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ABSTRACT
Global investment and recent advancements in vehicle auto-
mation are making autonomous and cooperative automated
driving (AD) a reality. Not only will automated vehicles
incorporate more electronics and connectivity than ever be-
fore, but also, notably, they will transfer control and respon-
sibility of monitoring the environment from a human driver
to a robotic system. While prior work has assessed and pro-
vided security solutions for non-automated vehicles, there
is much to understand regarding the security implications
of AD. In this work, we begin to address this gap in under-
standing. This paper reports on a risk assessment framework
for autonomous and cooperative AD. We aggregate the state
of the art in AD research to define a reference architecture
for automated vehicles, describing the new attack surfaces
and data flow. Employing existing automotive threat mod-
els, we propose a novel application-based threat enumeration
and analysis approach that is able to address different AD
applications across all levels of automation. We demonstrate
this framework with an example application assessment and
summarize the results and security insights from analyses
of other applications. The results of our risk assessment
and future assessments with this framework will inform on
the design of security solutions and secure architectures for
production AD systems.

Keywords
Automated driving; autonomous vehicles; connected vehicles;
cooperative driving; cybersecurity; risk assessment; threat
modeling.

1. INTRODUCTION
Modern automobiles incorporate more electronics and con-

nectivity than ever before in the form of driver assistance
systems, personal electronics, and infotainment systems. Due
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to the increased complexity and remote accessibility of in-
vehicle systems, modern automobiles are vulnerable to cyber-
attacks against safety and privacy. Security research has un-
covered a broad range of physical and remote attack surfaces
that malicious agents can use to take advantage of a vehi-
cle [17, 6, 10]. In response, solutions have been developed
to secure in-vehicle networks (e.g. secure CAN) and detect
potential security threats (e.g. intrusion detection systems).

More recently, the automotive world has seen an escala-
tion in research toward partial and fully automated driving
(AD). Since the DARPA Grand and Urban Challenges [35,
36, 27, 3, 19], there has been a significant investment by
both industry [13, 39, 5, 9] and academia [21, 22, 20, 37,
18] to make AD a reality. While full automation remains
in research and development, applications enabling partial
automation such as self-parking, Adaptive Cruise Control
(ACC), and Lane Keeping Assistance (LKA) are already
being offered to consumers [34]. Unlike other automotive
applications, AD transfers control and the responsibility for
monitoring the environment from the human to the vehi-
cle. From a security perspective, this transfer of control and
the increased complexity of AD systems exposes more entry
points for malicious and unintended cyber-attacks. And,
depending on the situation and level of automation, neither
a human driver/passenger nor the vehicle may be ready or
able to respond.

The safety and privacy of future passengers will depend on
the security solutions deployed to secure automated vehicles.
As of now, an unsatisfied prerequisite to developing and ap-
propriating AD security solutions is understanding the se-
curity implications of AD. In this paper, we work toward
this goal by proposing and demonstrating a risk assessment
framework for autonomous and cooperative AD.

Specifically, our contributions are:

1. Developing a reference architecture from the state of
the art in AD to model AD applications.

2. Formulating a customizable threat model based on ex-
isting automotive threat modeling approaches to enu-
merate and assess potential threats to AD applica-
tions.

3. Demonstrating our risk assessment framework with an
example AD application and summarizing the results
and security insights from assessments of other appli-
cations.



This paper is organized as follows. Section 2 reviews au-
tomotive cybersecurity and surveys the related work in AD
security. Section 3 clarifies the challenges of our work and
motivates our risk assessment approach. Section 4 describes
our AD reference architecture using the state of the art in
autonomous vehicle research. Section 5 details our threat
identification and modeling approach for AD applications.
Section 6 demonstrates the use of this framework with an
assessment of an AD application. And, sections 7 and 8 con-
clude with a summary of the results and security insights
from all of our application assessments.

2. BACKGROUND

2.1 Automotive Cybersecurity
We first review the architecture of the modern automobile.

Most vehicle functionality is implemented in 50-70 indepen-
dent computers known as Electronic Control Units (ECUs)
[17]. Because some automotive features require interaction
across units, ECUs can share data through peer-to-peer con-
nections or over several standard data buses using a number
of protocols including CAN, LIN, FlexRay, and MOST [23].
While there are generally multiple buses for different compo-
nent groups, they may not necessarily be physically isolated
[17]. Modern vehicle attack surfaces include but are not lim-
ited to the physically accessible OBD-II diagnostic ports,
passenger infotainment systems, wireless personal devices,
the wireless Tire Pressure Monitoring System (TPMS), and
key fobs for keyless entry [6].

Modern automotive systems have already been shown to
have several physical and remote vulnerabilities. [17] demon-
strated that attackers with physical access to modern vehicles
can exploit several internal vulnerabilities. They showed,
by experiment, that modern vehicles have few safeguards
against attacks to ECUs or the internal vehicle network,
and that infiltrating almost any ECU can allow an attacker
to affect any other. [6] extended this work by demonstrating
experimentally how malicious agents can take advantage of
remote attack surfaces in addition to physical ones.

2.2 Automotive Threat Models
Interest in evaluating the security of current and future

automobiles prompted the development of automotive threat
models. A threat model defines the parameters of a poten-
tial threat and how those parameters can be used to evaluate
the risk of a threat to a target. In our study, we explored
the automotive threat models used by the National Highway
Traffic Safety Administration (NHTSA) and the E-safety
Vehicle Intrusion Protected Applications (EVITA) project.

