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Abstract— This paper reports on an algorithm to support au-
tonomous vehicles in reasoning about occluded regions of their
environment to make safe, reliable decisions. In autonomous
driving scenarios, other traffic participants are often occluded
from sensor measurements by buildings or large vehicles
like buses or trucks, which makes tracking dynamic objects
challenging. We present a method to augment standard dynamic
object trackers with means to 1) estimate the occluded state
of other traffic agents and 2) robustly associate the occluded
estimates with new observations after the tracked object re-
enters the visible region of the sensor horizon. We perform
occluded state estimation using a dynamics model that accounts
for the driving behavior of traffic agents and a hybrid Gaussian
mixture model (hGMM) to capture multiple hypotheses over
discrete behavior, such as driving along different lanes or
turning left or right at an intersection. Upon new observations,
we associate them to existing estimates in terms of the Kullback-
Leibler divergence (KLD). We evaluate the proposed method in
simulation and using a real-world traffic-tracking dataset from
an autonomous vehicle platform. Results show that our method
can handle significantly prolonged occlusions when compared
to a standard dynamic object tracking system.

I. INTRODUCTION

Reasoning about unknown or occluded regions of a robot’s
surroundings is crucial for robots operating in a multi-
agent setting. In the particular case of autonomous driving,
autonomous vehicles must reason about the state of occluded
dynamic objects to safely handle complex situations like
passing, merging, or intersection handling. However, most
decision-making approaches for autonomous vehicles to date
assume complete knowledge of the states of dynamic objects
in the environment [1–6], even if such objects transition
through completely occluded regions of the vehicle’s sensor
horizon. Unfortunately, this assumption can lead to dangerous
situations, as shown by the simulation in Fig. 1.

While occlusions can be mitigated by using sensors
like some radar variants that allow sensing through solid
objects [7], the geometric information provided by such
sensors is sparser and less accurate when compared to
LiDAR or cameras, on which we focus in this paper. Another
alternative to mitigate sensor occlusions is to rely on external
road sensing infrastructure [8]. However, such infrastructure
is currently not available on most roads and it is hugely
expensive to deploy.
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Fig. 1: Demonstration of our method in a simulated T-intersection
navigation scenario. The self-driving vehicle (dark red) wishes to
take a left turn while its observations are completely occluded for a
few seconds by a large vehicle upfront (light red). The self-driving
vehicle’s occluded region is shaded in blue, and its sensor horizon
is marked by the dashed blue line. A naı̈ve object tracker would
only observe the oncoming vehicle (green states) when it is visible
within the sensor horizon, giving the self-driving vehicle a very short
reaction time. In contrast, our method allows the self-driving vehicle
to track the oncoming vehicle even when the oncoming vehicle is
occluded (light gray states), thus enabling the self-driving vehicle
to make a safer decision.

Therefore, a dynamic object tracking system that can
handle prolonged, complete occlusions is highly desirable.
We propose a model-based method to augment standard
dynamic object trackers to track objects passing through
prolonged occlusions. Thus, we are able to capture the state
of previously-observed dynamic objects even when they lie
completely in occluded regions of the current sensor horizon.

Our approach augments any dynamic object tracker that is
capable of yielding Gaussian1 state estimates of the tracked
objects. It does so by providing model-based estimation for
the duration of sensor occlusions and a data association
mechanism to match estimated occluded states to new sensor
observations of the target object.

