extrinsic calibration between these to establish a
rigid body transformation between the IMU and each
sensor. This is achieved by formulating a pose-graph as
in Section 3 and treating the calibration parameters as
unknowns in the optimization.

Moreover, reflectivity measurements need to be cal-
ibrated against a known reference map such that mea-
surements are consistent (i) within each LIDAR scan-
ner, (ii) between LIDAR scanners on the same platform,
and (iii) between platforms, as mapping data must be
consistent with data observed online. To achieve this,
we use a method similar to that proposed by Levin-
son and Thrun (2014), which derives a map from ob-
served reflectivity to true reflectivity. In their work,
each beam rotates about an axis perpendicular to the
ground-plane, which allows for learning a mapping
observed reflectivity → real reflectivity to implicitly
account for angle of incidence. However, our rota-
tion axes are not perpendicular to the ground-plane, so
we must alter their approach by learning the mapping
{observed reflectivity, rotation} → real reflectivity.

Experiments are presented on two primary datasets
collected with our platforms:

• PG14 Dataset: Set of 14 logs collected over 3 months
with the TORC and Fusion platforms, each log
approximately 38 km in length covering a loop
near Ann Arbor, Michigan, over Plymouth Road,
Gotfredson Road, and M-14 highway. This dataset
totals 525.72 km in length, covering common use
cases including highway, rural, and residential areas
at various times of day, including rush hour. Further-
more, there were 3 construction zones that evolved
over the data collection; 2 of which resulted full
repavings approximately 0.5 km each and the third
was for sewage repairs that did not radically alter

appearance aside from large amounts of construc-
tion signage. See Fig. 8 for a visual depiction of the
route and an overview of each log.

• Downtown Dataset: Set of 5 logs collected with the
TORC platform, each spanning a 3 km loop through
downtown Ann Arbor, Michigan. This dataset to-
tals 14.92 km of urban roadways and one of these
logs was collected on a snowy day with snow ac-
tively falling and covering the ground, as depicted
in Fig. 18(a). See Fig. 9 for a visual depiction of the
route and an overview of each log.

Collectively, these datasets cover samplings through var-
ious environments including highway, urban, rural, and
residential roadways during various conditions includ-
ing heavy traffic, heavy snowfall, and construction zones.
Further, these datasets traverse road grades ranging from
−5% to 5%.

In each of these datasets, the first 2 logs are used for
map construction; this helps mitigate the effect of sta-
tionary dynamic obstacles (e.g., parked cars), which we
do not explicitly remove, but allow the EM algorithm
to blur away their impact. These two mapping logs are
stitched together into a single pose-graph, then all data
for map construction is compiled at the sparse histogram
level, as detailed in Section 4.1. Each subsequent log
was merged into this pose-graph to provide experimen-
tal ground-truth for each—we held the poses from the
mapping logs fixed such that scan registrations in the
SLAM pipeline are implemented as measurement pri-
ors. We assume the accuracy of this ground-truth is an
order of magnitude better than our localization errors;
this was verified by reprojecting LIDAR data into this
common map reference frame and visually comparing
the reconstructed surface-reflectivity for consistency.

7.2 Map Parameter Selection

This section intends to analyze the impacts of varying
map parameters, both in terms of resulting localization
errors as well as disk space requirements for storing
maps. The primary user configurable map settings in-
clude (i) grid resolution, (ii) number of Gaussians per
cell, and (iii) reflectivity maps that contain full 3D ap-
pearance (Gr) or appearance of the ground-plane only
(Gr,grd). Moreover, these first two settings can be tuned
for each map type (structure vs. appearance). All of
these variabilities lead to a wide search space of possible
map combinations.

To fully experiment and determine the optimal map
parameters, we constructed 360 maps to run evaluation
over (180 using the PG14 Dataset and 180 using the Down-
town Dataset). Each of these sets of 180 maps were made
by varying 12 grid resolutions (6.4 cm, 8.0 cm, 12.8 cm,
16.0 cm, 25.6 cm, 32.0 cm, 51.2 cm, 64.0 cm, 80.0 cm,
128.0 cm, 160.0 cm, and 256.0 cm), 5 different number
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Ann Arbor—PG14

ID Date Platform Length

P-M1 May 1, 2015 TORC 38.0 km
P-1 May 8, 2015 TORC 37.9 km
P-3 May 15, 2015 TORC 37.8 km
P-5 May 21, 2015 TORC 37.8 km
P-7 June 5, 2015 TORC 37.9 km
P-9 June 12, 2015 TORC 37.8 km
P-11 July 24, 2015 TORC 37.9 km