The NHTSA threat modeling approach [23] is a compos-
ite model derived from STRIDE, Trike and Microsoft ASF
[26, 29, 25]. Their approach first identifies automotive appli-
cations and then decomposes them into interconnection dia-
grams. Threats are then identified and analyzed by filling in
the parameters of a threat matrix. Importantly, the NHTSA
approach is limited in that it does not capture Threat Agents,
has few factors influencing Motivation, and fails to consider
the risk of being caught as a negative factor in motivation.
Considering threat agents provides a better understanding
of capabilities and motivations, leading to a more informed
estimation of the parameters in the threat matrix.

The EVITA project developed a similar comprehensive
threat analysis methodology [12] which they used to develop

automotive security microcontrollers [2]. Their approach be-
gins with the development of a reference architecture for a
general understanding of the system in question. This is
subsequently used to enumerate threats. Like the NHTSA
approach, each threat is consolidated in a threat matrix with
factors considering its severity and likelihood of success.

2.3 Related Work
Security literature has only recently considered the case of

automated driving. [31] offered one of the earliest analyses of
security in automated and connected vehicles in their identi-
fication of threats in high and full AD. The authors assessed
potential attacks to AD sensors and infrastructure, using a
threat matrix to categorize and prioritize risks by likelihood
and impact. [38] also broadly covered security concerns and
possible mitigation strategies for not only automated cars,
but also aircraft, trains, and ships. And, [11] looked at secu-
rity requirements and potential attacks to Intelligent Trans-
portation System (ITS) applications in general, including
automated driving; like [38], their list of cyber-threats was
largely inspired by the well-studied attacks on wired and
wireless communications.

Some studies have focused on specific vulnerabilities to
cooperative and automated vehicles. [30] experimentally
demonstrated that cameras and LIDAR sensors (critical sen-
sors for most AD platforms) can be remotely attacked by
blinding and spoofing. [7] highlighted how a malicious agent
could easily disrupt GPS signals. [32] explored attacks that
exploit vehicle connectivity; the authors describe attacks on
location privacy leveraging location information broadcast
on Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) communication networks. [16] shows how a similar
attack on privacy can be performed on location information
that is broadcast from navigation software on personal de-
vices carried by passengers. And, with the accelerated use
of machine learning for automated vehicle perception, [24]
explores the possibility of adversarial inputs to a machine
learned model.

3. APPROACH
Our goal in this work is to gain an understanding of cy-

bersecurity risks to autonomous and cooperative AD for the
purpose of designing or appropriating prioritized security so-
lutions and secure architectures. However, security analysis
of AD poses important challenges that need to be addressed
by our approach.

• AD is still in development. High and fully automated
driving systems are still in research. Academic and
industrial development teams focusing on the research
problems of automated driving tend to design unique
systems with minimal regard to future standardiza-
tion. As a result, there is no reference architecture for
AD systems.

• AD components can realize different applications at
different levels of automation. A security assessment
of AD must consider applications at different levels of
automation (discussed further in section 4). As de-
scribed in section 2.3, prior work in AD cybersecurity
primarily addresses attack surfaces and approaches.
We would refer to this as a zero-th order analysis of
an interconnected system. In the literature, there has
been little to no consideration of how components work



together to realize applications. We do not that an ap-
proach that disregards the way components realize an
application has the advantage of being generalizable to
many applications. However, because different compo-
nents are used in different ways to realize AD appli-
cations, taking into account the way components are
used will help better predict the effect of a potential
attack.

• It is impossible to assess every application and enu-
merate every threat. AD implementations can differ by
manufacturer and new applications may be developed
in the future. As technology improves and expertise
becomes accessible, more threats become viable and
an initial threat identification becomes obsolete.

We address these challenges by developing a framework
for risk assessment of AD. And, in particular, we propose
an application-based approach as opposed to a component-
based one. In our proposed approach, a reference architec-
ture based on the state of the art in AD is used to model the
targeted AD application and to identify threats. Threats are
characterized using a threat model combining the strengths
of the NHTSA and EVITA automotive threat modeling ap-
proaches. As AD systems go into production and new ap-
plications are developed, our framework would need to be
re-applied to incorporate new information.

For the purposes of the risk assessment in this work (refer
to section 6), we limit our focus to attacks which exploit AD
and, in particular, the targeted application. We do not as-
sume that any security solutions have been appropriated, al-
though it may be possible that resiliency may come directly
from the system architecture (e.g. through redundancy in
sensors). We will look primarily at input data vulnerabilities
(e.g. forged sensor data) as opposed to software vulnerabil-
ities (which we touch on in section 7).

4. AUTOMATED DRIVING

4.1 Background
Given an AD application, we need to understand its imple-

mentation to determine potential attack surfaces and begin
to enumerate threats. In this section, we describe a reference
architecture based on the state of the art in AD research.

We begin by clarifying two terms. First, when we re-
fer to an “AD application”, we mean an automotive func-
tion which employs automated driving in specific scenarios.
These include, but are not limited to, Cruise Control, Adap-
tive Cruise Control, Lane Keeping, Automatic Emergency
Braking, etc... An exhaustive list of AD applications (which
we refer to for high level application descriptions) can be
found in [4]. Second, we categorize AD applications by their
“level of automation” using the SAE definitions [33]. They
define automation as spanning from level 0 (no automation,
or full control and responsibility maintained by the human
driver) to level 5 (full automation, or full control and re-
sponsibility given to the vehicle).

4.2 Autonomous Automated Driving
As most AD systems (particularly for high levels of auto-

mation) are still in development, there exists no standard
architecture for a commercial AD solution. To that end, we
aim to distill a generalized architecture for an AD system

that captures the state of the art and allows us to decon-
struct applications at various levels of automation.