To estimate occluded states, we employ a dynamics model
that captures typical driving behavior of tracked dynamic
objects on a road network as per [9]. We then can simulate
forward in time the execution of the control actions prescribed
by the model for the tracked objects, obtaining an estimate
of their occluded future state. Furthermore, we employ a

1Requiring Gaussian estimates allows us to use a Gaussian mixture belief
representation and to compute the Kullback-Leibler divergence (KLD) in
closed form for data association, as we describe below.



hybrid Gaussian mixture model (hGMM) to capture multiple
hypotheses over the state of the occluded object induced
by road network topology elements like multiple lanes on
a highway, bifurcations, or intersections. Finally, we handle
re-observation of occluded dynamic objects by matching the
estimated occluded states to actual sensor observations in
terms of the KLD. We evaluate the performance of our method
using simulations and real-world traffic-tracking data from
an autonomous vehicle platform. The central contributions
of this work are:
1) A method for tracking vehicles passing through prolonged

occlusions, including a model-based estimation of the
occluded state and a data association mechanism to
associate estimated states to re-observations of the target
object, and

2) Evaluation of our method in simulations and using a real-
world traffic-tracking dataset from an autonomous vehicle
platform.

II. RELATED WORK

To date, most motion planning and decision-making
approaches for autonomous driving assume good estimates
from a dynamic object detection and tracking system [1–6].
A notable exception is the approach of Richter et al. [10],
which considers occluded space by commanding a vehicle
based on learned probabilities of collision, although their
approach does not reason about the current state of dynamic
objects based on prior observations. However, most trackers
from prior work do not explicitly handle prolonged sensor
occlusions such as that shown in Fig. 1.

Dynamic object trackers from the literature are typically
based either on camera imaging or on LiDAR range-finders.
Several early visual trackers were based on the Kalman
filter, such as the approach by Marcenaro et al. [11]. More
recent visual tracking approaches seek to explicitly handle
occlusions in video sequences involving pedestrians [12, 13].
These approaches leverage motion planning algorithms to
model possible paths taken by occluded tracks, however, these
methods are specifically tailored for pedestrians and have
been only shown to work over short occlusion horizons.

Early LiDAR-based approaches focused on detection, rather
than tracking, of moving objects [14, 15]. More recent LiDAR-
based trackers include those by Leonard et al. [16], Vu and
Aycard [17], Petrovskaya and Thrun [18], and Choi et al. [19].
A notable state-of-the-art tracker by Held et al. [20] integrates
a motion model, LiDAR, and color from vision. All of these
trackers, however, do not to handle complete occlusions for
prolonged periods of time, which can be problematic for
decision-making in autonomous driving.

Estimating the occluded state of a tracked object is
inherently a probabilistic problem. Several approaches in
the literature seek to anticipate future states of dynamic
objects using standard filtering techniques such as the
extended Kalman filter [21, 22]. However, these methods often
perform poorly when dealing with nonlinear dynamics and
multimodalities induced by discrete decisions like continuing
straight, merging or passing.
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Fig. 2: Problem statement visualization. A self-driving vehicle (blue
icon) must estimate the state of occluded dynamic objects, like track
2 in this example, that transition from the visible region of the
workspace, Wvis

t , into the occluded region of the workspace, Wocc
t .

In this work we propose to use prior dynamic object estimates,
p(xi), to achieve estimates of the future states of occluded dynamic
objects, p̂(xi).

Recent work in traffic analysis applications and autonomous
driving [23–25] uses Gaussian process (GP) regression to
capture typical motion patterns of traffic participants and
predict their future trajectories. Nonetheless, these methods
require large amounts of training data in order to reflect the
many possible motion patterns of a target vehicle, which can
be time-consuming to collect.

A common anticipation strategy in autonomous driving (see,
e.g., [6, 15, 26]) consists in determining the possible goals
of a target vehicle by planning from its standpoint. Havlak
and Campbell [27] propose a hGMM approach that formally
captures probabilistic hypotheses over multiple discrete
decisions. Here, we similarly adopt a hGMM representation
for multiple hypotheses over the state of occluded tracks.

III. PROBLEM STATEMENT

As illustrated in Fig. 2, letWt ⊂ R3 =Wvis
t ∪Wocc

t be the
local workspace of our autonomous vehicle at time t, where
Wvis

t is the region of the workspace directly observable with
the vehicle’s sensors (e.g., cameras, range sensors) and Wocc

t

is the workspace region either beyond the sensor horizon or
occluded by the presence of objects in the environment.

