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Abstract— Many autonomous systems require the ability to
perceive and understand motion in a dynamic environment. We
present a novel algorithm that estimates this motion from raw
LIDAR data in real-time without the need for segmentation or
model-based tracking. The sensor data is first used to construct
an occupancy grid. The foreground is then extracted via a
learned background filter. Using the filtered occupancy grid,
raw scene flow between successive scans is computed. Finally,
we incorporate these measurements in a filtering framework to
estimate temporal scene flow. We evaluate our method on the
KITTI dataset.

I. INTRODUCTION

Autonomous systems, such as self driving vehicles or other

mobile robots, operate in dynamic environments where it is

critical to be able to accurately perceive and understand the

motion of the surrounding environment. Increasingly often,

these systems are equipped with one or more light detection

and ranging (LIDAR) sensors. These sensors provide a point

cloud representation of the world, often collecting millions

of points per second.

Many algorithms that consider dynamic scene understand-

ing work with the point cloud directly. For example, obstacle

tracking techniques for self-driving vehicles often rely on

detection and segmentation of objects directly from the

LIDAR generated point cloud, including our previous work

[1] and others [2–7].

However, working with point clouds alone disregards a

valuable characteristic of the sensor: the notion of free space

swept out between the point return and the LIDAR sensor.

Occupancy grids are a commonly used representation that

can be readily manipulated to capture free and unknown

space, in addition to the occupancy of a LIDAR point

return. This can be achieved by ray-casting from the sensor

emitter to the returned point, populating cells of a grid with

observations of “free space” [8].

Applications of occupancy grids have been widely con-

sidered in the 2D domain. However, extending the use

of occupancy grids to 3D sensors has been limited. The

exponential increase in processing required for handling the

significant number of voxels in a 3D occupancy grid presents

a challenge. In this work, our algorithms are designed so that

they can easily be offloaded to a GPU. Thus, we can better

This work was supported by a grant from the Toyota Research Institute
under award N021515.

A. Ushani and R. Eustice are with the University of Michigan, Ann Arbor,
MI 48109, USA. {aushani, eustice}@umich.edu.

R. Wolcott and J. Walls are with the Toyota Research Institute.
{rwolcott, jmwalls}@umich.edu.

Fig. 1: An overview of our pipeline. As an input to our system,
we take raw LIDAR scans. We construct occupancy grids from
these scans, which are then filtered to remove the background. We
then compute raw scene flow measurements using our occupancy
constancy metric. Finally, we incorporate this measurement in a
filtering framework to refine the estimate and reject false measure-
ments, producing an estimate of temporal scene flow.

formulate a real-time temporal scene flow framework from

LIDAR scanners.

In this paper, we present a pipeline that takes raw LIDAR

data as input and produces a scene flow estimate. In our

previous work, we considered the similar problem of obstacle



tracking [1]. Motivated by some of the shortcomings in this

previous work, a key goal of our proposed method here is to

avoid relying on temporal data association, segmentation, or

use of an object model. Instead, we formulate the problem

similarly to that of optical flow over 3D occupancy grids.

The novel contributions of this work include:

• A learned framework for tracking LIDAR observations

in occupancy grids, leveraging background subtraction

and temporal occupancy constancy.

• An expectation-maximization (EM) algorithm for esti-

mating raw, incremental scene flow.

• Real-time implementation on a GPU enabling 10 Hz
scene flow estimation.

• Extensive evaluation of our method against known

groundtruth from the KITTI dataset [9].

II. RELATED WORK

Estimating dynamic motion from sensor data has been

studied extensively in various communities, including com-

puter vision, self driving vehicles, and mobile robotics.

In the field of computer vision, optical flow or scene

flow has been a popular research area in which motion in

an image due to a moving platform or dynamic objects

in the environment is estimated. While motion estimation

in camera data and LIDAR have many similarities, it is

important to note the unique advantages and challenges that

each sensor modality provides. For example, unlike LIDAR

sensors which provide a relatively sparse set of observations,

cameras provide a rich view of the scene. In addition to

denser measurements, cameras also provide a much more

accurate estimate of the pixel appearance (such as color or

pixel intensity). While some LIDAR sensors do report the

intensity of the laser return, these intensity values are usually

not very discriminative in general and unreliable, as they

could vary significantly due to incidence angle or between

laser sensors.