For our AD architecture, we look to the systems of De-
fense Advanced Research Projects Agency (DARPA) Grand
and Urban Challenge finalists [35, 36, 27, 3, 19] and other
academic and industrial AD research platforms [20, 37, 8,
39]. The interconnection diagram for this architecture can
be seen in Fig. 1. Our diagram consists of functional blocks
at two levels of abstraction: the higher level blocks (e.g.
“maps” and “sensors”) are more generalizable to different
applications while lower level blocks (e.g. “road network
map” and “GPS”) are more specific to the application. Our
architecture depicts an autonomous automated vehicle aug-
mented with communications modules for cooperative driv-
ing. This reflects the fact that academic research on auto-
mated driving tends to focus on level 4 and 5 (highly and
fully autonomous) driving. However, we can still use this
high automation level definition to assess applications at
lower automation levels.

This interconnection diagram describes a vehicle equipped
with odometric sensors for inertial navigation, a GPS re-
ceiver for global navigation, and range sensors for perceiv-
ing the environment. We do not specify the sensor suite for
the sake of generalization. For example, while several plat-
forms employ laser range finding [35, 36, 27, 3, 19, 37], some
projects [8, 39] rely on less expensive sensors like cameras
for perceiving the environment.

Additionally, our system employs maps which encode prior
(but not necessarily up-to-date) knowledge of the environ-
ment for localization and path planning. Maps allow for a
drastic simplification of the autonomous driving problem.
Instead of dealing with the difficulty of perception, vehicles
employing maps need only localize onto the map (using, for
instance, range sensors to detect features in the environ-
ment) to get pre-annotated information about lanes, traffic
light locations, traffic signs, static objects, etc... Maps also
simplify the global path planning problem (i.e. finding a
route to the desired destination) because the possible routes
that could be taken are known ahead of time.

We distinguish 2 kinds of maps: an environment map
which captures dense information like the environment’s 3D
structure or appearance [21, 22, 20] and a road network map
which captures sparse information like an abstract represen-
tation of the road network and lane markings [8]. We also
consider in our architecture the case of maps being shared
and updated over-the-air [8].

We organize our system’s software architecture into three
modules: localization, object detection, and path planning.
Sensors and maps feed into these modules.

• Localization: This module is responsible for localizing
the vehicle in its environment. From the vehicle’s last
estimated pose (position and orientation), we estimate
a new pose using the odometric sensors and GPS re-
ceiver. This estimate is further refined using range
sensors to localize the vehicle onto a dense environ-
ment map.

We note that several localization pipelines use GPS
only as initialization for a coordinate frame tracked
solely by odometry [36, 27]. Although GPS has the
advantage of bounding localization error, the discon-
tinuities and jumps of its location estimate make it a
poor localization solution for tasks like object tracking.
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Figure 1: An interconnection diagram of our AD reference architecture. Rectangles represent functional blocks which take in,
process, and output data. Data flow is represented using directional arrows. Best viewed in color.

• Object Detection: This module detects, classifies, and
tracks objects in the vehicle’s environment. Range sen-
sors are used to identify objects near the vehicle which
can be classified as either static (e.g. buildings, signs)
or dynamic (e.g. vehicles, pedestrians, cyclists). In
addition to locating static objects for avoidance, this
module also processes static road infrastructure such
as traffic lights and signs. Dynamic objects are tracked
over time to facilitate prediction of their future paths.

• Path Planning : This module plans the vehicle’s trajec-
tory using the output of localization and object detec-
tion. We can further subdivide the path planner into
3 sub-modules: a route planner, a behavioral planner,
and a motion planner [36, 27, 3, 8]. The route planner
generates a path using the abstract road network map
given a high level goal. The behavioral planner refines
the path from the route planner by observing driving
rules and accounting for obstacles. The motion plan-
ner computes inputs to the vehicle interface to track
the refined path from the behavioral planner.

The final output of the path planning module is fed to the
vehicle interface for control of the vehicle.

4.3 Cooperative Automated Driving
Our system can interact with other vehicles and infras-

tructure through a Dedicated Short Range Communication
(DSRC) on-board unit (OBU). The DSRC module allows for
both V2V and V2I (e.g. with static DSRC road-side units
(RSUs)) and may be able to provide real time information
about other vehicles and objects not necessarily in line of
sight, and more precise localization than GPS.

Although automated driving research in academia tends
to focus on autonomous driving, cooperative driving is an-
other enabler of automated driving. V2V and V2I communi-
cation of vehicle location can minimally augment the range

sensors and maps that feed into an autonomous vehicle’s en-
vironment model [28]. But, in addition, V2V and V2I allow
for communication at longer ranges and past line of sight.
Just as with maps, using V2V and V2I information could al-
low an automated vehicle to sidestep perceptual challenges
such as locating and tracking vehicles and detecting the state
of the traffic light.

4.4 Modeling an AD Application
As described in section 3, looking at cybersecurity risks for

automated driving from an application perspective allows for
a more informed characterization of the impact of a threat
to the application. This reference architecture can be used
to model a potential AD application at an implementation-
agnostic level. The resulting model can subsequently be used
in risk assessment.

An application can be modeled with this architecture by
first defining its capabilities. As a simple example, the
“Lane Keeping Assist” application minimally automates lat-
eral control to keep the vehicle inside of a marked lane. Next,
the necessary functional blocks are selected from Fig. 1. In
our example, we would need “Sensors” (specifically “Range
Sensors”) to capture the road markings, “Sensor Fusion and
Processing”(specifically“Localization”) to perceive and iden-
tify the lanes, and“(Lateral) Control”with“Vehicle Interface
(Actuation)” to compute and execute lateral control trajec-
tories. Note that the “Localization” functional block here
only performs a subset of the full localization task described
in section 4.2, namely just estimating the vehicle’s lateral
offset from the center of the current lane.