Current estimates p(xi) of the state of dynamic objects
withinWvis

t , for the ith of N dynamic objects, are assumed to
be provided by a dynamic object detector and tracker (based,
for instance, on one of the approaches described in [16–20]).

Hereby, we are interested in:
1) Estimating the occluded state xi of each tracked dynamic

object while the object lies completely within Wocc
t , and

2) Correctly associating the estimated occluded state of
each track p̂(xi) with a potentially re-observed object
estimate p(xi) when it re-enters Wvis

t .

IV. METHOD

The flow diagram in Fig. 3 provides an overview of our
proposed method for solving the problem stated in §III.
For each tracked object passing through an occlusion, our
approach iteratively propagates the last known state estimate
provided by the tracker through a dynamics model that
accounts for road network topology and driving behavior.
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Fig. 3: Flow diagram of our proposed augmented tracking method
for a single tracked object. Time subindices are omitted for clarity.

This propagation iterates until a new observation matching
the estimated occluded state is received from the object
tracker. We next elaborate on our driving behavior model,
our occluded state representation and propagation strategy,
and our data association method.

A. Dynamics Model

Building upon our prior work [9], we capture the potential
behavior of dynamic objects in the environment as a discrete
set of policies π ∈ Π, where each policy captures a typical
high-level behavior, such as driving along a lane, doing a lane
change, or turning at an intersection. The set of applicable
policies in each driving scenario is dictated by a prior map
of the environment [9]. Here, a policy is a mapping π :
{1 . . . N} × B → A that yields a prescribed action a ∈ A
for dynamic object i ∈ {1 . . . N} only, given the current
belief b ∈ B over the state of all dynamic objects, i.e.,
b = (p(x1), . . . , p(xN )). Each action a prescribes steering-
wheel-ange and forward-speed commands.

The key in this multipolicy model is that policies account
for the state estimates of the commanded object and of
other objects, thus yielding an action that reacts in closed
loop to the actions of other traffic participants. For example,
a lane-following policy can adapt the commanded vehicle
speed to match the speed of the vehicle upfront, achieving
an adaptive-cruise-control-type behavior. While it is possible
that this multipolicy factorization could include behavior of
pedestrians and other types of objects, in this paper we focus
on vehicle-like dynamic objects.

This dynamics model allows us to effectively sample from
the likely actions of traffic participants, providing likely
estimates of the future occluded states of tracked objects.

B. Occluded State Representation

We represent the estimates of the occluded states of
dynamic objects using a hGMM2, which allows us to jointly

2Here hybrid refers to jointly capturing continuous and discrete compo-
nents of the belief.

denote the belief over the continuous state and multiple
discrete hypotheses over the policies the object might be
executing. For example, an occluded object might go through
a bifurcation in the road network, after which we need to
consider two discrete policy hypotheses, one for each fork.

Thus, similarly to Havlak and Campbell [27], we consider
the underlying state xi

t of each dynamic object i at time t
to be partitioned into continuous components (such as pose,
velocities, etc.) Cxi

t and a vector of discrete hypotheses over
policies Dxi

t:

xi
t =

(
Cxi

t
Dxi

t

)
. (1)

The occluded state estimate is given by the hGMM as

p̂(xi
t) =

Mt∑
j=1

wj
t · p̂j(xi

t), (2)

where Mt is the number of mixture components at time t
and each wj

t is the weight of each component such that∑
j

wj
t = 1.

Given that during an occlusion there are no observations
available to infer each component weight wj

t , in this work we
use normalized weights wj

t = 1
Mt

throughout the augmented
tracking process, assigning equal weight to all hypotheses.
However, we note that prior knowledge could be incorporated
into the discrete transition model fD( · ) to account for the
relative frequency of discrete driving events. For example,
at a highway off ramp, the relative frequency of a vehicle
taking the ramp versus that of it continuing along the lane
could be used to establish the component weights according
to recorded data.