Optical flow is typically approached by solving for a two

dimensional motion field in the image plane that preserves

some constancy metric (such as brightness constancy) and

a regularization term to promote spatially smooth flow

[10, 11]. In scene flow, the 3D motion is estimated with

the use of a stereo camera or some depth sensor [12–15].

However, scene flow is generally not capable of real-time

performance: 12 of the 15 submissions to the KITTI scene

flow evaluation benchmark, including the top four, currently

take 50 s or longer to process a single scene [12]. Recently,

Jaimez et al. [15] presented a method to estimate scene flow

in real-time for displacements up to 15 cm. However, due to

the difference in sensing modalities described above, these

methods do not directly translate from computer vision to

LIDAR sensing.

While there are some key differences, obstacle tracking

considers a similar problem. Whereas we are interested in

sensing and detecting motion in general in a dynamic envi-

ronment, in obstacle tracking, discrete objects are extracted

from sensor data and detected over time. These observations

of objects are associated temporally and used to compute tra-

jectories or build appearance models. Many obstacle tracking

methods rely on simple geometric models of obstacles, such

as boxes or ellipses, which are fit to measurements through

time [3–7]. More recently, some methods do not make

assumptions about the obstacle’s appearance or structure.

In our previous work, we framed obstacle tracking as a

problem similar to that of SLAM, in which an obstacle’s

trajectory and “map” (i.e., point cloud model) are computed

[1]. Held et al. [16] provide a framework by which to

efficiently register successive scans of an obstacle, providing

an estimate of relative motion between these two scans and

incrementally building up an obstacle model. Unlike our

problem area, however, many approaches in obstacle tracking

assume that the sensor data has been segmented into discrete

objects and associated over time.

More recently, Dewan et al. [17] consider a similar prob-

lem to ours, estimating rigid scene flow between LIDAR

scans. Similar to our work, they formulate an energy mini-

mization problem based on matching SHOT feature descrip-

tors for a subset of keypoints. However, unlike our work,

they rely on point correspondences, whereas we do not rely

on any data association. Additionally, they do not temporally

filter this result over successive scans.

Our filtering framework has some similarities to that of

Tanzmeister et al. [18] and Danescu et al. [19], where

particles with position and speed are spread throughout a two

dimensional grid and can move from cell to cell. They rely

on stereovision to produce positional observations that are

used in the resampling step for the particle filter. Aside from

the difference in sensing modality, we attempt to directly

exploit perceived motion in the sensor data.

III. PROBLEM STATEMENT

Our goal is to compute scene flow from LIDAR scans in

real-time. Our work has direct application for autonomous

vehicles, so we make the assumption that the world is locally

planar—as is common in many autonomous vehicle applica-

tions. Namely, we assume that object motion is restricted to

this horizontal plane and that all objects in a vertical column

tangent to this plane move together. It is important to note

that we make this assumption for our application domain to

help run in real-time, though our proposed method could be

modified to compute non-horizontal motion if need be. Thus,

our goal is to compute the temporal scene flow si,j for every

location (i, j) in the plane.

Many sensor observations in a LIDAR scan correspond to

static background structure in which scene flow estimation is

trivial (e.g., the ground plane). As autonomous vehicles are

commonly instrumented to estimate odometry, scene flow

of static structures can instead be estimated via the relative

motion of the car. Thus, our work is primarily interested in

estimating the scene flow for dynamic objects or potentially

dynamic objects in the environment.

In the following sections, we describe the stages of

our framework. Beginning with a point cloud, zt,1:n =
{

[xi, yi, zi]
⊤
}n

i=1
that we receive from the LIDAR sensor



at time t, we first construct a 3D occupancy grid Gt. We

will consider both zt,1:n and Gt in the reference frame of the

vehicle platform at time t. We then use a learned background

filter to extract the foreground from Gt. Next, we estimate

the scene flow between two successive occupancy grids Gt−1

and Gt using a learned approach. We compute this flow

in the reference frame of the vehicle, although this could

easily be converted to the world frame using the odometry

estimate of the ego-motion of the vehicle platform. Finally,

we accumulate these raw scene flow measurements into a

filtering framework to provide an estimate of the temporal

scene flow.

IV. LIDAR PREPROCESSING

In this section, we describe the preprocessing performed

on the LIDAR sensor data, zt,1:n, to create an occupancy

grid Gt.

