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Abstract— This paper reports on a factor graph simultaneous
localization and mapping framework for autonomous under-
water vehicle localization based on terrain-aided navigation.
The method requires no prior bathymetric map and only
assumes that the autonomous underwater vehicle has the
ability to sparsely sense the local water column depth, such
as with a bottom-looking Doppler velocity log. Since dead-
reckoned navigation is accurate in short time windows, the
vehicle accumulates several water column depth point clouds—
or submaps—during the course of its survey. We propose
an xy-alignment procedure between these submaps in order
to enforce consistent bathymetric structure over time, and
therefore attempt to bound long-term navigation drift. We eval-
uate the submap alignment method in simulation and present
performance results from multiple autonomous underwater
vehicle field trials.

I. INTRODUCTION

Precision autonomous underwater vehicle (AUV) naviga-

tion often relies on integrating noisy Doppler velocity log

(DVL) body-frame velocity and attitude along with pressure-

depth to compute a dead-reckoned (DR) navigation solu-

tion [1]. However, integrating noise in velocity and attitude

observations leads to unbounded error growth in xy-position

estimates. A global positioning system (GPS) provides ac-

curate geo-referenced coordinates to vehicles while at the

surface but is unavailable subsea due to the attenuation

of electromagnetic signals. Acoustic positioning systems

such as ultra-short-baseline (USBL) and long-baseline (LBL)

provide relative measurements from the AUV to a support

vessel or static beacon [2]. However, acoustic systems limit

the range of operations and require additional infrastructure.

Terrain-aided navigation (TAN) consists of using a prior

water column height map, or bathymetric map, to perform

AUV localization while surveying the underwater envi-

ronment. Terrain-aided simultaneous localization and map-

ping (SLAM) consists of concurrently using the sensed

bathymetry as information for AUV localization and map-

ping.

In this work, we propose a method to reduce long-term

navigation drift using only onboard vehicle sensors to exploit

bathymetry information. Moreover, our method does not rely

on a previous bathymetric map. If the environment exhibits

topographic relief and the survey trajectory is designed

wisely, our method can achieve bounded-error navigation for

AUVs.
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Fig. 1: Example of submap alignment. Two submap nodes, xi and xj

have intersecting submaps, representing a collection of water column
observations. The alignment procedure computes an xy-translation between
xi and xj such that the bathymetric structure within the overlapping region
is consistent. The black triangles show direction of travel.

We use factor graph SLAM to estimate the AUV

trajectory—a factor graph discretizes the AUV trajectory into

nodes (AUV poses at some instance in time) and factors

(measurements that constrain nodes). We introduce a new

submap alignment factor type: rigid-body transformations

between nodes calculated by intersecting submaps (Fig. 1)

generated by accumulation of sparse point-cloud DVL alti-

tude measurements.

To compute the rigid-body transformation, scan matching

techniques are used. We modified the Generalized Iterative

Closest Point (GICP) [3] algorithm to only optimize over the

xy-position, since all other degrees of freedom have bounded

error and our submap is sparse. This alignment procedure

can be posed as a quadratic program and can, therefore, be

efficiently solved.

Specifically, the contributions of this paper are:

• A factor-graph-based bathymetric SLAM framework

that exploits a sparse point cloud representation of the

underlying bathymetry measured by a DVL;

• A modified GICP algorithm to provide a translation

constraint between overlapping submaps.

We evaluate our algorithm in simulation and show that

our alignment solution provides an accurate xy translation

observation between submaps. We then provide performance

results using data collected from several AUV field trials.



II. PREVIOUS WORK

Navigation systems for AUVs leverage multiple sensor

modalities; recent surveys include the work by Paull et al.

[4] and Kinsey et al. [5]. Some algorithms involve the use

of acoustic beacons to provide range-only observations to

the AUV [2, 6]. Others use camera-based methods to derive

relative-pose measurements [7, 8].

