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Abstract: To perform tasks in dynamic environments, many mobile robots must
estimate the motion in the surrounding world. Recently, techniques have been
developed to estimate scene flow directly from LIDAR scans, relying on hand-
designed features. In this work, we build an encoding network to learn features
from an occupancy grid. The network is trained so that these features are dis-
criminative in finding matching or non-matching locations between successive
timesteps. This learned feature space is then leveraged to estimate scene flow.
We evaluate our method on the KITTI dataset and demonstrate performance that
improves upon the accuracy of the current state-of-the-art. We provide an imple-
mentation of our method at https://github.com/aushani/f1sf.
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1 Introduction

Mobile robots often operate in environments that are inherently dynamic. To operate safely, it is
necessary for such systems to be aware of the motion in the world around them. For example,
self driving cars need to be aware of other cars on the road, and warehouse robots must be able to
move in an area with many other agents. Estimating dynamic motion is a core competency for these
autonomous systems.

Many approaches to detect motion perform object tracking [1, 2, 3, 4, 5, 6]. Sensor data, such as
a camera image or a light detection and ranging (LIDAR) point cloud, is segmented into distinct
objects. Data association is performed across timesteps. From the location of an object at each
timestep, its motion can be estimated.

Another approach to detect dynamic motion from a stream of sensor data is to solve for optical flow
or scene flow [7, 8, 9, 10, 11, 12, 13, 14]. Traditionally computed from camera data, optical flow
and scene flow approaches seek to find a motion field between two successive images by leveraging
some sort of consistency metric (such as brightness constancy) in an optimization problem.

More recently, similar ideas have been applied to point cloud data [15, 16]. However, these are
commonly reliant on a hand-designed feature or metric, such as SHOT features [15] or occupancy
constancy [16].

In this work, we propose an encoding network that learns features from an input occupancy grid.
The network is trained so that features from corresponding locations across different timesteps will
be similar, and features from different locations will be far apart. Thus, we can leverage the learned
feature space to estimate scene flow, with the hope that a learning approach can produce a feature
space in which distances are more meaningful. By evaluating our proposed method on the KITTI
dataset [17], we demonstrate that our approach yields results that beat the accuracy of the current
state-of-the-art. The methods presented in this paper build upon our prior work [16].
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2 Related Work

The work presented here is at the overlap of research done in the areas of dynamic object tracking,
optical flow and scene flow, and feature learning.

2.1 Dynamic Object Tracking

Dynamic object tracking from LIDAR sensors is a well studied problem with similar goals as
our work in estimating dynamic motion in the environment. Early approaches would segment the
LIDAR scan and extract a geometric observation from the segments, such as a bounding box or the
centroid of points [1, 2, 4]. These observations would be accumulated over time in a filtering frame-
work. Later approaches would improve upon the motion estimate between successive timesteps.
Feldman et al. [3] aligned segmented snapshots of objects between scans using iterative closest
point (ICP). Held et al. [5] proposed annealing histograms to perform a bounded search to find the
best relative motion that optimizes a measurement model. Ushani et al. [6] used a continuous stream
of the LIDAR observations from an object in a smoothing framework to estimate its trajectory.

Despite the impressive results by these works, they are prone to catastrophic failure if there is an
error in object segmentation or data association through time. Some methods were developed that
did not realize on explicit segmentation or data association. Tanzmeister et al. [18] and Danescu
et al. [19] propose grid based tracking systems, where particles move among cells in a grid and are
updated according to the observations. Dequaire et al. [20] propose a recurrent neural network that
predicts a future occupancy grid from LIDAR input.

2.2 Optical Flow and Scene Flow

In optical flow, 2D motion in the image plane is solved for using successive sensor observations, such
as images from a camera sensor [7, §]. Commonly, a constancy metric that enforces consistency
between images (e.g., brightness constancy) is leveraged. With 3D information, such as from a
depth sensor or a stereocamera, 3D motion can be estimated, known as scene flow. Many methods
exist to estimate scene flow from camera data. Some methods leverage an initial oversegmentation
followed by a CRF [9] or an energy minization framework [10, 11]. Jaimez et al. [12] rely on a
primal-dual algorithm. Taniai et al. [13] identify regions that are inconsistent with the ego-motion
of the platform and then build an energy minimization problem consisting of appearance, flow, prior,
color, and smoothing terms. Behl et al. [14] leverage object recognition in a CRF model.