A. Occupancy Grid

To process the LIDAR data, we first build an occupancy

grid [20, 21], composed of 3D voxels representing how likely

it is that an object occupies the given space. For each voxel,

the probability it is occupied is computed by

p(v|zt,1:n) =

[

1 +
1− p(v|zt,n)

p(v|zt,n)

1− p(v|zt,1:n−1)

p(v|zt,1:n−1)
β

]−1

,

(1)

where zt,1:n = {zt,1, . . . , zt,n} is the collection of laser

returns from the LIDAR sensor, β = p(v)
1−p(v) , and p(v) is

a prior on the state of v. If we assume that our prior is

p(v) = 0.5 and use log-odds (denoted L) [21], we can

represent the recursive formulation of (1) as

L(v|zt,1:n) =

n
∑

i=1

L(v|zt,i) (2)

L(v|zt,i) =











lfree the ray to zt,i passes through v

loccupied the ray to zt,i ends in v

0 otherwise

,

(3)

where L(v|zt,i) is the log-odds update given by the observa-

tion zt,i and lfree and loccupied are the log-odds updates given

by an observation of free or occupied space, respectively. To

compute all the of log-odds updates for all of our LIDAR

observations, we use Bresenham’s ray tracing algorithm [22],

which can be efficiently implemented on the GPU.

B. Background Filter

In order to reduce the computational burden of computing

flow for the entire scene, we first apply background sub-

traction to identify static structure. This preprocessing step

identifies possible columns in the occupancy grid that could

be dynamic and have some scene flow associated with them.

While this filter need not be perfect, we find that it helps with

runtime performance and errors due to perceptual aliasing.

Many techniques that use LIDAR sensors rely on various

methods to eliminate static background (e.g., ground plane

or buildings). One set of approaches rely on prior maps

of the environment that are leveraged by localizing within

these maps during runtime. These maps contain information

about the ground plane or other static structure in the scene.

For example, some obstacle trackers rely on these maps to

identify only the sensor measurements from objects that need

to be tracked [1]. However, these approaches fail if the map

is not accurate (e.g., due to construction) or the localization

system experiences any errors.

Other approaches leverage the appearance and structure of

the data to discriminate between foreground and background,

such as [23, 24]. Features such as normal vectors and shape

distributions are extracted from patches of points to create

a handcrafted feature vector which is fed into a classifier.

Wang et al. [23] report a runtime of 5 s on 3D data, while

Wang et al. [24] report a runtime of 336 ms on 2D data. As

our use requires a filter that is part of a full system that can

run in under 100 ms, we propose a method that is simpler in

nature but can run much faster than these previous techniques

while still operating on our 3D occupancy grid.

We propose to solve this task via classification using a

logistic classifier. Given a location (i, j) in our occupancy

grid, we seek to find a label y ∈ {Foreground,Background}.

This method requires no prior maps and allows us to learn

from training data the structure of columns that appear to be

dynamic.

For the occupancy column (i, j), we build a binary feature

vector as follows. We extract 5× 5 neighborhood patch of

columns, Ni,j , from the occupancy grid around the location

(i, j). We build two binary feature vectors sfree and soccu,

each encoding the state of the full neighborhood patch. The

binary elements of sfree and soccu are given by

s
n
free = p(vn) < (0.5− ǫ) (4)

s
n
occu = p(vn) > (0.5 + ǫ), (5)

for every voxel vn ∈ Ni,j , where ǫ is a parameter control-

ling the certainty of free or occupied space. These vectors

are concatenated to make one binary feature vector s =
[

s
n
free

⊤, snoccu
⊤
]⊤

, which is then used in a logistic classifier.

Note that this feature vector implicitly captures the notion of

unknown cell state where these two decision variables both

evaluate to false.

To train this classifier, we extract training data from the

KITTI dataset. For ten KITTI log sequences of data, we

build feature vectors by sampling columns in the occupancy

grid and extract labels by determining whether or not these

columns are contained within the labeled KITTI tracklet

data. We build a training set of 243,828 samples. We use

TensorFlow [25] to train our logistic classifier. Finally, we

choose our decision threshold for this classifier to give us

95% accuracy on extracting the foreground; this allows us to

reject much of the static background without catastrophically

removing dynamic columns.

Our background filter can then be used online by running

the classifier for every column of the occupancy grid. This

step is embarrassingly parallel, and thus can be implemented



very efficiently on the GPU. For any columns that are

identified to be part of the background, we assign a raw scene

flow measurement derived from the odometry estimate of the

ego-motion of the vehicle platform.