TAN represents a popular method for AUV localization,

and it has been approached through many avenues. TAN

for AUVs can be traced back to Di Massa and Stewart [9]

and Kulander [10] who applied derivatives of terrain contour

matching (TERCOM)—an application of TAN toward mis-

sile guidance—to AUV navigation. These approaches used a

correlative search between bathymetry measurements and a

prior bathymetric map. More recently, Nygren and Jansson

[11] developed a similar framework but for scenarios with

weak priors in AUV pose estimation.

Particle filters are now a standard approach to TAN

because they can express multi-modal distributions and natu-

rally represent multiple data association hypotheses. Karlsson

et al. [12] and Bergman et al. [13] proposed a navigation

method for AUVs by comparing the sensed bathymetry to

a prior bathymetric map using a particle filter. Karlsson

et al. [12] also investigated the use of the Cramer-Rao lower

bound to estimate sensor noise and necessary bathymetry

excitement for particle filter convergence. Williams and

Mahon [14] similarly applied a particle filter to an ex-

isting bathymetric map to estimate position and velocities

in unstructured natural terrain. Claus and Bachmayer [15]

used a jittered bootstrap particle filter to avoid particle

degeneracy while performing TAN with a prior bathymetric

map. Finally, Kimball and Rock used both particle filters

[16] and nonlinear least squares [17], along with an a priori

iceberg sonar map, to compute the relative position of an

AUV with respect to the floating mass, while Eustice et al.

[18] used an a priori ship-borne bathymetric map to post-

process DR DVL navigation error for an AUV.

State-of-the-art SLAM frameworks are smoothing ap-

proaches wherein the entire vehicle trajectory is estimated.

The method was first presented for AUVs by Eustice et al.

[19], who applied a smoothing, or delayed-state, approach to

visually augmented underwater navigation. Later, Kim and

Eustice [20] extended these capabilities for improved front-

end and back-end performance by considering the visual

saliency of each underwater image. Fallon et al. [6] also

demonstrated the benefits of full trajectory smoothing over

standard filter approaches for AUV navigation.

Barkby et al. [21] and Roman and Singh [22] performed

bathymetry-based SLAM for AUVs. Barkby et al. [21]

introduced, using a particle filter, a novel map representation

using Gaussian processes (GP) to reduce computational costs

and to perform map alignments when no, or little, overlap

is present. Roman and Singh [22] used dense submaps,

collected using multibeam sonars, and scan matching algo-

rithms to create rigid-body transformations between those

submaps. Our work is an extension of [22] within a factor

graph estimation framework, which includes full trajectory

smoothing, and a new submap alignment technique.

Scan matching techniques consist of computing the rigid-

body transformation between two vehicle poses in the form

of point clouds. The GICP algorithm developed by Segal

et al. [3] has been a common approach in terrestrial robotics.

However, its use typically relies on laser range sensors to pro-

duce a dense point cloud representation of the environment.

We have modified this algorithm to optimize only over xy-

translation, instead of computing a rigid-body 6 degree of

freedom (DOF) transformation since other DOFs are well

instrumented. For scan matching in the AUV community,

Ozog et al. [23] aligned accumulated DVL range observa-

tions of a ship hull to a prior CAD model and used GICP for

metric comparison. Roman and Singh [22] used a point-to-

plane scan matching algorithm to register the dense submap

alignments. Finally, VanMiddlesworth et al. [24] mapped

the underwater portion of ship hulls using a profiling sonar.

Though they also used a factor graph and aligned submaps

using iterative closest point (ICP), our approach uses point

clouds that contain far fewer points, and a different cost

function that only optimizes over the xy-direction.

III. METHODOLOGY

Our approach augments typical DR AUV navigation with

terrain-based measurements from sensed depth and altitude

to yield an observation of total water column depth. We

rely on a factor graph estimation framework [25] to compute

the most likely vehicle trajectory given all observations. The

factor graph is a smoothing framework that estimates the set

of poses along a vehicle trajectory. We introduce a factor that

enforces consistency in observed water column depth (i.e.,

AUV poses at different times, but overlapping spatial area,

should register similar water column depth).