However, estimating scene flow from camera images is typically very slow. The KITTI Scene Flow
Challenge provides a public benchmark, where entries estimate the scene flow between images in
typical urban and suburban driving scenarios [17]. The current top nine submissions to the challenge
take longer than 5 minutes to run, with three reporting runtimes of nearly an hour.

Recently, similar techniques have been applied to LIDAR point clouds. Dewan et al. [15] use an en-
ergy minimization problem to estimate rigid scene flow between LIDAR scans that leverages SHOT
feature descriptors. Ushani et al. [16] also frame an energy minimization problem, but instead lever-
age “occupancy constancy”, measuring the consistency of the occupancy states between successive
occupancy grids built from the LIDAR point clouds.

2.3 Feature Learning

Feature learning approaches have found success in many areas of robotics. This includes face recog-
nition [21], long term image matching [22], and point cloud classification [23, 24]. Generally, these
approaches construct a network from the input data to the feature space, and use a loss function to
promote the separability of the features for the desired task. For example, Wen et al. [21] proposed
center loss, where features from the same class are pulled towards the same center, and centers from
different classes are forced to stay apart. Carlevaris-Bianco and Eustice [22] used a loss function
that increases as the Euclidean distance between matching feature pairs grows, and decreases as the
Euclidean distance between non-matching feature pairs grows.

More similar to our method, several hand designed approaches have been proposed, such as spin
images [25] or Point Feature Histograms [26]. More recently, feature learning has been applied
in this area. Notably, Zeng et al. [27] present 3DMatch. Patches are extracted from red, green,



blue, and depth (RGB-D) reconstructions. Correspondences are collected from different views. A
convolutional neural network (CNN) is then trained to learn a geometric descriptor that outperforms
existing methods in determining correspondences. However, unlike our work, the dynamics of the
scene are not considered.

3 Method

In this section, we describe our proposed method. We will make similar assumptions as other works
in this area. Chiefly, as we target autonomous vehicle applications with the KITTI Dataset in this
work, we will assume that all dynamic motion is in the horizontal plane and that the motion field is
consistent for everything at the same (x, y) location. We seek to estimate the motion (u, v) for every
2D location x = (x, y) from one timestep to the next. That is to say, for a location x; at time ¢, we
seek to find the corresponding location at the next timestep, x¢1+1 = X + (u, v) such that whatever
was at x; at time ¢ is now at X,y at time £ + 1. We term these x; and x;4; to be matching locations
(and non-matching otherwise).

Furthermore, we assume that the motion corresponds to locally rigid, non-deforming flow. Finally,
since much of the environment is background structure that is static, we focus on our attention on
the dynamic objects in the scene and assume that the flow of static objects can well estimated from
odometry.

3.1 Input

Our system takes a point cloud P, = {z; 1., }. We seek to construct an occupancy grid G, that maps
each (z,y, z) location to a probability that the given location is occupied [28, 29]. By doing so,
we can properly model the true nature of the sensor by capturing free space, occupied space, and
unknown space.

For each voxel v at location (z, y, z), the occupancy probability given the set of observations P; is
given by:

_p(V|Zt,n> 1- p(v\zm:n,l) p(V) !

p(v|zin)  p(V|ZE1m—) 1= p(v)

1
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We assume an uninformative prior p(v) = 0.5. Using log-odds notation, denoted by LO( - ), we can
rewrite (1) as

LO(VIP;) = L(v|ze,), 2)
i=1
where
lree the ray from the sensor to z; ; passes through v
LO(V|zt,i) = { loccupiea  the ray from the sensor to z; ; ends inside v . 3)
0 otherwise

To compute G, this ray tracing is achieved using Bresenham’s ray tracing algorithm [30]. Each
observation z; ; results in a ray tracing operation to find its log-odds updates for the corresponding
voxels. After processing all observations, these updates are summed for all voxels to produce Gy.
This algorithm is implemented on the GPU for efficient computation.