V. TEMPORAL SCENE FLOW COMPUTATION

In this section, we will describe the process by which we

compute temporal scene flow between two occupancy grids

Gt−1 and Gt. We use the background filter described above

to filter Gt−1, but importantly we do not filter Gt at this

time. This helps mitigate errors in the background filter, as

voxels that were not properly filtered in Gt−1 can still be

matched to the corresponding location in Gt.

A. Occupancy Constancy

To compute the scene flow between two occupancy grids,

we need a method by which we can measure the consistency

of the occupancy state of columns in successive occupancy

grids. To do so, we will rely on occupation constancy: the

occupation state of matching columns should not change

between two successive scans. Here, we assume rigid, non-

deforming motion, which is generally valid in our appli-

cation. As we will demonstrate in the results, our method

can still achieve good performance even for objects that can

deform, such as cyclists and pedestrians.

We formulate occupation constancy as a learning problem,

as we find that a learning approach works significantly

better than any hand designed metric. We take two candidate

columns ct−1 ∈ Gt−1 at (it−1, jt−1) and ct ∈ Gt at

(it, jt), each consisting of a vertical array of voxels vi,j,k
in the occupancy grid at their respective location. We wish

to determine whether or not they are consistent. We construct

three binary feature vectors, f free, f occu, and f diff, encoding

whether or not the two columns have similar occupation.

Each element k of these feature vectors are given by

f
(k)
free =

(

p(vct−1,k) < (0.5− ǫ)
)

∧
(

p(vct,k) < (0.5− ǫ)
)

(6)

f
(k)
occu =

(

p(vct−1,k) > (0.5 + ǫ)
)

∧
(

p(vct,k) > (0.5 + ǫ)
)

(7)

f
(k)
diff =

(

(

p(vct−1,k) > 0.5 + ǫ
)

∧
(

p(vct,k) < 0.5− ǫ
)

)

∨
(

(

p(vct−1,k) < 0.5− ǫ
)

∧
(

p(vct,k) > 0.5 + ǫ
)

)

.

(8)

We concatenate these three binary feature vectors into one

binary feature vector f ct−1,ct . This is then used in a logistic

classifier, Pmatch(f ct−1,ct), which yields the probability that

the two given columns are consistent with each other given

their occupation state.

To train this classifier, we again rely on the KITTI dataset

to extract training data. We create a training dataset in the

following manner. We sample a column ct−1 ∈ Gt−1 at

location (i, j). Using scan matching [26] for a ground truth

relative pose estimate and the labeled KITTI tracklet data, we

compute the true scene flow and find the true corresponding

column ct ∈ Gt. Thus, ct−1 and ct are used to construct a

positive training sample. We then additionally sample from

a ns ×ns neighborhood about location (i, j) in Gt (denoted

by Nct−1
), excluding the true corresponding column, to

construct negative training samples.

We use the same ten KITTI log sequences of data as

we did before to build our training dataset, comprising of

1,028,381 training samples. We train our logistic classifier

for occupancy constancy using TensorFlow.

For efficient computation, we preprocess Pmatch for all

pairs of columns we will consider. We take the log-

probability and apply a window to promote spatial smooth-

ness (e.g., ci,j and ci+1,j+1 will likely experience similar

scene flow). We store this result in a lookup table Tmatch,

Tmatch(ct−1, ct) =
∑

cw∈Wct−1

log
(

Pmatch(f cw,ct)
)

, (9)

where Wct−1
is nw ×nw window of columns cw ∈ Gt−1

centered on ct−1.

B. Raw Scene Flow Computation

To solve for the scene flow, we formulate an energy

minimization problem that leverages our learned occupancy

constancy metric. We use an iterative EM algorithm to esti-

mate a locally rigid, non-deforming flow between successive

occupancy grids, which we run for nem iterations.

At each step of the EM algorithm, for every ct−1 ∈ Gt−1

we maintain the current estimate of scene flow s(ct−1) and

matched column m(ct−1) ∈ Gt, both initially all flagged as

invalid. We will compute an energy, E(ct−1, ct), associated

with a potential scene flow estimate that leads from ct−1 ∈
Gt−1 to ct ∈ Gt. Additionally, for every ct ∈ Gt, we store

the energy associated with the currently computed scene flow

estimate that leads to ct ∈ Gt, Ê(ct), which is initialized to

∞.

This algorithm must be run for every column in the oc-

cupancy grid. However, we can process columns in parallel,

and thus this can be efficiently implemented on the GPU.