ID Date Platform Length

P-M2 May 1, 2015 Fusion 37.9 km
P-2 May 8, 2015 Fusion 33.4 km
P-4 May 15, 2015 Fusion 37.9 km
P-6 May 21, 2015 Fusion 37.9 km
P-8 June 5, 2015 Fusion 37.9 km
P-10 June 12, 2015 Fusion 37.9 km
P-12 July 24, 2015 Fusion 37.9 km

Total: 525.72 km

Fig. 8: PG14 Dataset: a dataset of 14 manually driven loops near Ann Arbor, Michigan, covering Plymouth Road, Gotfredson Road, and M-14
highway. This dataset was collected over a span of 3 months and covers residential roads (blue), rural roads (purple), and a highway (red).
Moreover, we observed 3 construction zones over data acquisition (orange). The two zones on the right resulted in full repavings that included
the addition of left turn lanes that were not completed until P-11 and P-12, as can be seen in the lower-right corner (images courtesy of Google
Maps). In our evaluation with this dataset, P-M1 and P-M2 were used for map construction.

11



0
.5

 k
m

0.4 km

Ann Arbor—Downtown

ID Date Platform Length

D-M1 Nov. 19, 2013 TORC 3.0 km
D-M2 Nov. 19, 2013 TORC 3.0 km
D-1 Nov. 20, 2013 TORC 3.0 km
D-2 Nov. 20, 2013 TORC 3.0 km
D-3 Dec. 17, 2013 TORC 3.0 km

Total: 14.92 km

Fig. 9: Downtown Dataset: a dataset of 5 manually driven loops through downtown Ann Arbor, Michigan, covering urban driving scenarios. D-3
was collected while heavy snow was falling and covered significant portions of the roadway. In our evaluation with this dataset, D-M1 and
D-M2 were used for map construction.
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Fig. 10: Gaussian mixture map components contained within the z-height map, Gz , capturing ground-plane, buildings, trees, lightposts, and
traffic lights. Left-to-right, each column in this figure represents a different map, ranging from a Gaussian mixture map containing only 1

component per cell to one containing 5 components per cell. Bottom-to-top, we display the mean of the ith Gaussian component, ordered
by increasing component mean (z-height); white cells indicate no Gaussian mixture component exists because no data was available during
mapping or the Gaussian mixture resulting weight was less than 0.001.

12



5
th

 G
a
u
s
s
ia

n
4
th

 G
a
u
s
s
ia

n
2
n
d
 G

a
u
s
s
ia

n
1
s
t G

a
u
s
s
ia

n

1-Gaussian Map 2-Gaussian Map 3-Gaussian Map 4-Gaussian Map 5-Gaussian Map

3
rd

 G
a
u
s
s
ia

n

0.0

51.0

102.0

153.0

204.0

255.0

Fig. 11: Gaussian mixture map components contained within the reflectivity map, Gr , capturing appearance of ground-plane, foliage, etc.
Left-to-right, each column in this figure represents a different map, ranging from a Gaussian mixture map containing only 1 component per cell
to one containing 5 components per cell. Bottom-to-top, we display the mean of the ith Gaussian component, ordered by increasing component
mean (reflectivity).
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Fig. 12: Gaussian mixture map components contained within the reflectivity map, Gr,grd, capturing appearance of ground-plane only. See Fig. 11
for more details.
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of Gaussians per grid cell (1–5), and were generated for
our 3 map types, (Gz , Gr, and Gr,grd).

In our implementation, we store our maps on disk
in 64 m × 64 m tiles. Thus, grid resolutions considered
here were chosen to evenly divide these tiles. Moreover,
to efficiently generate hundreds of maps, we construct
our sparse histogram map representations at the 6.4 cm
and 8.0 cm resolutions only, then build the remaining
maps using these histograms (e.g., the 25.6 cm map is
constructed by pooling a 4 × 4 window of the 6.4 cm
histogram).

As a first reference to qualitatively demonstrate what
is being captured in our maps, we looked at 5 versions
of Gz , Gr, and Gr,grd, at a resolution of 25.6 cm, in which
we varied the number of Gaussians per cell from 1–5.
Snapshots of these maps are visually depicted in Fig. 10,
Fig. 11, and Fig. 12, respectively.