When modeling an application, not all functional blocks
need be used and the low level jobs of those functional blocks
may be subsets of their fully autonomous counterpart. Thus,
the fully autonomous architecture introduced in section 4.2
can generalize to lower levels of automation and to arbitrary
AD applications.



5. RISK ASSESSMENT
Using the reference architecture laid out in section 4, we

can model an arbitrary AD application with an understand-
ing of both the components involved and how they inter-
act to realize the application. As detailed in section 3, this
process of defining the application under attack constitutes
the first step in our proposed risk assessment framework for
AD. From there, threats to the application are enumerated
and characterized using the STRIDE [26] classification (sec-
tion 5.1.1). For each threat, threat model parameters are
determined (section 5.1.2) and a result vector consisting of
attack potential, motivation, and impact is computed, char-
acterizing the risk of the threat (section 5.1.3). The result
vectors of identified threats quantify the recommended pri-
oritization of security solutions to protect the application.

5.1 Threat Model
We derive our proposed threat model by combining the

strengths of the NHTSA [23] and EVITA [12] automotive
threat models. While NHTSA and EVITA have contributed
significantly to automotive threat modeling, this work serves
as a further iteration, considering new variables and intro-
ducing a new visual depiction of the threat matrix.

5.1.1 Threat Identification
Given a defined application under attack, threats to the

application are identified. Each threat consists of a threat
agent (the entity performing the attack) [15], one or more
attack surfaces, and one or more attack methods. Note that
threat identification is not just a one time process [23], and
new threats may be identified in later passes.

Threat Agent.
Potential threat agents targeting AD applications are listed

in Table 1 with their primary motivations and capabilities.
We note that the enumeration of attackers described here is
not complete, and the motivations and capabilities assigned
to each attacker may be changed under different assump-
tions. The capabilities associated with the agent of a partic-
ular threat will be used as parameters in the threat model to
help determine the motivation and attack potential (see sec-
tion 5.1.2). Unlike NHTSA and EVITA, we include a threat
agent in our threat model to capture the different motiva-
tions and capabilities of potential attackers. The type of
attacker will inform on the likelihood of an attack.

Attack Surface.
Several attack surfaces of AD systems are listed in Table 2

with characteristics about their resiliency and potential for
attack. These will be used with the attack method and
modeled AD application to estimate the resources required
for the threat agent to successfully execute the attack. As
with threat agents, these required resources will be used as
parameters in the threat model.

The characterization of attack surfaces in Table 2 is deter-
mined from the reference architecture in section 4. “Remote
Access” describes whether the attack surface can be reached
remotely. “Expertise Required” qualifies the minimum level
of expertise necessary to launch an attack on the attack
surface. “Redundancy” lists other sources of information to
corroborate or check information from the attack surface.
And, “Relevant Attack Methods” lists some STRIDE classi-
fied attacks to the attack surface.

Attack Method.
Although a threat agent may pursue many different attack

scenarios, we follow the convention of the NHTSA threat
model [23] and categorize the attack method(s) using the
STRIDE classification [26]: Spoofing Identity, Tampering
with Data, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege.

5.1.2 Threat Matrix
The result vector associated with a threat (which char-

acterizes its risk) is modeled as a function of threat model
parameters in a threat matrix. Each of the components of
the result vector (attack potential, motivation, and impact)
are broken down into parameters which can be determined
either individually or jointly by the threat agent, attack sur-
face, attack method, and targeted AD application.

Following [12] and [14], we establish numerical scales for
each of our parameters and represent each component of the
result vector as a weighted linear combination of its con-
stituents. This enables simpler comparison of result vectors
and provides a way to visualize relative levels of risk (see
section 5.1.3). While the weights and numerical scales are
arbitrary, we present our choices as used in the example risk
assessment in section 6.

Attack Potential.
The attack potential P captures the difference between

the threat agent’s ability to execute a successful attack and
the system’s ability to withstand the attack. Each con-
stituent of attack potential has one term for “Attacker Po-
tential”and another for“System Withstand Potential”. Many
of the“Attacker Potential”parameters can be determined di-
rectly from the choice of threat agent in Table 1. “System
Withstand Potential” parameters need to be determined us-
ing a combination of the attack surface characteristics in
Table 2, the attack method, and the model of the AD appli-
cation under attack. As in [14], the numerical scale for each
constituent is an integer from 0 to 3 corresponding to the
quantization levels (as in [12]) given below. The weights w
are all set to 1.

• Time Elapsed : For the attacker, time required to iden-
tify a vulnerability and mount a successful attack [12]
(pa,t); for the system, time required to understand the
system (ps,t). Quantized as Minutes, Hours, Days, or
Months.

• Finances: For the attacker, availability of finances
with the attacker (pa,f ); for the system, minimum fi-
nances required to launch a successful attack (ps,f ).
Quantized as None, Low, Medium, or High.

• Expertise: For the attacker, their skill level (pa,ex); for
the system, the required level of skill (ps,ex). Quan-
tized as Layman, Proficient, Expert, or Multiple Ex-
perts.

• Knowledge of the System: For the attacker, the level
of knowledge of the system available (pa,k); for the
system, the level of knowledge necessary (ps,k). Quan-
tized as Public, Restricted, Sensitive, or Critical.