1) Expectation: During the expectation step, we estimate

the most likely scene flow for every column. For a given

column ct−1 ∈ Gt−1 at location (i, j), we search through

a neighborhood Nct−1
, which is a ns ×ns neighborhood of

columns ct ∈ Gt centered around location (i, j). We compute

an energy for each ct ∈ Nct−1
,

E(ct−1, ct) = −Tmatch(ct−1, ct)

+ wp

∑

cp∈Pct−1

∥

∥sct−1,ct − s(cp)
∥

∥

2
, (10)

where wp is an L2 penalty weight to enforce spatial smooth-

ness, Pct−1
contains all cp ∈ Gt−1 in a 5× 5 neighborhood

around ct−1 for which we have a valid scene flow estimate

s(cp), and sct−1,ct is the candidate scene flow vector which

associates ct−1 and ct.
For every ct−1 ∈ Gt−1, we find the corresponding c∗t ∈ Gt

that minimizes E(ct−1, ct) such that either E(ct−1, c
∗
t ) <

Ê(c∗t ) or m(ct−1) = c∗t (i.e., the same scene flow was

computed previously during an earlier iteration and we



simply need to update the energy that may have changed

due to the L2 penalty). We store the estimated scene flow at

this iteration in s(ct−1) = sct−1,c
∗

t
and m(ct−1) = c∗t .

2) Maximization: During the maximization we step, we

enforce our assumption of locally rigid, non-deforming flow.

This means that only one column ct−1 ∈ Gt−1 can lead to

any column ct ∈ Gt.

For each ct ∈ Gt, we consider all ct−1 ∈ Gt−1 such that

m(ct−1) = ct. If there are any such ct−1, we take the one

with the lowest energy E(ct−1, ct), denoted c∗t−1, essentially

picking the most likely column in the previous scan that leads

to ct. We set Êc(ct) = E(c∗t−1, ct), and we flag all other

m(ct−1) = ct and s(ct−1) where ct−1 6= c∗t−1 as being

invalidated.

C. Temporal Scene Flow

We further refine this raw scene flow measurement by

incorporating it in a filtering framework. We maintain a

two dimensional array of flow tracklets, each maintaining

a temporally filtered estimate of the scene flow at the given

position (i, j). This step in our procedure is somewhat similar

to the work presented in [18].

Each flow tracklet is essentially an EKF filter using a

constant velocity model. We represent the state as s =
[x, y, θ, v, θ̇]⊤. We incorporate the raw flow measurements

by treating them as x, y observations, with a covariance

determined by the resolution of the occupancy grid. We use

Mahalanobis gating to reject any flow measurements that are

outliers.

After we compute the raw scene flow between Gt−1 and

Gt, we process this result with our two dimensional array of

flow tracklets. First, we use a constant velocity process model

to update all of our flow tracklets to the current time. Then,

each raw scene flow measurement for each location (i, j)
is assigned to a flow tracklet at that location and used for

the EKF filter’s observation update. If no such flow tracklet

exists at the location (i, j), a new one is created. Flow

tracklets without a valid raw scene flow measurement (for

example, due to Mahalanobis gating or background filtering)

are discarded. Finally, all flow tracklets are moved to their

new location (i, j) in the two dimensional array as given by

the scene flow.

Not only does maintaining this filter better estimate the

scene flow, but it helps eliminate outliers, both due to

the background filter missing static background and any

erroneous raw scene flow values. Additionally, for each flow

tracklet, we maintain a count of many how observations it

has received, or its “age”. As flow tracklets increase in age

and incorporate more raw observations, their estimate of the

scene flow becomes more reliable.

VI. RESULTS

We evaluated our proposed method using the KITTI

dataset [9], using sequences of raw data from city driving.

For computation, we ran all of our experiments on a machine

with an Intel i7-4790K CPU with 16 GB of memory and a

NVIDIA GeForce GTX 1080 GPU.
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Fig. 2: Precision-recall curve of the background filter. The red dot
on the curve indicates the decision threshold chosen throughout our
evaluation, where we detect 95% of the foreground.

A. Parameter Selection

For the occupancy grid, we construct a 50 m × 50 m grid

centered on the vehicle at a resolution of 30 cm.

To construct our binary feature vectors, we use ǫ = 0. Note

that this does not make our feature vectors complimentary.

Any voxel v that represents unknown space will have p(v) =
0.5, and thus will not factor into any of the binary features

due to the strict inequality in the decision variable. This is in

fact what allows us to implicitly account for unknown space.