Within the z-height map, Fig. 10, we immediately see
that increasing the number of Gaussians leads to overfit-
ting. This is clear in the ground-plane and superstructure
where many components share the same mean. There is
a significant qualitative improvement from a 1-Gaussian
map to a 2-Gaussian map. In the 1-Gaussian case, we
see that there’s a necessary blurring between ground
and superstructure (trees, lightposts, etc.), while the 2-
Gaussian case can easily capture a mode near the ground-
plane and a mode covering superstructure. This trend
continues through higher fidelity maps as we see the
ground is captured in the lowest mean component and
the increase in number of Gaussians allows for more
overfitting to building facades and other superstructure.
Keeping these modes separate and distinct is important
for discarding obstacles that may appear in the void be-
tween ground and structure, thus we expect there to
be a noticeable localization improvement between the
1-Gaussian and higher number maps.

Looking at the reflectivity maps, Fig. 11 and Fig. 12,
we again notice overfitting beyond 2 Gaussians. Using 2
or more Gaussians is necessary for Gr, as there appears
to be two distinct modes per cell: the appearance of the
ground and the appearance of above ground features. In
both maps, multiple Gaussian components allows us to
better capture edge effects (transitions from asphalt to
road paint), where ground-plane road paint is typically
much smaller than the 25.6 cm grid resolution. The state-
of-the-art method (Levinson and Thrun, 2010), depicted
as the 1-Gaussian ground only map in Fig. 12, leads to a
more washed out image as these edges blur between high
and low reflectivity—thus capturing a large Gaussian
variance in these cells.

7.2.1 Map Parameter Sweep

We performed a series of evaluation over these 360 maps
constructed in which we hold the experimental log fixed
while evaluating against each map. Thus, we used P-3

to test against PG14 Dataset maps and D-2 to evaluate
against Downtown Dataset maps. Further, we test using
each map type independently (Gz , Gr, Gr,grd), assuming
that the resulting combination of the structure and ap-
pearance maps will yield more robust measurements,
without directly optimizing over the exorbitant number
of cross possibilities between all map types.

To benchmark our registration quality we took known
ground-truth for our evaluation log and generated a ran-
domized offset every 40 m of road travel. This random
offset was sampled uniformly within 2.5 m×2.5 m of the
ground-truth pose. This randomly sampled point can
then be viewed as the initial guess, T0, into our Gaussian
mixture map registration framework. The expectation is
that the resulting registration event will converge on the
ground-truth pose.

Results for the parameter sweep over Gz , Gr, and Gr,grd
are presented in Fig. 13, Fig. 14, and Fig. 15, respectively.
These figures show the longitudinal and lateral median
absolute deviation with respect to ground-truth, and
results are divided between downtown, highway, and
other (encompassing rural and residential roads) portions,
along with a summary over all roadways. We chose to
evaluate in terms of longitudinal and lateral errors as
these are most relatable given the context of on-road nav-
igation, and median absolute deviation was chose over
other statistics as it is a robust, outlier-proof measure of
variability.

As expected, we see that error grows as a function
of coarser grid resolution across all map types, and we
are constrained far better laterally than we are longitu-
dinally. Furthermore, we see that all map types perform
markedly better on the downtown portions, as can be
expected given the significant structure and well main-
tained road paint. Across most of these plots, we notice
that there are significant error spikes at very fine reso-
lutions. This is believed to be caused by overfitting as
there is simply not enough training data to accurately
learn the Gaussian mixture maps. Additionally, large
grid sizes increase the basin of convergence for our regis-
tration optimization; features at the fine resolution may
be skipped over through the grid search.

Looking at the evaluation over Gz , we see a noticeable
improvement from 1 to 2+ Gaussians in both lateral and
longitudinal error. As predicted in the previous section,
the ability to rule out obstacles between superstructure
and ground-plane plays an important role here.

Considering the evaluation over Gr, it is clear that
2+ Gaussians is necessary as anticipated—given that 2
modes are needed to capture ground-plane appearance
and above-ground appearance. On the contrary, Gr,grd
performs best with a single Gaussian, though only at fine
resolutions. As grid cell size is increased, it is necessary
to use 2+ Gaussians so that features are not blurred away.