Within our framework, AUVs have no prior bathymetric

map. We assume that DR navigation drift is negligible over

small time scales such that we can create ‘submaps’—

or sparse point clouds composed of water column depth

observations. An appropriate choice for the time scale of

a submap may vary according to the performance of DR.

We found that a time scale of 10 s works well in our

application. For a vehicle pose at the ith time index, xi,

we accumulate a point cloud, Pi = {pi
n}

m
n=1, where each

water column depth point, pi
n, is expressed relative to xi.

We then use a modified GICP algorithm to align overlapping

submaps. The alignment step between two submaps, Pi and

Pj , provides a relative measurement between two poses, xi

and xj . The alignment is only computed over xy-translation

because attitude and depth are directly instrumented with

bounded error.

In the following, we first review factor graph estimation.

We then derive an xy-alignment procedure as a quadratic

program from GICP alignment. Finally, we demonstrate the

implementation of the alignment factor within an AUV factor

graph.
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Fig. 2: Factor graph representation of our SLAM problem. Red factors are DR navigation, blue factors are GPS constraints (only available at the surface),
and green factors illustrate submap alignment. The color scheme represents the three graphs we will be comparing throughout the paper: red factors consist
of the DR solution, red and blue factors create a proxy ground truth graph, and red and green factors form the bathymetric SLAM graph we propose.

A. Factor Graph Estimation

Factor graph estimation, popular within the SLAM com-

munity, is a general smoothing framework. Here, we only

consider nodes that consist of 6-DOF poses, often referred

to as pose graphs.

Factor graph estimation optimizes the set of all vehicle

poses along a trajectory, X = {x1, . . . ,xn}, using least

squares optimization. Approaching SLAM as a least squares

problem leverages the inherent sparsity of the SLAM prob-

lem, which enables efficient inference. Further, implementa-

tions of factor graph SLAM such as incremental smoothing

and mapping (iSAM) [25] facilitates integration of other

factor types developed in other literature.

The factor graph represents the joint distribution over

poses given all measurements, Z = {z1, . . . , zn},

p(X|Z) ∝ p(x1)
∏

i

p(zi|Xj∈Ci
), (1)

where Ci represents the set of pose indices constrained by

factor zi. We discuss the factor types (each zi) considered

within this paper below and depicted in Fig. 2. The maxi-

mum a posteriori (MAP) estimate over the vehicle trajectory

can be computed from the joint distribution (1) as

X∗ = argmax
X

p(X|Z)

= argmin
X

− log p(X|Z). (2)

For Gaussian noise models, the above optimization is

reduced to a least squares problem [26]. Moreover, the

solution can be computed efficiently due to the sparse nature

of factors (measurements typically involve very few poses in

the graph).

Each factor represents a measurement over a set of poses.

Within this work, we consider three factor types: odometry

factors, unary pose factors, and submap alignment factors.

We detail the first two factors below and submap alignment

in Section III-B.

1) Odometry factors: Odometry factors model the trans-

formation between sequential poses over time. We compute

odometry factors by integrating DVL body-frame linear

velocities [1] which results in translational odometry mea-

surements with respect to the world coordinate frame,

zodo = ti − ti−1 +wodo, (3)

where wodo ∼ N
(

0,Rodo(d)
)

is an additive zero-mean

Gaussian noise perturbation that is a function of distance

traveled (d), and tk is the xyz-location of node xk.

2) Unary pose factors: Attitude, depth, and GPS (while at

the surface) are modeled by unary pose factors. Each unary

pose factor involves only a single pose node,

zrph = rph(xi) +wrph, (4)

zdepth = depth(xi) +wdepth, (5)

zgps = xi +wgps, (6)

where each measurement model includes an additive zero-

mean Gaussian noise term, wrph, wdepth, and wgps, respec-

tively. Attitude is directly observed by an inertial measure-

ment unit (IMU) and magnetic compass, depth is measured

by a pressure sensor, and GPS measures xy vehicle position.

Attitude, odometry, and depth factors provide the neces-

sary constraints for DR navigation. Moreover, the addition

of GPS factors to our DR graph generates our ground truth

solution. We will compare our results of DR navigation

combined with the submap alignments to these two factor

graphs. These graphs are shown in Fig. 2, where the color

of each factor represents to which graph the factor belongs.