We use a search space size of ns = 31, allowing for a

relative motion estimation of up to 45 m/s. We use a window

size of nw = 3. We run our EM algorithm for nem = 20

iterations. For the L2 penalty weight, we use a value of wp =
1.

B. Background Filter

We first evaluate the performance of our background filter.

We show the precision-recall curve by sweeping out the

decision threshold for our classifier, as shown in Fig. 2; here

the foreground is the positive class. As discussed in §IV-B,

we choose a decision threshold for our classifier to achieve

a 95% accuracy rate on foreground (as indicated by the red

dot). This results in a 74.5% accuracy on the background.

While our background filter may not achieve state-of-the-

art performance, it still performs quite well with respect

to other methods [23, 24]. However, a core strength of

our method is in efficiency, where we are able to execute

extremely fast, taking only 1.2 ms to run.

C. Raw Scene Flow

Next, we evaluate our raw scene flow measurements. To

generate the ground truth scene flow values, we combine the

KITTI labeled tracklet data with the relative pose between

the two successive LIDAR scans, as computed by scan

matching [26]. We then compute the norm of the error

between the ground truth flow vector and our computed raw
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(a) Car
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(b) Cyclist
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(c) Pedestrian
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(d) Background
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(e) All labeled KITTI tracklets

Fig. 3: Error histograms for raw scene flow measurements, by class,
and for all labeled KITTI tracklets. The dashed vertical line in
all plots indicates the resolution of our occupancy grid. Note the
different vertical scale for Fig. 3d.

scene flow. Results are presented as error histograms by class

in Fig. 3 and computed error statistics as tabulated in Table I.

We find that our raw scene flow measurements are gen-

erally quite accurate. While there are a number of outliers

that arise from alaising of occupancy constancy, the error

is frequently less than the resolution of the occupancy grid.

Additionally, we find that we are still able to compute scene

flow for objects that violate our assumption of rigid, non-

deforming motion such as cyclists or pedestrians.

Class Count
Median

Error

Mean

Error

Percent

Within 30 cm

Car 873,947 10.2 cm 19.3 cm 83.8%
Cyclist 9,890 13.2 cm 24.5 cm 78.8%
Pedestrian 7,527 15.5 cm 38.9 cm 74.3%
Background 19,899,708 2.6 cm 14.9 cm 88.9%

All Labeled

Tracklets
1,126,264 11.0 cm 22.1 cm 81.4%

TABLE I: Error statistics for the raw scene flow measurements.
We perform this analysis by class and overall labeled tracklets in
the KITTI datasets. Note that the background can have non-zero
error due to inaccuracies in the background filter, noisy odometry,
or discretization effects.

Class Count
Median

Error

Mean

Error

Car 216,026 0.49 m/s 0.65 m/s
Cyclist 1,507 1.01 m/s 1.09 m/s
Pedestrian 537 0.86 m/s 0.93 m/s
All Labeled Tracklets 266,237 0.50 m/s 0.66 m/s

TABLE II: Error statistics for the temporal scene flow measure-
ments for all flow tracklets with an age of at least 10. We perform
this analysis by class and over all labeled tracklets in the KITTI
datasets.

D. Temporal Scene Flow

Finally, we evaluate the temporal scene flow as computed

by our flow tracklets against the same benchmark as dis-

cussed in §VI-C. We evaluate this error as the tracklets

age, which allows for the filtered scene flow estimate to

become more and more accurate. The age of each tracklet

as measured in these results is simply the number of scans

that the tracklet has been active for (i.e., each age step

corresponds to 0.1 s of sensor data). We compute the CDF

of the norm of the velocity error vector for each flow tracklet

for various ages and also for all tracklets that have been seen

for at least a full second. We show these results in Fig. 4 and

present error statistics in Table II.

Unsurprisingly, the accuracy of the temporal scene flow

steadily improves as tracklets get older and receive more

observations. By the time a flow tracklet has been observed

for at least a second, the median error is roughly 0.5 m/s,
which corresponds to one sixth of the resolution of our

occupancy grid.

A few sample temporal scene flow results are shown in

Fig. 5.

E. Runtime Performance

A key goal is to enable real-time use of our proposed

framework. We provide a thorough runtime analysis of our

algorithm and all the core steps. As the LIDAR data is

received at 10 Hz, our algorithm must run in under 100 ms
to achieve real-time performance. The mean runtimes and

standard deviations over the full set of KITTI city log

sequences are provided in Table III.