• Window of Opportunity : For the attacker, the maxi-
mum time available to attack (pa,w); for the system,



Table 1: Threat agents. Refer to section 5.1.2 for details on the parameters used to characterize threat agents.

Threat Agent Motivations Finances Expertise Knowledge of
System

Equipment

Thief Financial (e.g. car
or identity theft)

Low Layman Public Standard

Owner (unlimited
access to vehicle)

Financial (e.g. by
performance
tuning), Passion

Low Layman Public Standard

Organized Crime Financial High Proficient Restricted Bespoke

Mechanic Financial (e.g.
force vehicle into
more maintenance
than necessary)

Low Expert Critical Specialized

Hacktivist Ideology, Passion Low Multiple Experts Sensitive Multiple Bespoke

Terrorist Ideology Low Layman Public Standard

Foreign
Government

Financial, Ideology High Multiple Experts Restricted Multiple Bespoke

Table 2: Attack surfaces specific to autonomous and cooperative AD.

Attack Surface Remote Access Expertise Required Redundancy Relevant Attack
Methods

Inertial / Odometric
Sensors

No (internal) Proficient
(understanding of
inertial sensor, ability
to infiltrate vehicle
sensor data channels)

Other inertial /
odometric Sensors;
range sensors
localizing in map

Spoofing, Tampering
(provide false sensor
data); Denial of
Service (jam sensor
data channel)

Range Sensors Partial (when in range
and field of view)

Proficient
(understanding of
range sensor)

Inertial / odometric
sensors; other range
sensors; V2V/V2I;
map

(in addition to those of
inertial / odometric
Sensors); Denial of
Service (blind or jam
from a distance)

GPS Yes (within GPS
range)

Layman
(understanding of
GPS, aided by
commercially available
jamming tools [7])

Inertial / odometric
sensors; Range sensors
localizing in map

Denial of Service
(jamming); Spoofing

Map Update
(over-the-air)

Yes (within wireless
range)

Expert (understanding
of map localization
and encoding, ability
to craft and transmit
adversarial map
updates)

Range sensors for
environment
perception

Spoofing, Elevation of
Privilege (posing as
map server);
Tampering (modifying
update messages);
Denial of Service
(jamming update
channel)

V2V/V2I (e.g.
surrounding vehicle
locations, traffic light
state, ...)

Yes (within DSRC
range)

Proficient (ability to
sniff, transmit, or
modify DSRC packets)

Range sensors when in
line of sight; None
otherwise

Spoofing, Tampering,
Information
Disclosure, Denial of
Service



the minimum access time necessary (ps,w). Quantized
as Short, Medium, Long, or Unlimited.

• Equipment : For the attacker, the equipment available
(pa,eq); for the system, the equipment required (ps,eq).
Quantized as Standard, Specialized, Bespoke, or Mul-
tiple Bespoke.

The attack potential term of the result vector is:

P =
∑

j∈{t,f,ex,k,w,eq}

wp,jg (pa,j − ps,j)

where g(x) is the unit step function: g(x) = 1 ∀x ≥ 0 and
g(x) = 0 otherwise. g(x) ensures that the attack potential
correctly prevents an attacker with a single very high-valued
“Attacker Potential”parameter from balancing out the detri-
mental effects of the other low-valued parameters.

Motivation.
Motivation M captures both the motivations and deter-

rents for the threat agent to execute the attack. As with
attack potential, the numerical scale for each constituent is
an integer from 0 to 3 corresponding to the quantization
levels given below. The weights w are all set to 1.

• Financial Gain (mf ): Motivation of a financial re-
ward. Quantized as None, Low, Moderate, or High.

• Ideology (mi): Motivation driving hacktivists and ter-
rorists. Quantized as None, Individual, Businesses, or
Public.

• Passion (mp): Motivation driving owners, mechanics,
and some hacktivists. Quantized as None, Without
Harm, Safety Implications, Criminal Intent.

• Risk (mr): Deterrent of being caught. Quantized as
None, Low, Moderate, High.

The motivation term of the result vector is:

M =

 ∑
j∈{f,i,p}

wm,jmj

− wm,rmr

Impact.
Impact I captures the loss to the stakeholders. As with

attack potential, the numerical scale for each constituent is
an integer from 0 to 3 corresponding to the quantization
levels. All impact constituents are quantized as None, Low,
Medium, High.

• Financial Loss (if )

• Privacy (ip)

• Safety (is)

As in [14], the weight for privacy is kept at 1 while the
weights for safety and financial loss are set to 2 to highlight
the severe consequences of high impact in those areas. The
impact term of the result vector is:

I =
∑

j∈{f,p,s}

wijij

Figure 2: Threat matrix visualization. An example threat is
shown as an orange circle: its center captures the Motivation
and Attack Potential while its size captures the Impact.

5.1.3 Result Vector
As described above, weighted linear combinations of the

threat matrix parameters output the result vector: Attack
Potential (P ), Motivation (M), and Impact (I). We can
visualize this 3 dimensional characterization of risk in a plot
as shown in Fig. 2.

Although risk is often defined by the two-dimensional like-
lihood and impact, we implicitly split up likelihood into mo-
tivation and attack potential. This lets us better understand
the components of likelihood given that we know the typ-
ical motivations and abilities of the threat agent. In addi-
tion, the split gives us more insight into“medium likelihood”
threats: while low motivation / high attack potential and
high motivation / low attack potential threats seem equally
“likely”, high motivation / low attack potential threats are
unique in that potential threat agents would be interested
in developing a successful attack later on. In the future,
as technology improves and such attacks become accessible,
they may be more likely.