Throughout all of these sweeps, it is not immediately
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(b) Gz Sweep Downtown (zoomed)
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(d) Gz Sweep Highway (zoomed)
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(f) Gz Sweep Other (zoomed)
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(g) Gz Sweep All
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Fig. 13: Summary of parameter sweep over grid resolution and number Gaussians in z-height Gaussian mixture maps, Gz , and the resulting
longitudinal (solid lines) and lateral (dashed lines) median absolute deviation (MAD)—partitioned into downtown, highway, other (rural and
residential), and a summary over all data.
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(a) Gr Sweep Downtown
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(b) Gr Sweep Downtown (zoomed)
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(d) Gr Sweep Highway (zoomed)
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(f) Gr Sweep Other (zoomed)
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(h) Gr Sweep All (zoomed)

Fig. 14: Summary of parameter sweep over grid resolution and number Gaussians in reflectivity Gaussian mixture maps, Gr , and the resulting
longitudinal (solid lines) and lateral (dashed lines) median absolute deviation (MAD)—partitioned into downtown, highway, other (rural and
residential), and a summary over all data.
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(a) Gr,grd Sweep Downtown
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(b) Gr,grd Sweep Downtown (zoomed)
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(c) Gr,grd Sweep Highway
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(d) Gr,grd Sweep Highway (zoomed)
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(f) Gr,grd Sweep Other (zoomed)
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(g) Gr,grd Sweep All
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(h) Gr,grd Sweep All (zoomed)

Fig. 15: Summary of parameter sweep over grid resolution and number Gaussians in ground-plane only, reflectivity Gaussian mixture maps,
Gr,grd, and the resulting longitudinal (solid lines) and lateral (dashed lines) median absolute deviation (MAD)—partitioned into downtown,
highway, other (rural and residential), and a summary over all data.
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clear that more than 2 Gaussians is necessary as there is
not a significant performance improvement by doing so.

Map Size: In addition to performance metrics, in many
cases map parameter selection must also consider the
required disk space for map storage. In Fig. 16, we look
at the corresponding disk space required per km of map
data. As expected, finer resolution maps get exponen-
tially larger relative to coarser grid resolutions. Addi-
tionally, ground-only reflectivity maps are significantly
smaller than those constructed using all points—this is
because ground-only maps are restricted to areas within
a few meters of the roadway, while full maps can include
points over 50 meters away.

For our maps, all Gaussian mixture components
(weights, means, variances) are stored as single-precision
floating point values, and the maps are compressed us-
ing gzip. Therefore, more intricate compression schemes
can be used and map sizes presented here should be
viewed as a worst case scenario.

We envision that our maps can be streamed to an au-
tonomous car, where our 64 m× 64 m tiles can be contin-
uously downloaded over a 4G connection. We assume a
network bandwidth of nominally 2 MBps and a vehicle
certainly traveling less than 150 kph. Thus, we have an
available streaming budget of roughly 48.0 MB/km.

Considering this budget, we decided on a 2-Gaussian,
25.6 cm z-height map (Gz), and a 1-Gaussian, 6.4 cm
ground-only reflectivity map (Gr,grd). Note that our re-
flectivity map selection is roughly the same as Levin-
son’s probabilistic appearance maps. The combination
of these two maps found the best balance between per-
formance, while falling under our required budget at
roughly 44.3 MB/km. We found that the superior per-
formance of the ground-only reflectivity maps on the
highway are an added benefit as z-height is least effec-
tive there.

The remainder of our evaluation will perform experi-
ments over this map configuration alone.

7.3 Registration Experiments

Since our odometry source has significantly low drift-
rates, registration deficiencies can be masked by a well-
tuned filtering framework. Thus, this section looks di-
rectly at evaluating the unfiltered registrations that ex-
ploit structure and appearance within the vicinity of
ground-truth results.

Identical in setup to our parameter sweep discussed
in the previous section, we now look at a sweep over all
logs in our dataset while holding map settings fixed—
showing that our map is robust for localizing over time.
Again we randomly sample a point uniformly within
2.5 m× 2.5 m of ground-truth every 40 m, and evaluated
the resulting transformation from our multiresolution
registration framework relative to this ground-truth. To

fully understand the contributions of each map type,
we perform 3 registrations per ground-truth sample: (i)
using structure alone (Gz), (ii) using appearance alone
(Gr,grd), and (iii) using structure and appearance jointly
(Gz , Gr,grd).

Errors are summarized per data log in Fig. 17, where
we show median absolute deviation bars for longitudi-
nal and lateral errors, along with first and third quartile
error whiskers. Over most of PG14 Dataset, we see high
longitudinal errors when using reflectivity alone that be-
comes well constrained with the addition of 3D structure.
In most logs, we see that the joint cost function yields
an improvement in our registrations. However, in the
case of the Downtown Dataset, it is not surprising that
the joint cost function is heavily dictated by z (seeming
to ignore the more accurate reflectivity measurements)
because the significant number of point returns off of 3D
structure that dominate the cost function.