Since our observation models are linear functions of

the state, this implies that (2) can be written as a linear

least squares problem, such that the MAP estimate can be

computed in exactly one Gauss-Newton iteration.

B. Map Alignment Factors

Submaps are generated by accumulating DVL altitude

measurements between nodes. When submaps of different

nodes spatially overlap, they should register similar water

column depths. We exploit this shared information to com-

pute a 2D transformation between submaps by enforcing

water column depth consistency. We add the rigid-body

transformation to our factor graph as a submap factor,

zij = xj − xi +wij , (7)

where zij is taken from a modified GICP algorithm and

wij ∼ N
(

0,Rij

)

is zero-mean Gaussian noise.

Iterative closest point (ICP) is a simple and efficient

method to compute the rigid-body transformation that best

aligns two point clouds. Early methods of ICP [27] addressed

point-to-point registration, while Chen and Medioni [28] pro-

posed a point-to-plane variant. These ICP methods alternate



between two steps: computing point correspondence between

the two point clouds, and computing the transformation that

minimizes the distance between the corresponding points.

The drawbacks of such methods are the implicit assumptions

of full overlap between geometric surfaces being matched or

that points are taken from a measured, not sensed, geometric

surface.

Motivated by a maximum likelihood estimate (MLE) ap-

proach, GICP modified the cost function when computing the

best transformation given the point correspondence between

the two point clouds. With such an approach, GICP has

shown to be robust to poor point correspondences and to

improve results over ICP algorithms while maintaining the

simplicity and efficiency of ICP [3].

In detail, GICP assumes the measured points are drawn

from independent Gaussians centered at the point’s location.

Therefore, given two points clouds, Pi = {pi
n}

m
n=1 and

Pj = {pj
n}

m
i=1, associated to nodes xi and xj , respectively,

GICP computes the rigid-body transformation (xij) such that

xj = xi ⊕ xij . Where the ⊕ operator corresponds to the

head-to-tail operation as described by [29] It does so by first

assuming the existence of two point clouds P̂i = {p̂i} and

P̂j = {p̂j} such that

pi
n ∼ N

(

p̂
i
n,C

P i

n

)

pj
n ∼ N

(

p̂
j
n,C

P j

n

)

,

where CP i

n and CP j

n are the sample covariance matrices

associated with point clouds Pi and Pj , respectively. GICP

defines the correct rigid-body transformation matrix between

the two submaps as T∗—making xij the parametrized ver-

sion of the matrix T∗,

T∗ =

[

R t

0 1

]

, (8)

where R is an orthonormal rotation matrix and t is a

vector describing translation. It then defines, p̂
j
n = T∗p̂

i
n.

Therefore, given an arbitrary transformation T, the error

between aligned point clouds is

d
(T)
n = pj

n − Tpi
n

d
(T)
n ∼ N

(

p̂
j
n − Tp̂i

n,C
P j

n +TCP i

n T⊤
)

. (9)

The MLE alignment is then computed as

T∗ = argmax
T

∏

n

p(d(T)
n )

= argmax
T

∑

n

log p(d(T)
n )

= argmax
T

∑

n

d
(T)
n

⊤

(CP j

n +TCP i

n T⊤)−1d
T
n . (10)

Attempting to optimize a 6-DOF rigid-body transforma-

tion between two point clouds using sparse DVL data could

result in erroneous results due to a lack of constraints in the

cost function, since our submap intersection is incredibly

sparse (∼25 points). Morever, since navigation drift is in

the xy-plane, we modified the GICP algorithm to optimize

only over xy-translation (tx, ty) by assuming the rotation

and z-translation of T are known. Expanding (10) with the

assumptions mentioned above we obtain

t∗ = argmin
t=[tx,ty,tz ]⊤

∑

n

t⊤Λ−1
n t+2(Rpi

n −pj
n)

⊤Λ−1
n t, (11)

subject to tz being equal to the measured depth difference

between the two nodes, and R being the rotation matrix taken

from the attitude sensor. Moreover, Λn = CP j

n + RCP i

n R⊤.