We find that most of the steps of the pipeline are fairly

consistent in runtime with the exception of the iterative

EM procedure. This can be attributed to scene variation, as

we only perform the EM procedure for columns that have

not been pruned by the background filter. If we were to
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(d) All labeled KITTI tracklets

Fig. 4: The CDF of the error of our temporal scene flow estimates,
by class, and for all labeled KITTI tracklets. Note that these results
are measured in terms of velocity (m/s) as opposed to the results
in Fig. 3 which are measured in terms of position.

Step Runtime (ms)
Standard

Deviation (ms)

Occupancy Grid Generation 12.5 0.87
Background Filter 1.2 0.10
Occupancy Constancy 41.4 0.83
Iterative Expectation-Maximization 28.5 5.53
Filtered Temporal Flow 0.4 0.43

Total 85.7 6.38

TABLE III: Runtime performance of our proposed method. We
present both the total runtime and the runtime for each key step.

perform the EM procedure for all columns in the scene, the

runtime would increase by approximately 35 ms, putting us

just beyond our allotted 100 ms for real-time performance

without decreasing the number of iterations.

Nevertheless, we find that for over 99% of the input

data, the total runtime is under 100 ms, achieving real-time

performance.

VII. DISCUSSION

We find that our estimate of scene flow performs quite

well. Between 74.3% and 83.8% of the KITTI tracklets,

depending on the class, produce raw measurements of scene

flow that are within 30 cm of the ground truth flow, which is

the resolution of our occupancy grid. For static background

structure, even though our background filter is conservative,

Fig. 5: Sample temporal scene flow results. The temporal scene
flow is depicted in red.

we are able to extract scene flow accurately.

It is interesting to compare our results for raw scene flow

with Dewan et al. [17]. Like our work, they evaluate their

method on the KITTI dataset, although they only provide

results for translation error for sequences with no moving

objects. Although our method has some differences in formu-

lation, most notably the use of an occupancy grid as opposed

to directly dealing with the points, the results are comparable.

However, we do not rely on point correspondences or any

data association between scans.

Unsurprisingly, our results are even more impressive when

filtered over time. Our temporal model of scene flow allows

us to quickly improve the accuracy of the estimate over

time by both rejecting outliers and filtering measurements.



This quickly achieves accurate sub-voxel level estimates of

temporal scene flow.

While our algorithm is not an obstacle tracker, it is

interesting to compare the accuracy of our temporal scene

flow estimate to the performance of full fledged obstacle

tracking algorithms. State of the art obstacle trackers such

as [1] and [27] report average velocity errors of between

0.314 m/s and 0.56 m/s, respectively. Despite the fact that

we do not make similar assumptions as these trackers, such

as accurate segmentation, our error metrics are close to these

marks. Additionally, we are not prone to errors due to not

correctly modeling free space as shown in [1]. However,

these obstacle trackers are able to provide refined trajectory

estimates and crisp point cloud models of tracked obstacles,

something our method does not aim to achieve.

It is important to note that the results we have presented

for temporal scene flow are for individual flow tracklets. A

dynamic object in the scene, such as a car, nominally induces

several flow tracklets moving together. If we were to assume

accurate segmentation, we could take cluster groups of flow

tracklets together and combine their temporal flow estimates

to produce an even more accurate result.

One key feature of our proposed method is the extendibil-

ity to other sensor modalities or environments. Occupancy

grids can easily handle measurements from sensors other

than LIDAR, such as radar or camera systems. Accounting

for different environments or sensor configurations can be

handled by simply retraining the background filter and occu-

pancy constancy metric with new data. This is unlike many

other approaches for autonomous vehicle applications that

have a heavy reliance on prior maps, such as [1].

Unlike many other methods which estimate scene flow,

our timing results demonstrate the real-time capability of our

algorithm. Our method is capable of consuming LIDAR data

at 10 Hz, which is the nominal rate for such sensors, and thus

is appropriate for online use with autonomous systems.

VIII. CONCLUSION

We have presented an end-to-end pipeline for consuming

LIDAR data and producing estimates of temporal scene flow.

We have demonstrated the performance of this algorithm on

the KITTI dataset, presenting results that are competitive

with or better than the current state of the art. We have shown

that this algorithm can be run at 10 Hz, enabling real-time

use for mobile robotic applications.
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