3.2 Network

The probabilities of the constructed occupancy grid G; are first rescaled between —0.5 and 0.5 to
produce G;. Note that any unknown voxels (i.e., p(v) = 0.5) are scaled to 0 in G;. Gy is passed
through a series of two dimensional convolution layers with leaky RELU activations, with kernel
sizes and output layers as depicted in Fig. 1. This network has two outputs. First, we have an encod-
ing output, F;, that maps each (x, ) location to a Ny dimensional feature vector f , ). Second, we
have a classification output, C;, that yields softmax scores for the foreground/background classifier
for each location (x,y). We intentionally use only a single layer between the encoding output and
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Figure 1: The network architecture. The input occupancy grid is passed through a series of convo-
lution layers to produce a grid of feature vectors. This encoding is further passed through a single
convolutional layer to produce softmax scores for the foreground/background classifier.

the filter output to help promote learning a discriminative feature space. Notably, our network does
not reduce the resolution of the input occupancy grid (i.e., we produce a feature vector for every
location in the grid).

The loss function for the encoding output is as follows. For locations x; and x5 with feature vectors
f, and f5, respectively, the loss is given by

If1 — £2] x3 and xo are matching locations
L, g, = { dmaz — ||f1 — f2]] %1 and xo are non-matching locations, ||f; — f2|| < dmasz , (4)
0 otherwise
where || - || denotes the L2 norm. We choose d;,q; = 10.

The loss function for the classification output, Lc, is simply the mean weighted softmax cross
entropy loss. As the training data contains far more instances of background than foreground, we
weight the loss of each class by the inverse of their respective frequency. Thus, we have:

1 1 1
Lc = Z Lscr (Cix) Z Lsce(Cix) )

— N
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where ngamples 18 the number of labeled foreground or background locations in the training sample,
fie and fyg are the frequencies of foreground and background locations respectively in the training
set, and Lg cg. is the softmax cross entropy loss.

These loss functions are combined to form the total loss function,
Liotat = Lg, £, + Lc, (6)
which is used to train the network.

While different approaches can be used to learn a feature space, such as an autoencoder or a
Generative Adversarial Network (GAN), our approach allows for learning a feature space that is
specifically tailored to be discriminative for the desired task.

3.3 Training

At each iteration, we train the network using one sample of locations x; and x5 (which could be
matching or non-matching) and one sample of a classification map C;, simultaneously.

3.3.1 Training Data

We construct a training data set using the first ten KITTI city sequences. We step through each log
and construct an occupancy grid from each velodyne point cloud, as described in §3.1.



Using the labeled KITTI tracklet data, we construct a 2D classification map for ground truth fore-
ground/background classification. For any location x that is within the bounding box of a object
labeled in the KITTI tracklets, we mark the location as foreground. Otherwise, we mark the location
as background.

For the encoding output, we take successive occupancy grids G; and G,. We first iterate through
all foreground locations x; from Gy that are part of a labeled KITTI tracklet (i.e., the foreground).
We then sample from a location x5 from Gg, chosen from an ng x ng neighborhood of locations
centered on x;. Using the labeled KITTI tracklet data, we record whether x; and x, are matching
or non-matching locations in the successive occupancy grids. x; and xo are sampled such that we
have approximately an equal number of matches and non-matches. Additionally, we repeat this
procedure for 1% of all background locations.

Note that the labeled KITTT tracklets are only valid in the field of view of the camera. Accordingly,
we take care as to only such locations in our training data set. To help mitigate this, we augment our
data with random rotations and reflections of the occupancy grids.

3.3.2 Training Procedure

We use TensorFlow’s AdamOptimizer with a learning rate of 10~ [31] to train the network using the
loss function described in (6). During training, we use dropout at each layer in the encoding network
with a dropout probability of 20%. Note that at the input, due to the rescaling of the occupancy grid,
dropout essentially amounts to setting voxels from free or occupied (i.e., p(v) < 0 or p(v) > 0,
respectively) to unknown (i.e., p(v) = 0). The training parameters were empirically tuned.