Equation (11) is a quadratic program and can be computed

efficiently. The alignment constraint is computed from the

optimized translation vector, Zalign = [t∗x, t
∗
y]

⊤.

C. Data Association

The submap alignment procedure produces a relative fac-

tor between two poses. Data association refers to the step

for suggesting submaps that should align. We propose a set

of simple heuristics in order to select submaps to align:

• The distance between submap centroids must be within

a mahalanobis distance threshold.

• The intersecting regions of submaps must have water

column depths within a threshold range of each other.

Since water column depth is measured with bounded

error, overlapping submaps must contain similar water

column depths.

• Adjacent nodes do not produce alignments, since

submaps are sparse and have small overlapping areas.

For each new node added to the graph, we select potential

alignments based on the above criteria. If more than one

submap passes all the criteria above, we choose the submap

with the closest centroid. We then perform modified GICP

as outlined in Section III-B.

With the above criteria, incorrect alignment factors will be

added to the graph. To handle erroneous data association, we

use dynamic covariance scaling (DCS) [30]. DCS weakens

the influence of factors that are not consistent with other

measurements by dynamically increasing the factor noise

covariance. Field trial results (Section IV) demonstrate that

DCS is able to correctly scale problematic false submap

matches.

Using the heuristics mentioned above, data association is

sensitive to the quality of our pose estimation: until our first

alignment, our estimated trajectory will exactly match the DR

solution. If DR estimation error is large, our data association

scheme will only propose erroneous alignment factors since

the distance to the correct alignment will be larger than other

submaps. Enforcing good alignments can be achieved by

designing trajectories that contain spatial submap intersection

before DR navigation error grows too large.

In the following section, we present results for field

experiments with known data association and with the data

association scheme mentioned above. We also show the

effect of large DR navigation error on our data association

heuristics.



(a) Initial alignment

(b) Optimal alignment

Fig. 3: Top view of submap alignment results in simulation. The top figure
shows the initial condition alignment (pink) versus the correct alignment
(black). The bottom figure shows the optimized submap alignment (pink)
matching the correct alignment (black). Red is the submap of the first node.

IV. RESULTS

A. Numerical Simulation

We first evaluate the alignment factor produced by (11)

in simulation. We generated a bowl-shaped environment

with water column depth varying 2 m over a 100 m area.

Within the area, we randomly selected 100 000 overlapping

submap regions and generated submap point clouds. Finally,

we aligned each submap pair and compared the alignment

measurement with the relative ground truth positions of the

submaps.

Fig. 3 illustrates one alignment between a simulated pair

of submaps. The red point cloud (Pi) is the submap from a

node xi, the pink point cloud (Pj) is the estimated submap

from a node xj , and the black point cloud is the ground

truth submap of xj . The surfaces below the point clouds

Pi and Pj represent a section near the nodes’ locations in

the simulated map. These sections are color-coded by depth.

In Fig. 3a, it is noticeable that the surfaces do not have a

smooth color transition. However, the two submaps pass our

data association heuristics and so we propose an alignment

between them. The results are shown in Fig. 3b. The surfaces

show a smooth transition, and the pink submap lies nearly

on top of the black submap.

After 100 000 runs, the average alignment error is an

approximate Gaussian zero-mean distribution with standard

deviation of 1.5 m. Therefore, simulation results for our

measurement model validate our assumption of zero-mean

Gaussian noise in (7). Due to non-modeled error sources,

such as a non-smooth bathymetry and heading biases, and

to avoid overconfidence, we increase the standard deviation

from 1.5 m to 4 m when performing submap alignment in

our field trials.

Fig. 4: Ocean Server, Inc., Iver2 AUV used during field trials at the
University of Michigan Biological Station. Sensors include a 600 kHz

Teledyne RDI Explorer DVL, a Microstrain 3DM-GX25 AHRS, and a
Desert Star SSP-1 pressure-depth sensor

B. AUV Field Trials

We fielded a modifed Ocean Server, Inc., Iver2 AUV

(Fig. 4). The AUV is equipped with a 600 kHz Teledyne

RDI Explorer DVL, a Microstrain 3DM-GX25 AHRS, and

a Desert Star SSP-1 pressure-depth sensor. More details

regarding the vehicle configuration can be found in [31].