Each mixture component is defined as a Gaussian distri-
bution over the continuous components of the state and a
hypothesis over the policies the object is executing:

p̂j(xi
t) = δ(Dxi

t − α
j
t ) · N (Cxi

t;µ
j
t ,Σ

j
t ), (3)

where δ( · ) is the Dirac delta function, αj
t is the discrete

hypothesis over the current policies, and µj
t and Σj

t are the
mean and covariance of the Gaussian over the continuous
component of the state.

C. Occluded State Estimation

We estimate the occluded state of each dynamic object
by propagating, in a two-step process, the hGMM through a
probabilistic model accordingly partitioned into discrete and
continuous components fD( · ) and fC( · ). First, we use the
discrete component of the model to update the hypothesis
over the current policies according to a prior road network



map:
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 (w1
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1
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1
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1
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(wMt
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t ,ΣMt
t )
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t−)
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Mt+1
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 . (4)

Note that the number of components at the next timestep
Mt+1 might change after the propagation according to the
updated hypothesis over policies.

After the discrete update, we update the continuous
component of the estimate based on the multipolicy dynamics
model presented above:

fC

 (w1
t− , α

1
t+1,µ

1
t− ,Σ

1
t−)

...
(w

Mt+1

t− , α
Mt+1

t+1 ,µ
Mt+1

t− ,Σ
Mt+1

t− )

 =

 (w1
t+1, α

1
t+1,µ

1
t+1,Σ

1
t+1)

...
(w

Mt+1

t+1 , α
Mt+1

t+1 ,µ
Mt+1

t+1 ,Σ
Mt+1

t+1 )

 . (5)

Here, each component is updated independently by simulating
forward in time, for the duration of the timestep, the execution
of action

a = πk(i, (p(x1
t ), . . . , p(xN

t ))), (6)

where the index k into Π is determined by each policy
hypothesis αj

t+1 of each track. The forward simulation of a is
a non-linear function due to the underlying vehicle dynamics.
Therefore, we use the sigma-points transform (also known
as unscented transform) [28] to propagate each pair (µj

t ,Σ
j
t )

through the corresponding policy and obtain (µj
t+1,Σ

j
t+1).

D. Data Association

Upon receiving a new dynamic object track in Wvis
t ,

we must decide whether the new observation p(xN+1)
corresponds to an existing occluded track p̂(xi) or it is rather
an actual new observation. Our solution to this problem is
a nearest-neighbor data association in terms of the KLD
between the new observation and each Gaussian component
j of each existing (occluded) track i:

(i∗, j∗) = argmin
i,j

DKL(p(xN+1)‖p̂j(xi
t)). (7)

The KLD measures the relative entropy between two
distributions, and can be computed in closed form for
two multivariate Gaussians N0(µ0,Σ0) and N1(µ1,Σ1) of
dimension d as

DKL(N0‖N1) =

1

2

(
tr
(
Σ−11 Σ0

)
+ (µ1 − µ0)

>
Σ−11 (µ1 − µ0)−

d+ ln

(
det Σ1

det Σ0

))
. (8)

Fig. 4: Autonomous vehicle sensor platform used for experimental
results. This platform is a Ford Escape equipped with a TORC
ByWire XGV drive-by-wire system, four Velodyne HDL-32E LiDAR
scanners, and an Applanix POS-LV 420 INS. A dynamic object
detection and tracking system similar to that of Leonard et al. [16]
running onboard allows tracking of other traffic participants.

This applies to our case, since the tracker state estimates
p(xN+1) and each component p̂j(xi

t) are Gaussian.
If DKL(p(xN+1)‖p̂j∗(xi∗

t )) is below a user-provided
threshold θ, we declare the new observation to match the
corresponding existing occluded track. Otherwise, we declare
the new observation to correspond to a new tracked object.