Results are summarized for all datasets in Table 1.

7.3.1 Heavy Snowfall Registrations

We more thoroughly looked at z-height registrations
alone in the snow-filled Downtown Dataset, D-3, by ran-
domly sampling within 10 m of the ground-truth pose.
We present these results in two ways. First, we compiled
the results into a histogram, as shown in the top row
of Fig. 18(b). Here we see that our proposed solution is
able to return to within 25 cm of the ground-truth with
minimal outliers. Additionally, we see that because our
method exploits the 3D structure, it is not impacted by
harsh weather and significant amounts of falling snow,
as shown in Fig. 18(a).

Second, we display this same registration error as a
function of initial offset input to the scan matcher, as dis-
played in the bottom row of Fig. 18(b). We show that our
registration success is not dictated by distance from the
optimum, as long as our search space is able to enclose
the true transformation.

7.3.2 Construction Zone Registrations

We further look at registration errors through one of the
three construction zones that was repaved during our
dataset collection, see Fig. 19. In this figure, we display
our single map containing Gz and Gr,grd built using P-
M1 and P-M2 data in Fig. 19(a). Figured (b)-(d) shows
registration results evaluated against Gz , Gr,grd, and the
joint measurement over both. Further, each of these
figures are drawn over a reference reflectivity map that
was built using data on each day to demonstrate the
changes over time—note that the map in (a) was still
used for all experiments.

Even before construction began in Fig. 19(b), reflec-
tivity poorly constrains longitudinally due to limited
features—the method relies on cutouts into driveways
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Fig. 16: Map size for Gaussian mixture maps over z-height (Gz), reflectivity (Gr), and ground-plane reflectivity (Gr,grd). Sizes are listed as a
function of Gaussian mixture map grid resolution and number of Gaussians per cell. All sizes are per kilometer of road travel.

Longitudinal Lateral

Map Median 1st/3rd Qtr. Median 1st/3rd Qtr.

Gz 8.5 cm (3.8 cm, 16.7 cm) 8.0 cm (3.4 cm, 15.9 cm)
Gr,grd 10.9 cm (3.8 cm, 35.0 cm) 4.6 cm (2.0 cm, 8.6 cm)
Gz ,Gr,grd 7.7 cm (3.4 cm, 15.2 cm) 5.3 cm (2.4 cm, 9.8 cm)

Table 1: Comparison of errors between Gaussian mixture map types, showing the median, first quartile, and third quartiles of absolute deviation
(longitudinally and laterally).

and roads for success. Over time, the ability to localize
using reflectivity alone becomes impossible because the
appearance is fundamentally different; however, local-
ization using Gz remains effective and the joint measure-
ment is not distracted by erroneous reflectivity measure-
ments.

7.4 Filtered Experiments

We integrated our registration algorithm into the EKF
localization framework described in Section 6. The only
measurements used were those from a GPS unit for
initialization, our IMU for vehicle odometry, and our
multiresolution scan matches considering structure and
appearance initialized around our 4σ posterior belief.
Standard deviation for these scan registrations was set
relative to our median absolute deviation derived in the
previous section, 1.4826 · MAD; this scaling is so that
MAD can be viewed as a consistent estimator of nor-
mally distributed variance (Rousseeuw and Croux, 1993).
Further, we evaluate the measurement NIS and only in-
clude measurements that are 99% likely to be consistent
with our filter—this allows our filtering to be robust to
outliers.

Results are tabulated in Table 2, where we present lon-
gitudinal, lateral, and heading errors relative to ground-
truth. Errors are shown in terms of RMS errors as well as
percentages of filtered poses that fall within 5 cm, 25 cm,

and 1 m (longitudinally and laterally). Overall, we see
that our measurements result in better constraints later-
ally than longitudinal; lateral RMS errors are typically
less than 10 cm and longitudinal RMS errors are within
the range of 10 cm-13 cm.

Further, we demonstrate each log graphically over
satellite imagery in Fig. 20, Fig. 21, and Fig. 22, where
each log’s trajectory is colored by L2 error. We see that er-
rors are frequently along highway and rural roads where
longitudinal constraints become dependent on visible
3D structure (unconstrained via reflectivity as showin in
Fig. 19). A common problem occurs when passing large
semi-trailer trucks that fully occlude field of view of in-
formative 3D structure beside the road, often leading to
noisy measurements.