We trained the network for approximately two days using a NVIDIA GeForce GTX TITAN X GPU.

3.4 Flow Computation

We take two successive point clouds, P; and P5. From these, we construct occupancy grids, G; and
Go. Each is rescaled and passed through the network described in described in §3.2 using NVIDIA’s
cudNN to produce encoding ouptuts F; and Fy and classification outputs C; and Cs. Note that as
we deal with a stream of data, we can cache Py, Go, F3, and C, for use at the next timestep for
faster runtime performance.

For each location x; from G, we consider the feature vector 1. We then consider a ns X n, window
of locations x5 from Go around x;. For each x5 and f5, we compute the L2 norm between the two
feature vectors and store this result in a lookup table,

Tdislance(xh X2) = Hfl - f2H : %)

Note that Tyisiance 1 similar to T, from the work of Ushani et al. [16]. The key difference is that
Tiaten 18 Tooted in a hand designed notion of occupancy constancy, whereas 7gisance takes a fully
learned approach to measure distances between feature vectors in our learned feature space.

From this point, we compute scene flow by using an iterative expectation-maximization (EM) algo-
rithm similar to the one proposed by Ushani et al. [16], which we briefly summarize here.

We construct an energy minimization problem to compute the flow (u,v) for every location x;
from G;. If, according to the classification output C;, the given location is more likely to be static
background structure, we flag x as such and assume that the flow can be estimated from odometry
sensors that are measuring the relative motion of the platform. Thus, we focus our attention on
foreground locations x that are dynamic (or could be dynamic).

We construct an iterative EM algorithm to estimate the flow. We use x; to denote a location in Gy
and x for locations in Gz. s(x1) = (u,v) denotes the current estimate of the scene flow at location
x1. m(xX1) = x1 + s(x1) denotes the estimated matching location x5 in Go for x;. At the start of
the algorithm, all s(x;) and m(x;) are marked as being invalid.

E(x1,x2) denotes the energy of the flow from x; to xa. E’(xz) denotes the energy of the current
flow estimate that leads to xs, initialized with oco.



3.4.1 Expectation

During the expectation step, we seek the most likely flow (u,v) for every x;. We search through a
ns X ng window of locations centered on x;, Nx,, in Go. For each x;, X2, we compute an energy,

B(x1,%2) = Tisunce + wp > ||(x2 — x1) — s(x)||, ®)
XE Py,

where w,, is a smoothness penalty weight and Pk, is a 5 x 5 window around x; of locations for
which we currently have a valid estimate for scene flow.

We seek
x5 = argmin F(X1, X2), 9)
X2
subject to the conditions
E(x1,x%2) < E(x3) (10)
or
m(x1) = Xa. 1D

We then update s(x1) and m(x;) with x5 — x; and x3, respectively. If no such x3 is found, the
estimated flow is marked as being invalid.

3.4.2 Maximization
For each x5, we consider all x; with m(x;) = xo. If there is at least one, we find

x} = argmin F(X1,X2), (12)
X1
in essence selecting the x; that best matches x2. We update F(x;) = E(x7,x2). We also invalidate
all s(x1) and m(x;) for x; # x7J.

4 Results

We evaluate our proposed method in a number of experiments using the KITTI dataset [17]. For
all results presented here, we build a training set from the first ten KITTI city sequences and a test
set from the remaining sequences. We used ny, = 31, 20 EM iterations, and an occupancy grid
with a resolution of 30 cm that extends over a 50 m by 50 m area. We set our smoothing parameter
w,, = 0.07 by inspecting a validation set constructed from the first ten KITTI city log sequences.

4.1 Visualizing the Learned Feature Space

We first present a qualitative evaluation of our learned feature space. We present two example scenes
in Fig. 3 and Fig. 4. In each scene, we examine dynamic objects, including a car and two pedestrians.
We consider a number of locations on these objects, as marked in Fig. 3a and Fig. 4a. We compute
feature vectors for these locations and then measure the distance in feature space to locations in the
scan at the following timestep.

