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Bayesian Spatial Kernel Smoothing for Scalable
Dense Semantic Mapping

Lu Gan, Ray Zhang, Jessy W. Grizzle, Ryan M. Eustice, and Maani Ghaffari

Abstract—This paper develops a Bayesian continuous 3D
semantic occupancy map from noisy point clouds by generalizing
the Bayesian kernel inference model for building occupancy
maps, a binary problem, to semantic maps, a multi-class problem.
The proposed method provides a unified probabilistic model for
both occupancy and semantic probabilities and nicely reverts
to the original occupancy mapping framework when only one
occupied class exists in obtained measurements. The Bayesian
spatial kernel inference relaxes the independent grid assumption
and brings smoothness and continuity to the map inference,
enabling to exploit local correlations present in the environment
and increasing the performance. The accompanying software uses
multi-threading and vectorization, and runs at about 2 Hz on
a laptop CPU. Evaluations using multiple sequences of stereo
camera and LiDAR datasets show that the proposed method
consistently outperforms current baselines. We also present a
qualitative evaluation using data collected with a bipedal robot
platform on the University of Michigan - North Campus.

Index Terms—Mapping, semantic scene understanding, range
sensing, RGB-D perception.

I. INTRODUCTION

ROBOTIC mapping is the problem of inferring a represen-
tation of the robot’s surroundings using noisy measure-

ments as it navigates through an environment. This problem
is traditionally solved using occupancy grid mapping tech-
niques [1]–[3]. As robotic systems move toward more chal-
lenging behaviors in more complex scenarios, such systems
require richer maps so that the robot understands the signifi-
cance of the scene and objects within. Hence, the integration
of semantic knowledge into the map has been the focus of
robotic research in recent years [4]–[9].

A semantic occupancy map as shown in Fig. 1, besides
possessing properties similar to an occupancy grid map, main-
tains for each cell a set of probabilities of semantic classes.
These probabilities are often updated using a Bayes filter [9],
[10], and then Conditional Random Fields (CRF) or Markov
Random Fields (MRF) are subsequently applied to mitigate
discontinuities and inconsistencies in the semantic map [7]–
[9], [11], [12]. In principle, CRF models encourage label
consistency among neighboring grids in super-voxels [8] or
2D superpixels [9], [12]. However, CRF optimization is only
applied as a post-processing step, and therefore, it is unable
to predict semantics of partially observed regions in the map.
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Fig. 1: Qualitative results on KITTI odometry sequence 05 dataset [13]. From
top to bottom the figures show the 2D ground truth image, 3D semantic map,
and variance map.

Occupancy grid maps assume the grids are statistically
independent. However, a series of investigations on continuous
occupancy mapping shows that taking local spatial correlations
into account increases mapping performance [14]–[21]. Build-
ing on a similar idea, continuous semantic maps [22], [23] can
deal with sparse sensor measurements by inferring semantics
of partially observed regions from neighboring measurements.
Recent work on Bayesian generalized kernel inference for
occupancy map prediction (BGKOctoMap) proposed in [21]
uses a kernel inference approach to generalize the counting
sensor model [24] to continuous maps while maintaining the
scalability of the method.

In this paper, we extend BGKOctoMap [21] to continuous
semantic mapping where the inference reverts to the original
framework when only one occupied class exists. In particular,
the contributions of this work are 1) we develop a continu-
ous statistical model for semantic occupancy mapping which
models occupancy and semantic probabilities in a unified
framework and queries can be made at any resolution; 2)
we provide an open-source implementation of the proposed
method. The current implementation exploits multi-threading
and vectorization and can be run at about 2 Hz using a
laptop CPU; 3) we present extensive experiments using both
stereo camera and LiDAR data. The evaluations show that
the proposed method consistently outperforms state-of-the-art
systems.

Related work is given in Section II. Section III presents
preliminaries and semantic counting sensor model. Section IV
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describes an extension to continuous mapping. Experimental
results are presented in Section V. Limitations of this work are
discussed in Section VI and Section VII concludes the paper.

II. RELATED WORK

Discrete 3D Semantic Mapping. Early semantic mapping
work uses traditional pixel-wise image segmentation methods
and directly transfers image labels from 2D to 3D. Labels
from multiple images are fused in 3D without any further
3D optimization [10], [25], [26]. He et al. [25] build a
semantic octomap by using an MRF for image segmentation
and selecting the most frequent label of the 3D points inside
each grid. Sengupta et al. [26] build a semantic volumetric
map by adopting a CRF for 2D semantic segmentation and
assigning labels by a voting scheme. Stückler et al. [10] use
random decision forests to segment object classes in images
and fuse soft labels in a voxel-based 3D map using a Bayesian
update. While these methods are similar to our semantic
counting sensor model in a way that the maximum of semantic
labels in a 3D element is picked in label fusion, the latter is a
closed-form Bayesian inference which outputs the mean and
variance of the posterior.