5.1.4 Customization
Many components of this threat model are designed to be

customizable to different assumptions. For instance, while
we base our characterizations of AD attack surfaces on our
study of the state of the art, the specific values assigned to
each parameter are not set in stone. This also goes for our
list and characterization of threat agents and choices for the
hyperparameters in our threat matrix (weights and choices
of scale). We maintain these choices for the example risk
assessment in this work (section 6), but we note that these
choices are subject to assumptions and may be customized
for different needs.

6. APPLICATION ASSESSMENT
Our AD reference architecture and threat model together

comprise a risk assessment framework for assessing AD ap-
plications. We demonstrate its use by examining an example
application, driverless valet parking. Following the proposed
framework (outlined in section 5), we will define the applica-
tion using our AD reference architecture, enumerate several
representative threats to the application, and characterize
the threats in a threat matrix and visualization that cap-
tures the relative risk to the application.
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Figure 3: Architecture diagram for driverless valet parking. Best viewed in color.

6.1 Description and Model
Driverless valet parking, as defined in [4], is a level 4 AD

application in which a human driver, having arrived at a
parking garage, can exit the vehicle, initiate parking with a
remote, and have the vehicle park in (and later retrieve itself
from) the garage. Infrastructure in the garage for managing
space allocation and serving maps supports this application
[8]. When the maneuver is initiated by the driver, the ve-
hicle communicates with the parking garage infrastructure
to receive maps of the area and a high level goal (at which
space to park). The vehicle then autonomously navigates to
the parking space. Once the driver is ready to retrieve the
vehicle, the driver initiates retrieval again with a remote,
prompting the vehicle to autonomously return to the pick
up location.

Fig. 3 shows the architecture diagram for a driverless valet
parking vehicle. The interconnection diagram is very similar
to the highly autonomous vehicle from Fig. 1. As a highly
automated application, this vehicle performs many of the
functions described in section 4 including localizing onto a
map of its surroundings (receiving map updates over-the-
air), building a model of its environment using its sensor
payload, and autonomously planning trajectories. A few key
changes are noticeable: first, the vehicle communicates with
a central parking server in the garage which manages parking
spots and serves maps; second, a key/remote (belonging to
the owner) is introduced as a way for the owner to initiate
automated parking and retrieval.

6.1.1 Risk Assessment
Given our understanding of the targeted application, we

can now identify threats for analysis. Table 3 displays the
threat matrix entries for threats we identified for this ap-
plication. Recall that a threat is defined by a threat agent,
attack surface(s), and attack method(s). For each threat, we

picked a threat agent that we believe would be an exemplar.
We then used Table 1 to fill in values of attack potential (at-
tacker capability) and motivation (of attacker) in the threat
matrix. Similarly, we used the characteristics of the attack
surface as in Table 2 to help fill in attack potential (system
withstand) and impact (to stakeholders). Here, we will dis-
cuss the threats in more detail and use the data from these
tables in addition to the model of the application to justify
our understanding of the attack potential, motivation, and
impact of each threat.

• Spoof GPS : A thief seeking to steal an autonomously
parking car spoofs the GPS signal. GPS jamming and
spoofing are well known attacks with equipment for
this purpose available commercially [7] and used mil-
itarily [38]. Expertise and knowledge would not be
as necessary, and the equipment is not particularly
specialized. The attacker would be motivated by the
prospect of financial gain from a car theft. However,
we know from the reference architecture that GPS is
one of many sources of information about the vehicle’s
global location (the other key one being range sensors
localizing in an environment map). As discussed in sec-
tion 4.2, GPS is often only used for initialization and
not relied on for precise localization. Thus, a spoofing
GPS attack would not have much effect.

• Modify Map via Update: A hactivist group aims to
steal an autonomously parking car by updating its map
with false information, forcing it to plan a route to-
ward an arbitrary destination. Due to the increased
complexity of map based information and map up-
dates, this attack requires far more resources to com-
plete. But the impact is substantial—highly auto-
nomous vehicles rely heavily on maps to sidestep per-
ceptual challenges.



Table 3: Threat matrix for driverless valet parking. In parentheses next to each parameter is the corresponding numerical
value as specified in section 5.1.2.

Attack Scenario

Attack Name Spoof GPS Modify Map via
Update

Replay Retrieval Blind Range
Sensor

DoS Parking
Space Allocator

Threat Agents Thief Hacktivist Thief Terrorist Hacktivist

Attack Surface GPS Map (over-the-air
update)

Key/Remote Range Sensor Infrastructure
(Parking Server)

Attack Method Spoofing Tampering Spoofing Denial of Service Denial of Service,
Elevation of
Privilege

Description Spoof GPS to
lead parking
vehicle to
arbitrary
location for car
theft.

Modify map
through
over-the-air
update by adding
phantom obstacles
to cause a failure
of the application.

Replay recorded
retrieval signal
from target’s
key/remote to
initiate
automated valet
of someone else’s
vehicle.

Blind range sensor
(e.g. camera,
LIDAR) to induce
a crash.

Denial of service
to parking space
allocation server
to induce a freeze
of the automated
valet service.

