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TABLE III
OPERATIONAL PACKET LOSS STATISTICS

packet loss or failure of the server node, and the client is able
to incorporate measurements from several independent servers
without modification and arrive at a consistent estimate.

4) Interleaved Update Algorithm Results: The IU algorithm
shows improvement over dead-reckoning with an uncertainty
estimate that is guaranteed to be consistent, as shown by its
NEES. However, the filter’s estimate exhibits unbounded growth
in uncertainty over time. As mentioned in Section IV-B3, this
is expected for a two-vehicle topology with unidirectional com-
munication.

VI. DISCUSSION

In this section, we discuss several topics related to the opera-
tional implementation of the DEIF: packet loss, filter telemetry
requirements, and when linear process models are required. We
also discuss possible (nonoptimal) extensions of the DEIF ap-
proach described herein to multi-vehicle topologies.

A. Packet Loss

The DEIF approach described herein relies on the sequential
broadcast and receipt of delta information packets. In prac-
tice, the nonlossy communication assumption cannot be met,
as packets are routinely lost to an often faulty acoustic com-
munication channel, making packet loss an operational concern
for real-time implementation. In the experimental dataset used
in this study, only successful acoustic broadcasts were used in
post-processing to run the filter. Table III tabulates the packet
loss statistics for each of the different communication paths.
The two entries in bold represent the communication paths used
to run the DEIF experiments reported here.

A number of possible solutions exist to address the issue
of packet loss when implementing the DEIF in real time for
use in the field. We describe several proposed methods below:
1) sending redundant information, 2) utilizing acknowledgments
from the client platform, and 3) an alternative formulation of the
delta information packet. In practice, we expect these and other
solutions to be developed and refined over time as this algorithm
matures and is used in the field.

1) Redundant Information Packets: Our first safeguard
against dropped acoustic packets is to broadcast redundant infor-
mation. A delta information message describes a transition of the
server state between consecutive TOLs, in particular, the delta
information at the nth TOL relates the server state from time
TOLn−1 to time TOLn , abbreviated ΔsTOLn −1 :n

. Since we cannot
rely on the client receiving every packet, we require the server
to broadcast delta packets corresponding to transitions from the
last k TOLs to the current TOL: ΔsTOLn −1 :n

, . . . ,ΔsTOLn −k :n
.

In this case, the server easily computes the delta packets, as
in (23) and (24), for each delta relation by marginalizing out
intermediate states. For example, the server vehicle tracks state

xsk
=

[
x�

sk
, x�

sTOLn
, . . . , x�

sTOLn −k

]�
.

To compute the delta packet corresponding to the transition
ΔsTOLn −k :n

, we simply marginalize out states corresponding to
TOLn−1 , . . . ,TOLn−k+1 and calculate the delta information as
per usual.

2) Client Acknowledgment: In practice, subsea vehicles typ-
ically send some minimal acoustic state data to report general
mission health. We propose to encode the last server TOL state
received, which is denoted TOL� , into each client state packet
sent to the server. Under this scheme, in addition to the standard
one-step delta information packet, i.e., ΔsTOLn −1 :n

, the server
would also broadcast the delta information relative to the last
known good TOL, i.e., ΔsTOL� :n

. This approach allows for the
client vehicle to resume normal usage should it ever miss a
regular one-step packet.

3) Alternate Packet Composition: Recently, Walls and
Eustice [55] proposed an alternate packet formulation, dubbed
the origin-state method, which allows the client vehicle to
reconstruct the server information matrix in a way that is robust
to packet loss. While this approach solves a different problem
than the DEIF, the authors of [55] have applied their algorithm
to a modified DEIF implementation and have shown it to be
robust to a lossy acoustic channel, subject to certain operational
restrictions.

B. Filter Telemetry Requirements

Because of the severe constraints imposed on data packet
size by the limited capacity of the acoustic channel, we include
a brief discussion of the telemetry requirements for the different
algorithms compared in this paper. The amount of data that can
be transmitted in an acoustic data packet depend on the car-
rier frequency, bandwidth, and encoding method of the signal,
as well as the characteristics of the local sound channel [11].
Currently, the WHOI Micro-Modem supports data rates ranging
from a single 32-byte frame per packet (rate 0, encoded with
frequency shift keying) to eight 256-byte frames per packet (rate
5, encoded with phase-shift keying) [5]. Assuming one broad-
cast every 15 s, the resulting maximum throughput varies from
128 bytes/min to 8 kb/min. The experiments, as described in
Section V-A, used rate 0.