Additionally, we see our method is robust to radi-
cal appearance changes. This can be seen in Fig. 20(g)
and Fig. 21(g) where our method can remain localized
through repavings that completely altered the appear-
ance of 0.5-1.0 km stretches of road. There are occasional
spikes in accuracy through these regions, though we
still maintain localization through these periods of dras-
tic appearance changes. Moreover, we demonstrate in
Fig. 22(e) that we are able to remain localized through
heavy snowfall that was present during the D-3 log.
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RMS Error p(err<5 cm) p (err<25 cm) p(err<1 m)
Session Long. Lat. Hdg. Long. Lat. Long. Lat. Long. Lat.

P-M1 10.1 cm 6.5 cm 0.09 ◦ 60.9 % 58.3 % 96.8 % 99.4 % 100.0 % 100.0 %
P-M2 6.6 cm 5.4 cm 0.09 ◦ 68.6 % 69.7 % 99.1 % 99.8 % 100.0 % 100.0 %
P-1 13.3 cm 8.4 cm 0.13 ◦ 33.2 % 56.9 % 94.3 % 98.4 % 100.0 % 100.0 %
P-2 10.3 cm 7.6 cm 0.11 ◦ 40.3 % 56.1 % 98.0 % 99.3 % 100.0 % 100.0 %
P-3 10.7 cm 8.2 cm 0.13 ◦ 41.0 % 50.4 % 97.7 % 98.9 % 100.0 % 100.0 %
P-4 10.8 cm 8.3 cm 0.16 ◦ 38.5 % 46.0 % 98.5 % 99.4 % 100.0 % 100.0 %
P-5 11.9 cm 9.3 cm 0.20 ◦ 36.7 % 44.4 % 96.2 % 98.4 % 100.0 % 100.0 %
P-6 8.4 cm 8.2 cm 0.15 ◦ 46.6 % 45.3 % 99.1 % 99.4 % 100.0 % 100.0 %
P-7 12.7 cm 9.1 cm 0.12 ◦ 34.3 % 41.5 % 94.4 % 99.0 % 100.0 % 100.0 %
P-8 12.2 cm 9.5 cm 0.12 ◦ 45.1 % 40.6 % 94.4 % 98.5 % 100.0 % 100.0 %
P-9 16.2 cm 9.8 cm 0.13 ◦ 34.8 % 47.3 % 91.1 % 98.1 % 100.0 % 100.0 %
P-10 12.2 cm 10.6 cm 0.12 ◦ 41.5 % 43.0 % 95.7 % 96.6 % 99.9 % 100.0 %
P-11 15.0 cm 12.3 cm 0.15 ◦ 30.3 % 41.4 % 92.2 % 96.8 % 99.9 % 99.9 %
P-12 11.0 cm 12.7 cm 0.12 ◦ 40.3 % 34.3 % 97.4 % 95.6 % 100.0 % 100.0 %

D-M1 10.7 cm 8.9 cm 0.17 ◦ 30.0 % 43.1 % 98.3 % 99.3 % 100.0 % 100.0 %
D-M2 12.5 cm 10.3 cm 0.17 ◦ 30.4 % 50.9 % 96.4 % 97.1 % 100.0 % 100.0 %
D-1 10.8 cm 9.8 cm 0.18 ◦ 39.7 % 39.4 % 98.7 % 97.3 % 100.0 % 100.0 %
D-2 11.6 cm 9.1 cm 0.16 ◦ 26.8 % 45.6 % 95.4 % 98.2 % 100.0 % 100.0 %
D-3 11.8 cm 10.9 cm 0.15 ◦ 42.5 % 36.4 % 96.8 % 97.7 % 100.0 % 100.0 %

Table 2: Filtered results using joint measurements over structure and appearance for all datasets. We show longitudinal, lateral and heading
RMS errors in addition to percentage of filtered poses that are within 5 cm, 25 cm, and 1 m of ground-truth, longitudinally and laterally. Top
half of table tabulates results over the PG14 Dataset, and the bottom half covers the Downtown Dataset.