Attack Potential (System Withstand)

Time Elapsed Minutes (0) Months (3) Days (2) Minutes (0) Days (2)

Finances Low (1) High (3) Low (1) None (0) Medium (2)

Expertise Layman (0) Expert (3) Proficient (1) Layman (0) Expert (2)

Knowledge of
System

Public (0) Critical (3) Restricted (1) Public (0) Sensitive (2)

Window of
Opportunity

Short (0) Medium (1) Long (2) Short (0) Medium (1)

Equipment Standard (0) Multi Bespoke (3) Specialized (1) Standard (0) Bespoke (2)

Attack Potential (Attacker Capability)

Time Elapsed Days (2) Months (3) Days (2) Days (2) Months (3)

Finances Low (1) Low (1) Low (1) Low (1) Low (1)

Expertise Layman (0) Multi Experts (3) Layman (0) Layman (0) Multi Experts (3)

Knowledge of
System

Public (0) Sensitive (2) Public (0) Public (0) Sensitive (2)

Window of
Opportunity

Short (0) Medium (1) Short (0) Short (0) Long (2)

Equipment Standard (0) Multi Bespoke (3) Standard (0) Standard (0) Multi Bespoke (3)

Motivation (of Attacker)

Financial Gain High (3) None (0) High (3) None (0) None (0)

Ideology None (0) Businesses (2) None (0) Individual (1) Public (3)

Passion None (0) Safety
Implications (2)

None (0) Safety
Implications (2)

None (0)

Risk Moderate (2) Low (1) Moderate (2) Moderate (2) Low (1)

Impact (to Stakeholders)

Financial None (0) High (3) High (3) None (0) Low (1)

Privacy None (0) Low (1) Low (1) None (0) None (0)

Safety Violation None (0) High (3) None (0) None (0) None (0)

Result Vector

Attack Potential 6 4 2 6 5

Motivation 1 3 1 1 2

Impact 1 14 8 1 3
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Figure 4: Threat matrix visualization for driverless valet parking.

• Replay Retrieval : A thief replays a recorded retrieval
signal from the owner’s key/remote to initiate the auto-
mated retrieval process. Although the “key/remote” is
not an attack surface specific to automated driving, we
can treat it as any other infrastructure that commu-
nicates wirelessly with the vehicle’s external commu-
nications module. Replaying or spoofing the retrieval
signal to steal the car bypasses many of the challenges
of dealing with the AD system–the only system that
this attack deals with directly is the key interface.

• Blind Range Sensor : A terrorist seeking to induce a
crash could blind a range sensor on the vehicle. Assum-
ing redundancy with other range sensors and the entire
sensor payload, a single sensor failure is not damaging.
In addition to not having the desired impact, such an
attack requires physical access, limiting the window of
opportunity and increasing the risk of being caught.

• DoS Parking Space Allocator : A hacktivist group seek-
ing to induce a traffic jam or to freeze the driverless
valet service can launch a denial of service attack on
the parking space allocation server. The hacktivist
group (based on the assumptions of Table 1) would
have the resources to mount such a large scale attack
on the service.

Fig. 4 visualizes the result vectors of the threats in ques-
tion. From this plot, we see that our model characterizes the
attacks in our list with the highest attack potential (“Spoof
GPS” and “Blind Range Sensor”) as having low impact.
The attacks that demand prioritization are “DoS Parking
Space Allocator” and “Modify Map via Update”. Because
the driverless valet application relies heavily on maps and
the parking garage server, these attack surfaces become im-
pactful targets. By incorporating an understanding of how
these components realize the application in question, we
have a more informed characterization of the risks of attacks
exploiting them.

7. DISCUSSION
As stated in section 3, our goal wish risk assessment of

AD is to determine how to prioritize the research and ap-

propriation of security solutions to protect future automated
vehicles. We note three insights toward this goal that were
realized during the development of our reference architecture
and our assessment of other AD applications. In addition
to driverless valet parking, we looked at automated park-
ing at levels 1 and 2, platooning (level 3), and the urban
robot taxi (level 5) to sample a broad range of potential AD
applications.

First is the importance of redundancy and not establishing
too much trust in any one subsystem. In the case of platoon-
ing, for example, vehicles maintain close headway by relying
on V2V for communication past line of sight. Without line
of sight, local range sensors cannot check this data. This
gives rise to threats to the V2V channel that have a direct
impact on safety (i.e. a man in the middle attack on the
V2V channel can remotely induce a platoon collision [1]).
In an AD application, whether it is on-board perception,
map-based localization (as in driverless valet parking), or
V2V/V2I based sensing (as in platooning), reliance on any
one subsystem can be exploited.

Second is the need for secure external communication.
This includes, but is not limited to, over-the-air map up-
dates, over-the-air firmware updates, V2V/V2I, key/remote
signals, and other infrastructure communication (e.g. the
parking garage server in driverless valet parking). While
this consideration is not unique to automated vehicles and
has been considered heavily in the case of purely connected
and cooperative vehicles, the potential impact of external
communication attacks on automated vehicles is especially
high. Authentication and encryption are paramount con-
siderations for the communications of any production AD
system and infrastructure.

Third is the need for separation between safety-critical
and non-safety-critical subsystems. Although we did not
focus on software vulnerabilities in this work, consider the
case of a malicious agent embedding malware into an over-
the-air map update. If the system that received this update
was connected without firewall or segregation to the rest
of the automated driving software, the malicious agent im-
mediately has access to this full stack and can potentially
make the vehicle do anything. In defense, critical subsys-
tems should be distributed from the rest with proper access



control between any necessary bridges. And, as noted above,
proper authentication and encryption protocols should be
employed for any data that could potentially reach critical
subsystems (i.e. map and firmware updates).