The relative data packet size demanded by each filter is sum-
marized in Table IV for a server–client network topology. We
place a small overhead on each broadcast by including depth
information because we project range measurements into the
local-level plane. Both the EEKF and IU only require that lo-
cal state and covariance corresponding to x, y position be en-
coded, since each measurement is considered independent, and
the client filter only needs access to elements of the state in-
volved in the measurement update. Therefore, taking advantage
of symmetry, the EEKF and IU require transmitting two floats
for mean and three for covariance in the acoustic broadcast.
Note that the telemetry requirements for IU implemented in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON ROBOTICS

TABLE IV
TELEMETRY PAYLOAD REQUIREMENTS FOR A SERVER–CLIENT TOPOLOGY

an n-vehicle network with bidirectional communication grows
withO(n2). If the uncertainty of the GPS measurement is known
by the vehicle beforehand (a reasonable assumption), only two
floats for the x, y GPS position must be transmitted by the acous-
tic broadcast in the raw GPS method. Delta state in the DEIF is
computed between the last TOL augmented state and the current
state; therefore, the DEIF requires eight floats (2 × 4 for state
dimension four) for the delta information vector and 36 for the
delta information matrix in each data packet.

The DEIF∗ in the table refers to a DEIF in which the server
state contains only world-frame x, y position, further reduc-
ing the state model. In this case, the process model follows an
odometry-driven control input (e.g., integrated velocity mea-
surements) and white-noise. This implementation is the subject
of current research, and preliminary results, which are currently
under review, show that it achieves a far lower telemetry payload
at the cost of a less confident estimate.

C. Linear Process Models

As noted in Section III-F, the client process model is not re-
quired to be linear, but the server process model and observation
models must be linear for the DEIF to identically reproduce the
results of the CEIF. For the implementation of the DEIF de-
scribed herein, we employ a linear process model for the client
as well as the server for several reasons. For DOFs that are
well instrumented, compared with the actual system dynamics,
a common simplification of the process model is to exclude
those well-instrumented states from the set of estimated states.
For the AUVs used in this experiment, and many AUVs on the
market, attitude and depth are well instrumented compared with
the dynamics of the vehicle [56]. In addition, Webster et al. [12]
verified that the majority of the uncertainty resides in x, y po-
sition elements of the client state vector. Therefore, the use of
linear models for the client is a reasonable assumption.

A simplified process model for the server, in the case where
the server is a ship, is justified by the server’s continuous access
to GPS measurements. In addition, the simplified server process
model reduces the amount of data required to broadcast state in-
formation from the server to the client, an important operational
concern given the limited capacity of the underwater acoustic
channel [28]. Extending the DEIF framework to accommodate
a nonlinear server, while continuing to ensure identical results
between the CEIF and DEIF, would require that the client trans-
mit a new linearization point to the server following a range
measurement update.

Fig. 10. Two multi-vehicle topologies that are simple (suboptimal) extensions
of the DEIF: (a) the multi-client topology where a single server supports multiple
clients and (b) the cascaded network topology where clients also perform as
servers.

D. Multi-vehicle Topologies

Two suboptimal multi-vehicle estimation topologies that are
simple extensions of the DEIF are shown in Fig. 10. The first is a
multi-client topology, in which a single server supports multiple
clients. The second is a cascaded topology, in which the server–
client model described in this paper is extended such that the
client supports one or more additional subsea clients.

Extending the two-vehicle DEIF presented in this paper to
either multi-vehicle topology is trivial. In the multi-client topol-
ogy shown in Fig. 10(a), the server performs a single acoustic
broadcast, and each client runs its own independent DEIF with
no knowledge of the other clients. This is scalable to as many ve-
hicles as can operate within acoustic range of the server. Note,
however, that in this case, the DEIF does not reproduce the
distribution produced by a single global CEIF that tracks cor-
relation between all vehicles. Instead, each DEIF is equivalent
to a corresponding two-vehicle CEIF that tracks only the server
and an individual client.

In the serially connected network topology shown in
Fig. 10(b), unidirectional communication of position informa-
tion is a simple, cascaded implementation of two DEIFs. Note
that clients at the end of a serially connected network will have
access to all range information in the system and will be able
to exactly reproduce the results of the CEIF. However, interme-
diate clients will not, and, therefore, will not be able to exactly
reproduce the results of the CEIF.

The performance of the DEIF compared with other algorithms
presented in the literature has been investigated by Walls and
Eustice [13] for these topologies using experimental data from
a three-node network. Packet loss, as noted in Section VI-A,
remains an operational concern for both of these extensions.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a detailed derivation of the DEIF al-
gorithm for the synchronous-clock acoustic navigation of a sin-
gle subsea client vehicle. We showed analytically that the DEIF
exactly reproduces the estimate of the corresponding server–
client CEIF at the TOA. Simulation and experimental trials val-
idated the effectiveness of the DEIF at consistently localizing
the client vehicle, as well as reproducing the CEIF. A compar-
ative analysis demonstrated the performance of the DEIF and
several previously reported approaches to cooperative acoustic
navigation. Additionally, we showed that the DEIF performs fa-
vorably when compared with previously reported decentralized
acoustic cooperative localization algorithms.
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While the DEIF achieves excellent theoretical results, a real-
time implementation requires additional overhead to address
packet loss, as described in Section VI. Current on-going work
continues to investigate more robust information descriptions
that can handle dropped acoustic transmissions, such as the
preliminary work reported in [55]. Furthermore, we seek an
algorithm that can scale to larger networks and share informa-
tion bidirectionally to accommodate many AUVs operating over
very large operational areas.
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