7.5 Run-time Analysis

Given that our registration approach is a function of de-
sired search space, we analyze the run-time performance
at several search windows of: 1 m × 1 m, 2 m × 2 m,
4 m×4 m, 8 m×8 m, and 16 m×16 m. Fig. 23 shows fram-
erate for each of these search spaces at a single rotational
search, in which each registration likelihood is evalu-
ated using approximately 300, 000 points. Results are
presented for the CPU implementation and we show a
30−−40× speedup for both the exhaustive and multires-
olution branch-and bound search when implemented on
a GPU. Relative to our work presented in (Wolcott and
Eustice, 2015), we no longer have to significantly down-
sample our point cloud to achieve real-time localization.
Note the time speedup is more pronounced when more
than one rotational offset is considered because the mul-
tiresolution search can short-circuit quicker.

During online performance, we initially need to per-
form a dense search over a window of ∼ 10 m × 10 m,
which can be achieved in a little over a second. Over
time, these search windows gradually shrink according
to our posterior pose belief such that we can perform on-
line localization using all measured 3D points at roughly
5−10 Hz

Furthermore, rasterizing the Gaussian mixture maps
into multiresolution lookup tables must be carefully
managed when implemented on the CPU as these take
4562 ms to construct. However, this is dramatically im-
proved to 114 ms implemented on a GPU (40× speedup).

7.6 Alternative Uses of GMM

In addition to localization, Gaussian mixture maps over
z-height can be used for other purposes. In this section,
we briefly present two possible use cases: point cloud
compression and obstacle background subtraction.

7.6.1 Point Cloud Compression

Storing raw point clouds can require more than 500 MB
per km of road. As an alternative, Gaussian mixture
maps over z-height can be a parametric method for com-
pactly storing terrestrial maps. In Fig. 24, we show the
efficacy of our method for retaining the true point cloud
distribution using 1, 2, 3, 4, and 10 Gaussians per grid
cell—this figure shows points that are within 2.5 stan-
dard deviations of each mixture component. It is clear
that a single Gaussian per cell would be insufficient,
though as few as 2 appears to well capture the building
facade and foliage. These maps require roughly 10 MB,
20 MB, 30 MB, 40 MB, and 100 MB, respectively, per km
of road.

7.6.2 Obstacle Background Subtraction

Another benefit of using structure in our automated vehi-
cle’s localization pipeline is that it provides a probabilis-
tic method to classify 3D points as dynamic obstacles or
belonging to the background environment. In generating
the likelihood for a registration, we evaluate the likeli-
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(b) Downtown Dataset—D-3

Fig. 18: In (a), we show a point cloud rendering of typical snowfall
(with ground-plane removed) during the D-3 dataset. Orange and
brown points located at the center of the figure shows the dense snow
returns. In (b), we demonstrate registration error using z-height alone
on the snow-filled dataset, D-3. The top row shows a histogram of our
L2 error, demonstrating good registration performance. The bottom
row shows a plot of initial offset versus registration error, where we
show that our scan matching errors are independent of initial guess.

hood of each scan point against the prior map, which
tells us how likely each scan point is to be part of the
map. By looking at points that poorly align to the prior
map (i.e., those with low likelihoods), we can perform
a classification. We do this by setting a Mahalanobis
distance threshold and labeling points that exceed this
threshold as obstacles—this selection is precisely the out-
lier thresholds set to minimize effect of outliers in our
robust cost formulation of (13). Our formulation allows
us to do this classification on a frame-by-frame basis and
extend our sensing range of obstacles. Visualization of
point cloud classification can be seen in Fig. 25.

Fig. 25: Sample point cloud colored by Mahalanobis distance from the
underlying map’s Gaussian mixture. Note the parked cars in red and
agreeing prior map in blue (including ground-plane, building facades,
trees, and lightposts). Our method allows us to expand our obstacle
sensing horizon, as we can not sense the ground-plane beyond 40 m.

8 Conclusion

In this paper, we demonstrated Gaussian mixture maps
that reduce large point clouds into a compact, parametric
representation that maintains expressibility over struc-
ture and appearance. Through the use of multiresolution
rasterized maps that can be computed online, we can
efficiently traverse these maps to find the guaranteed op-
timal registration using branch-and-bound search, rather
than finding local optima as with modern scan matchers.
Finally, we integrated this into an EKF to demonstrate
that our autonomous platform can remain well localized
in a prior map over more than 500 km of road data. Our
proposed system is able to handle harsh weather and
poorly textured roadways, which is a significant advan-
tage over the current state-of-the-art methodologies for
automated vehicle localization. We further demonstrated
that localization can be done through construction zones
undergoing drastic appearance changes, allowing us in
future work to consider maintaining and updating these
maps as they change. In addition, we expect to fully ex-
plore the impact of extreme road grades that may compli-
cate our 2D registration and require more explicit search
over z.
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A Index to Multimedia Extensions