To deal with noisy 2D predictions, 3D CRF optimization
has been introduced as a refinement technique and it is widely
applied in 3D semantic mapping [7], [11], [27]. In [8], [12],
[13], a higher-order dense CRF model is used to further
optimize the semantic predictions for 3D elements. Basic CRF
models encourage label consistency for adjacent 3D elements,
while higher-order dense CRFs can model long-range rela-
tionships within a region, such as grids in super-voxels [8]
or grids corresponding to 2D superpixels [12], and further
improve the mapping performance. More recent work uses
deep Convolutional Neural Networks (CNNs) for 2D image
segmentation, and follows the same framework for building
3D semantic maps [9], [28]. However, CRF optimization post-
processes the inferred occupied grids, which does not change
the principle of discrete semantic map inference. In [29], a
semantic Simultaneous Localization and Mapping (SLAM)
system, SuMa++, builds a surfel-based semantic map using
SemanticKITTI dataset [30] as its byproduct. However, surfel-
based maps do not model occupied or free space, thus are not
used for robot navigation.

Continuous Mapping. Gaussian Process Occupancy Map
(GPOM) [14] takes into account the correlation between map
points and treats the map inference as a binary classification
at an arbitrary resolution. Hilbert maps [18] are more scalable
and can be updated in linear time where a logistic regression
classifier is trained online through stochastic gradient descent.
GPOM has been extended from binary to multi-class case
in [22]. However, the complexity of the model grows with
the number of data points, resulting in O(n3) cost without ap-
proximation. The cost also grows with the number of semantic
classes as a one-vs.-rest approach is used to build the multi-
class classifier. Similarly, Hilbert maps can also be extended
to the multi-class maps using a multinomial model. However,
as discussed in [21], the logistic regression classifier used
by Hilbert map-based approaches does not provide associated
uncertainties in probability estimates.

Bayesian Kernel Inference. Bayesian Kernel Inference
(BKI) was introduced in [31] as an approximation to Gaussian
processes that requires only O(logN) computations instead
of O(N3), where N is the number of training points. It
generalizes local kernel estimation to the context of Bayesian
inference for the exponential family of distributions. Instead
of approximating inference on the model, the approximation
is made at the stage of model selection. Assuming latent
training parameters are conditionally independent given the
target parameters, exact inference on this model is possible for
any likelihood function from the exponential family. In [32],
BKI is successfully applied to a visual odometry problem for
modeling sensor uncertainty. In [33], BKI has been used on a
Bernoulli-distributed random event with Beta-distributed prior
to model collision in safe high-speed navigation problems and
could achieve safe behavior in a novel environment with no
relevant training data. BKI was first used in the context of
mapping problems in [20], [21], to generalize the discrete
counting sensor model [24] to continuous occupancy mapping.
Later, the applications of BKI in elevation regression and
traversability classification are explored in [34]. Following the
same idea, we apply BKI in our semantic counting sensor
model and generalize it to continuous semantic mapping. In
particular, we use BKI on a Categorical likelihood with a
Dirichlet distribution as its conjugate prior.

III. PRELIMINARIES AND SEMANTIC COUNTING SENSOR
MODEL

The counting sensor model describes occupancy probability
via a Bernoulli likelihood function. It counts for each grid how
often a beam has ended in that grid and how often a beam has
passed through it. This model has comparable performance
to Bayesian updates in occupancy grid mapping [35]. The
semantic counting sensor model is its natural generalization
from occupancy (binary) mapping to semantic (multi-class)
mapping.

Let K = {1, 2, ...,K} be the set of semantic class labels,
i.e., K categories, and X ⊂ R3 be the map spatial support.
For any map point xi ∈ X , we have a one-hot-encoded
measurement tuple yi = (y1i , ..., y

K
i ), where yki ≥ 0 and∑K

k=1 y
k
i = 1. In practice, yi is the output of a max function

computed using the output of a deep network for multi-
class classification. The training set (data) can be defined as
D := {(xi, yi)}Ni=1.