8. CONCLUSION
Automated driving is a new and promising research di-

rection for the field of security. As AD starts to become
more ubiquitous, it becomes increasingly important to ad-
dress the gap we have in understanding its security concerns.
In this work, we aim to make progress toward this goal by
detailing and demonstrating a risk assessment framework
for AD applications consisting of an AD reference architec-
ture and threat model. In future work, we would apply this
framework over more threat agents, attack scenarios, and
applications. We would look into improving our approach
by reducing the number of hyperparameters (e.g. weights in
the threat matrix), making the model less reliant on subjec-
tive assumptions and non-specific terminology, and packag-
ing the model into a completely automated threat enumer-
ation and assessment tool. We would also explore a better
characterization of impact, particularly as relates to privacy
loss (which, unlike safety and financial impact, is not eas-
ily measured). We believe that the results of this and fu-
ture AD application assessments will guide the design of the
secure automated driving architectures that will inevitably
and quickly become necessary.
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H. Schweppe, H. Seudié, B. Weyl, and M. Wolf. Secure
automotive on-board electronics network architecture.
In FISITA 2010 world automotive congress, Budapest,
Hungary, volume 8, 2010.

[3] A. Bacha, C. Bauman, R. Faruque, M. Fleming,
C. Terwelp, C. Reinholtz, D. Hong, A. Wicks,
T. Alberi, D. Anderson, S. Cacciola, P. Currier,
A. Dalton, J. Farmer, J. Hurdus, S. Kimmel, P. King,
A. Taylor, D. V. Covern, and M. Webster. Odin: Team
VictorTango’s entry in the DARPA Urban Challenge.
Journal of Field Robotics, 25(8):467–492, Aug. 2008.

[4] A. Bartels, U. Eberle, and A. Knapp. AdaptIVe
Delivrable D2.1: System Classification and Glossary.
Technical report, Automated Driving Applications and
Technologies for Intelligent Vehicles (AdaptIVe), 2015.

[5] M. d. Cava. Visiting the future in Mercedes’ F 015
autonomous car.
http://www.usatoday.com/story/tech/2015/03/18/
mercedes-benz-f015-autonomous-car-first-ride/
24964341/, 2015. [Online; accessed 2015].

[6] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack
Surfaces. In Proceedings of the 20th USENIX
Conference on Security, pages 6–6, San Francisco, CA,
2011. USENIX Association.

[7] J. Coffed, J. Rolli, and C. Slutsky. Detecting and
Locating GPS Jamming. In Proceedings of the ION
2015 Pacific PNT Meeting, pages 484–492, Honolulu,
Hawaii, 2015.

[8] P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz,
H. Grimmett, P. Muhlfellner, S. Wonneberger,
J. Timpner, S. Rottmann, B. Li, B. Schmidt, T. N.
Nguyen, E. Cardarelli, S. Cattani, S. Bruning,
S. Horstmann, M. Stellmacher, H. Mielenz, K. Koser,
M. Beermann, C. Hane, L. Heng, G. H. Lee,
F. Fraundorfer, R. Iser, R. Triebel, I. Posner,
P. Newman, L. Wolf, M. Pollefeys, S. Brosig,
J. Effertz, C. Pradalier, and R. Siegwart. Toward
automated driving in cities using close-to-market
sensors: An overview of the V-Charge Project. In 2013
IEEE Intelligent Vehicles Symposium (IV), pages
809–816. IEEE, June 2013.

[9] A. Gibbs. Volvo to test autonomous cars in Sweden.
http://www.cnbc.com/2015/03/03/
volvo-to-test-autonomous-cars-in-sweden.html, 2015.
[Online; accessed 2015].

[10] A. Greenberg. Hackers Remotely Kill a Jeep on the
Highway-With Me in It. https://www.wired.com/
2015/07/hackers-remotely-kill-jeep-highway/, 2015.
[Online; accessed 2015].

[11] E. Hamida, H. Noura, and W. Znaidi. Security of
Cooperative Intelligent Transport Systems: Standards,
Threats Analysis and Cryptographic
Countermeasures. Electronics, 4(3):380–423, July
2015.

[12] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier,
A. Ruddle, and B. Weyl. Security requirements for
automotive on-board networks. In Proc. Intelligent
Transport Systems Telecommunications,(ITST),2009
9th Int. Conf, pages 641–646, Oct. 2009.

[13] INRIA. D15.6 – Selection of offers for the city
demonstrations. Technical report, Cities
Demonstrating Automated Road Passenger Transport
(CityMobil2), 2014. - 4 LIDARs for localization and
obs detection - 4 other LIDARs for security detection?
- Cameras for obs detection - odometric and inertial
navigation - GPS Localization - GPS with inertial and
odometric navigation - SLAM using LIDAR Comms -
2 CAN bus and Ethernet - reports location
information to control center - V2V and V2I
infrastructure.

[14] M. M. Islam, A. Lautenbach, C. Sandberg, and
T. Olovsson. A risk assessment framework for
automotive embedded systems. In Proceedings of the
2Nd ACM International Workshop on Cyber-Physical
System Security, CPSS ’16, pages 3–14, New York,
NY, USA, 2016. ACM.

[15] ISO/IEC. Information technology – security
techniques – evaluation criteria for it security – part 1:
Introduction and general model. Technical Report
ISO/IEC 15408-1: 2009, ISO, 2009.

[16] T. Jeske. Floating Car Data from Smartphones: What
Google and Waze Know About You and How Hackers
Can Control Traffic. In Proceedings of Black Hat
Europe, pages 1–12, 2013.

[17] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,



D. Anderson, H. Shacham, and S. Savage.
Experimental Security Analysis of a Modern
Automobile. In 2010 IEEE Symposium on Security
and Privacy, pages 447–462. IEEE, 2010.

[18] F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter,
F. Gritschneder, A. Scheel, M. Stübler, M. Bach,
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