V. EXPERIMENTS

We now explore the performance of our proposed method in
simulation and using real-world traffic-tracking data acquired
from our autonomous vehicle platform, shown in Fig. 4.
We first illustrate the advantage of our augmented tracking
approach versus occlusion-unaware tracking in an intersection
navigation scenario, and then we show the capability of our
method to capture multiple hypotheses over occluded vehicle
states and correctly associate them to re-observations. Next,
we quantitatively evaluate the accuracy of our occluded state
estimation approach on real-world traffic tracking data from
our autonomous vehicle platform using a tracking system
similar to that of Leonard et al. [16]. Finally, we perform
Monte Carlo simulations to evaluate the performance of our
data association strategy as a function of dynamics model
error in a congested traffic scenario. For these experiments, we
use C implementations of our augmented tracking algorithm,
a traffic simulation engine, and the dynamic object tracker.
The experiments were performed using a standard PC with a
2.8GHz Intel i7 processor.

In all experiments, we consider the continuous state of
occluded vehicles to be given by

Cxi
t = (x, y, ψ, v)>,

where (x, y) is the 2-dimensional position of the vehicle on
the plane, ψ is its orientation, and v is its forward speed.
Similarly, we use a data association threshold θ = 55 nats in
all experiments (in simulation and using real-world data). A
single lane-following policy [9] is used in these experiments
to model the continuous behavior of all discrete hypotheses.



A. Decision-Making Scenario in Simulation

Our first experiment illustrates the importance of estimating
the occluded states of other traffic participants using the
simulated autonomous driving decision-making scenario
introduced in Fig. 1. As shown in the comparison in Fig. 5,
without using our augmented tracking method (e.g., as per
[16]) our vehicle sees the oncoming vehicle disappear as it is
occluded. As a result, it declares clearance and proceeds
turning left only to detect the oncoming vehicle at an
extremely risky close distance after it re-enters its field of
view. The oncoming vehicle is forced to brake abruptly to
avoid a collision. In contrast, using our proposed method our
vehicle is able to track the oncoming vehicle throughout the
occlusion, and hence account for its presence and yield to it
before proceeding safely through the intersection.

B. Multi-hypothesis Scenario in Simulation

The following experiment, shown in Fig. 6, illustrates the
capability of our method to account for multiple hypotheses
over the occluded state of other vehicles via a hGMM. In this
simulated highway driving scenario, our vehicle instantiates a
hGMM with three hypotheses (determined by three possible
lanes of travel) over the occluded state of a tracked vehicle.
Despite the tracked vehicle executing a lane change maneuver
during the occlusion, our method is able to correctly associate
the re-observed state with the appropriate component of the
multi-hypothesis occluded state estimate.

C. Real-world Traffic Dataset

To evaluate the accuracy of the occluded state estimates
provided by our state propagation model, we recorded 32
dynamic object trajectories on University of Michigan’s North
Campus. Each recorded trajectory lasts between 13s and 38s.
Since ground truth positioning data from the tracked objects
is not available, we run our augmented tracking method
and artificially inject an occlusion (that is, we drop tracking
updates) for 60% of each trajectory, with the occlusion
period centered at halfway through the trajectory. A sample
augmented tracking sequence from the dataset is shown in
Fig. 7. We note that this dataset includes trajectories involving
a single lane-following behavior only. Thus, the focus of this
experiment is to evaluate the accuracy of the continuous
propagation model fC( · ).

We then compute the root mean squared error (RMSE) of
the estimated occluded trajectory provided by our proposed
method using the actual tracking data as ground truth. As
shown in Fig. 8, on average our dynamics model keeps the
estimation error under 6m after 20s of occlusion time, which
we find to be sufficient to obtain correct data association in
typical occlusions in traffic scenarios. We note, however, that
a more accurate dynamics model that better captures longi-
tudinal behavior would help further reduce this estimation
error. Nonetheless, our method is able to handle occlusions of
over 20s, while we have observed that the standard tracking
system running on the vehicle loses track of objects in less
than 1s after an occlusion.