We can see that our learned features are discriminative. Each chosen location is closest in feature
space to its matching location in the following timestep. Unsurprisingly, we see that similar loca-
tions sometimes yield similar feature vectors, such as different corners of the car, between the two
pedestrians, or sometimes background that has similar structure. Nevertheless, we see that the most
similar feature vectors are clustered around the respective matching location.

4.2 Learned Feature Space vs. Occupancy Constancy

In additional to the qualitative results in §4.1, we also perform a quantitative analysis to demonstrate
the performance of our learned feature space. We compare the our learned feature space with the
occupancy constancy metric proposed by Ushani et al. [16] in terms of how discriminative they are
in determining matching or non-matching locations.
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Figure 2: Precision-recall curves for classifiers based on occupancy constancy and feature learning.
We find that feature learning results in a more discriminative classifier.

We build a simple binary classifier for each method that determines if two locations, x; from G; and
xg from G, 1, are matching or non-matching. For our learned feature space, we take the distance
in feature space, Tgistance, and compare this against a threshold 7. If the distance is small, our
classifier predicts that x; and x» are matching and otherwise predicts that they are non-matching.
For occupancy constancy, we perform a similar procedure with the occupancy constancy metric
Tiaten from [16].

We sample 5000 locations x; from the foreground of some occupancy grid G; from the test set.
For each x;, we sample another location xo from the following occupancy grid G;4;. We evenly
sample x5 such that is equally likely to match or not match x; .

We present precision recall curves for each described classifier in Fig. 2. As we can see, our learned
feature space is significantly better at distinguishing between matching and non-matching locations
than occupancy constancy, demonstrating that it is more discriminative for the task at hand.

4.3 Scene Flow Results

Finally, we evaluate the performance of the scene flow estimate. We perform this evaluation for
cars, cyclist, and pedestrians, and also over all of the foreground classes. Results can be found in
Table 1. We find a significant improvement in the error statistics of the scene flow estimate across all
classes for our proposed feature learning approach over the occupancy constancy approach proposed
by Ushani et al. [16].

One downside of our method however is increased runtime. While Ushani et al. [16] reports real-
time performance (i.e., runtime of under 100 ms for 10 Hz data), our method takes about 188 ms
on average using a machine with an Intel i7 CPU and an NVIDIA GeForce GTX 1080 GPU. We
attribute this added runtime mainly to the time it takes to pass the input data through the network
and evaluate pairwise distances in feature space. Nevertheless, with current trends in specialized
hardware, we anticipate that this gap in runtime performance will be bridged in the near future.

Car Cyclist Pedestrian All Foreground
Mean Within Mean Within Mean Within Mean Within
Error 30 cm Error 30 cm Error 30 cm Error 30 cm
[16] 19.3cm  83.8% 245cm 788% 389cm 743% | 22.1cm  81.4%
Proposed 15.6cm 892% 159cm 93.1% 229cm 89.0% | 16.4cm 88.2%

Table 1: Error statistics for the scene flow estimated for various classes and over all foreground.
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Figure 3: A visual look at the distances in the feature space for a scene with a turning car. For the
two locations from P; (bird’s eye view shown in Fig. 3a), we evaluate the distance in feature space,
Tdistance» to locations in the successive scan P, shown in Fig. 3b and Fig. 3c. The shown colormap
ranges from a distance of 0 to 2 in the feature space.
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Figure 4: A visual look at the distances in the feature space for a scene with pedestrians walking
along a sidewalk. For the two locations from P (bird’s eye view in Fig. 4a), we evaluate the distance
in feature space, Tgisance, t0 locations in the successive scan Py, shown in Fig. 4b and Fig. 4c. The
shown colormap ranges from a distance of 0 to 5 in the feature space.

5 Conclusion

In this work, we have presented a feature learning method for scene flow estimation from LIDAR
data. We train an encoding network to extract features from an occupancy grid. This learned feature
space is then leveraged in an energy minimization problem to solve for scene flow between succes-
sive scans. This approach yields improved results, both directly in the feature space itself and in the
improved scene flow estimate, that beats the accuracy of the current state-of-the-art. We provide an
implementation of our method at https://github.com/aushani/flsf.
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