We collected data from two field trials. For both, the

AUV survey mission consisted of performing an East-West

lawn mower pattern (x-direction) followed by a North-South

pattern (y-direction). The difference between the trials was

in their total length. One run consisted of 5 legs in each

direction, while the other consisted of over 10 legs for

each lawn mower. During each trial, the vehicle moved

approximately 1 m/s at a fixed depth of 5 m. The total water

column depth over the surveyed area varied between 7 m and

21 m. Each submap consisted of 10 s of accumulated DVL

altitude observations and contained at least 1 m difference

in water column depth.

The AUV followed two overlapping lawn mower survey

patterns for each trial consisting of 300 m tracklines spaced

25 m apart. The AUV surfaced at the end of each lawn

mower trackline in order to observe GPS (for ground-truth

evaluation). We post-processed the vehicle navigation using

standard DR, and DR with our submap alignment factors.

Additionally, we estimated the vehicle trajectory using GPS

as a proxy for ground-truth.

1) Trial 1: Fig. 5 shows the estimated AUV trajectory

for the shorter trial. We first hand-labeled aligning submaps

(Fig. 5a) and then compared the solution to automatic data

association (Fig. 5b). Many more links were proposed with

automatic data association. As shown in Fig. 6, DCS helped

to reject incorrectly proposed submap alignments by dynam-

ically scaling the covariance of the submap factor based on

the factor’s influence to the chi-squared error of each submap

alignment factor. The DCS scale factor varies between 1
(standard observation) and 0 (does not influence the opti-

mized trajectory).

Fig. 7 was plotted under automatic data association, and

it demonstrates the benefit of the submap aligment-based

approach compared to standard DR navigation. Note that the

error and covariance plots are the same for each estimator

during the first half of the trial. Submap alignments are only



(a) Manual data association

(b) Automatic data association

Fig. 5: Results for Trial 1 field experiments. Red consists of the DR
navigation solution, the blue trajectory is the optimized graph that consists
of DR navigation with GPS factors, and the green trajectory is the optimized
graph that contains DR navigation and submap alignments factors. The black
lines connect nodes that share the same submap alignment.

Fig. 6: Scaling factor computed by DCS for Trial 1 experiments. Green
crosses are automatic alignments that are correct, magenta diamonds are
proposed alignments that the spatial submap overlap is partial, and red
circles are false positive submap alignments.

proposed after the AUV has executed its first lawn mower

and transitions to the second lawn mower during which it

(a) Norm difference between estimated poses to GPS optimized graph

(b) Estimator uncertainty (4th root of determinant of xy covariance)

Fig. 7: Estimator comparison to GPS optimized graph for Trial 1.

overlaps the first.

2) Trial 2: The second trial demonstrates our proposed

algorithm on a longer mission. We first present results

with hand-labeled data association (Fig. 8a) followed by

automatic data association (Fig. 8b). Fig. 8b demonstrates

the failure mode for our data association heuristics. The

submap technique does not propose many correct links, since

DR navigational error is large when the first alignment is

proposed, and our method will lead to an estimated trajectory

that is overconfident and erroneous.

V. CONCLUSION

We have presented an algorithm for terrain-aided navi-

gation without the use of a prior map. We proposed an

xy submap alignment procedure derived from GICP. The

submap alignment contraints are used within a factor graph

framework to enforce trajectory estimates with consistent

bathymetric structure. Our field results demonstrate the abil-

ity of our algorithm to produce accurate AUV position

estimates using onboard vehicle sensors.

For the data association, our heuristic-based approach

performed well when the first submap alignment occurs

prior to a large error in DR navigation. Therefore, good

survey trajectory design is required. Further, DCS is included

in submap alignment factors to enforce the removal of

potentially wrong data associations.
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