(a)

(b)

(c)

(d)

(e)

Fig. 6: Multiple-hypothesis augmented tracking under occlusions
on a simulated highway segment. (a) The ego-vehicle (dark red)
proceeds along its current lane while it tracks another vehicle (green).
(b) As the tracked vehicle is blocked from our sensor field-of-view
by an occluding object (blue, e.g., a large truck driving along the
adjacent lane), the discrete propagation model fD( · ) instantiates a
hGMM with three components (light gray), one for each possible
hypothesis over each possible lane. (c-d) During the occlusion, the
actual occluded vehicle (light red) changes lanes. (e) On re-observing
the tracked vehicle, our method is able to correctly associate the
observation with the appropriate hypothesis despite the lane change.
Note: occluded regions not explicitly shown for clarity.

D. Data Association under Dynamics Modeling Error

We now evaluate the effect of dynamics modeling error
on data association in the simulated scenario shown in
Fig. 9, involving nine tracked vehicles passing through an
occlusion. Initial covariances for all vehicles are set to
Σ = diag([0.5, 1.0, 0.01, 0.05]), and a single hypothesis is
considered per vehicle. Before performing data association,
we add zero-mean Gaussian noise to the mean longitudinal
position of the occluded state estimates according to the
standard deviation of the dynamics modeling error measured
on real-world data (Fig. 8). That is, with standard deviation
ranging from σ = 0.63m to σ = 6.01m. For each σ value, we
run 5000 Monte Carlo simulations and count the percentage
of correct data associations.
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Fig. 5: Simulated intersection handling without (top row) and with (bottom row) augmented tracking under occlusions. The vehicle under
our commmand (dark red) wishes to turn left at the T-intersection, as indicated by its mission plan (transparent red). A large vehicle
upfront (light red) occludes our vehicle’s sensor field-of-view as it tracks an oncoming vehicle in the opposite lane (green and light gray).
Our vehicle uses a simple lane-following prediction scheme to estimate the future trajectory of the oncoming vehicle (blue line). Without
our method (top row), the tracked vehicle disapears behind the occluding vehicle (c) and hence our controlled vehicle starts turning left
after determining clearance. As a result, it leads itself and the oncoming vehicle to an extremely risky situation (d) where the oncoming
vehicle is forced to brake abruptly. In contrast, with our method (bottom row) the occluded vehicle state is estimated throughout the
occlusion (f, light gray), and thus our vehicle can account for the presence of the oncoming vehicle and yield to it before starting the turn.

Results are shown in Fig. 10, where we can observe a data
association performance decay above approximately σ =
3m, leading to 80% performance at σ = 6m. These results
show that our proposed data association strategy depends
strongly on accurate dynamics modeling, particularly in the
longitudinal direction.

VI. CONCLUSION

We have presented a method to augment standard dynamic
object trackers to estimate the occluded state of other
traffic agents and associate the occluded estimates with new
observations after the tracked object re-enters the visible
region of the sensor horizon. Our method performs occluded
state estimation using a dynamics model that accounts for
the driving behavior of traffic agents and a hGMM to capture
multiple hypotheses over distinct discrete behaviors, such as
driving along different lanes. Upon new observations, we
associate them to existing estimates in terms of the KLD. We
evaluated the proposed method in simulation and using a real-
world traffic-tracking dataset from an autonomous vehicle
platform, showing that our method handles significantly longer
occlusions when compared to a standard tracking system.

In future work we plan to evaluate the proposed method in
more traffic scenarios, such as intersections and roundabouts,
using ground truth positioning from two or more time-
synchronized autonomous vehicle platforms. Exploring more

robust data association strategies is also a subject for further
research.
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