The multimedia extensions to this article are at:
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video General overview of Gaussian mix-
ture map formulation
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(a) PG14 Dataset: TORC Logs
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(b) PG14 Dataset: Fusion Logs
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(c) Downtown Dataset

Fig. 17: This figure shows the registration errors from randomly sampled points along each log using Gz , Gr,grd , and {Gz ,Gr,grd}, marked by z,
r, and zr, respectively. Bars indicate the longitudinal (red) and lateral (green) median absolute deviation (MAD) and the error whiskers mark
the first and third quartiles of absolute deviation. In most logs, the joint likelihood measure over structure and appearance yields improved
performance relative to the likelihood measure over structure or appearance alone. Moreover, the use of structure prevents large longitudinal
errors during the PG14 Dataset and allows for consistent localization during the snow dataset, D-3. The reflectivity alone does quite well in some
circumstances, such as the Downtown Dataset where road paint is well maintained, though the joint measure still results in errors less than 10 cm.
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(a) Gz and Gr,grd Maps

(b) Fusion, May 8

(c) Fusion, June 5

(d) Fusion, July 24

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Fig. 19: This figure demonstrates the registration quality of our joint measurement function over a segment of road that is poorly constrained by
appearance and undergoes significant construction. In (a), we show the map constructed for our experiments (showing the maximum mean
component), visualizing the structure (purple-green) and appearance (black/white) together. In (b)-(d), we show registrations performed over each
map type spanning different logs, rendering: a map that reflects the appearance on that day, registration L2 error (colored dots), and sample cost
function sweeps (right). Despite appearance cost functions that poorly constrain our pose and radically change, our z-height measurements and
resulting joint measurements remain well constrained.
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(a) P-M1 (May 1) (b) P-1 (May 8) (c) P-3 (May 15)

(d) P-5 (May 21) (e) P-7 (June 5) (f) P-9 (June 12)

(g) P-11 (July 24) (h) Reference

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Fig. 20: Filtered results using joint measurements over structure and appearance for the TORC logs of the PG14 Dataset, where the trajectory is
colored by L2 error. Most noticeable errors are longitudinal—primarily on the highway or other long, straight stretches with little variation in
that dimension. Further, note the slight increase in errors through construction zones. Despite these increases, our filter does not diverage and
remains localized within acceptable tolerances. A route reference is provided in (h) highlighting residential roads (blue), rural roads (purple),
highways (red), and construction zones (orange).
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(a) P-M2 (May 1) (b) P-2 (May 8) (c) P-4 (May 15)

(d) P-6 (May 21) (e) P-8 (June 5) (f) P-10 (June 12)

(g) P-12 (July 24) (h) Reference

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Fig. 21: Filtered results using joint measurements over structure and appearance for the Fusion logs of the PG14 Dataset, where the trajectory is
colored by L2 error. Most noticeable errors are longitudinal—primarily on the highway or other long, straight stretches with little variation in
that dimension. Further, note the slight increase in errors through construction zones. Despite these increases, our filter does not diverage and
remains localized within acceptable tolerances. A route reference is provided in (h) highlighting residential roads (blue), rural roads (purple),
highways (red), and construction zones (orange).
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(a) D-M1 (Nov. 19) (b) D-M2 (Nov. 19) (c) D-1 (Nov. 20)

(d) D-2 (Nov. 19) (e) D-3 (Dec. 17)

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Fig. 22: Filtered results using joint measurements over structure and appearance for the Downtown Dataset, where the trajectory is colored by L2

error. Aside from initial convergence time for the filter (the bright yellow segment on the bottom of each figure), our method does quite well in
the urban environment. This includes staying well localized through heavy snowfall during D-3 log.
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Fig. 23: This figure shows registration framerates of our proposed localization method using Gaussian mixture maps over various search
spaces. Left-to-right we show framerates using the CPU for exhaustive search (red), multiresolution branch-and-bound (blue), and again using
a downsampled point cloud that was necessary in our previous work to meet acceptable localization framerates (Wolcott and Eustice, 2015)
(green). We further show the exhaustive search (purple) and the branch-and-bound search (orange) when implemented on a GPU. Note, these
figures were generated only searching over a single rotational offset.
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Fig. 24: Gaussian mixture maps over z-height can be used for point cloud compression. In this figure, we demonstrate the initial point cloud,
seen in the top-left and corresponding reconstructions using various Gz maps.
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