Assuming map cells are indexed by j ∈ Z+, the jth map cell
can take on one of K possible categories with the probability
of each category separately specified as θj = (θ1j , ..., θ

K
j ),

where
∑K
k=1 θ

k
j = 1. The jth map cell with semantic proba-

bility θj is described by a Categorical distribution as:

p(yi|θj) =
K∏
k=1

(
θkj
)yki . (1)

In semantic mapping, we seek the posterior over θj ; p(θj |D).
For incremental Bayesian inference, we adopt a Dirich-

let prior distribution over θj , given by Dir(K,α0), as
the conjugate prior of the Categorical likelihood, where
α0 = (α1

0, ..., α
K
0 ), αk0 ∈ R+ are concentration parameters
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(hyperparameters). Applying Bayes’ rule, the posterior is given
by Dir(K,αj), αj = (α1

j , ..., α
K
j ), where αkj is

αkj := αk0 +
∑

i, xi in cell j

yki . (2)

Because αkj counts the number of measurements which falls
into the jth cell and indicate the kth category, we call this
model the Semantic Counting Sensor Model (S-CSM). Given
concentration parameters αj , the mode of θj has the following
closed form, which is also the maximum-a-posteriori estimate
of θj :

θ̂kj =
αkj − 1∑K
k=1 α

k
j −K

and αkj > 1. (3)

We also have the closed-form expected value and variance of
θj as follows:

E[θkj ] =
αkj∑K
k=1 α

k
j

and V[θkj ] =

αk
j∑K

k=1 α
k
j

(1− αk
j∑K

k=1 α
k
j

)∑K
k=1 α

k
j + 1

.

(4)
We use (2) to calculate the parameters of the posterior Dirich-
let distribution for cell j and given the posterior parameter αj ,
the statistics of cell j can be computed by (3) and (4).

For free-class measurements, we use free-space points lin-
early interpolated along each sensor beam. We note that in the
particular case when K = 1 represents the free-space class and
K = 2 represents the occupied class, the semantic counting
sensor model nicely reverts to the original counting sensor
model.

However, the semantic counting sensor model inherits the
traditional occupancy grid mapping limitations because the
posterior parameters for each cell are only correlated with
measurements that directly fall into or pass through that cell.
To mitigate this shortcoming, we use BKI to convert the
discrete semantic counting sensor model to a continuous model
by taking into account local correlations in the map.

IV. CONTINUOUS SEMANTIC MAPPING VIA BAYESIAN
KERNEL INFERENCE

Bayesian kernel inference, as introduced by Vega-Brown et
al. [31], relates the extended likelihood p(yi|θ∗, xi, x∗) and
the likelihood p(yi|θi) by a smoothness constraint, where θ∗
is the value of the latent variable for the query point x∗. In this
framework, the maximum entropy distribution g, satisfying
DKL(g‖f), has the form g(y) ∝ f(y)k(x∗,x), where DKL(·‖·)
is the Kullback-Leibler Divergence (KLD), and k(·, ·) is a
kernel function. Let g be the extended likelihood and f the
likelihood, we define a smooth distribution over semantics as
having bounded KLD between the two distributions. Given a
kernel function operating on 3D spatial inputs k : X × X →
[0, 1], we have

N∏
i=1

p(yi|θ∗, xi, x∗) ∝
N∏
i=1

p(yi|θ∗)k(x∗,xi). (5)

Using Bayes’ rule, we can write

p(θ∗|x∗,D) ∝ p(D|θ∗, x∗)p(θ∗|x∗), (6)

and by substituting (5) into (6), we have:

p(θ∗|x∗,D) ∝

[
N∏
i=1

p(yi|θ∗)k(x∗,xi)

]
p(θ∗|x∗). (7)

We adopt the Categorical likelihood and place a prior
distribution Dir(K,α0) over θ∗. Subsequently, (6) becomes:

p(θ∗|x∗,D) ∝

 N∏
i=1

[
K∏
k=1

(
θk∗
)yki ]k(x∗,xi)

 K∏
k=1

(
θk∗
)αk

0−1

=

K∏
k=1

(
θk∗
)αk

0+
∑N

i=1 y
k
i k(x∗,xi)−1

, (8)

which is proportional to the posterior Dir(K,α∗) where
α∗ = (α1

∗, ..., α
K
∗ ) is defined as

αk∗ := αk0 +

N∑
i=1

k(x∗, xi)y
k
i . (9)

The mode, mean, and variance for the continuous model can
be computed exactly as given in (3) and (4).

Compared with (2), (9) not only considers measurements
which fall into a cell but also adjacent measurements with a
weighting coefficient defined by the kernel function, i.e., the
distance to the query point. We note that the kernel neither
needs to be positive-definite nor symmetric. To reduce the
computational complexity, we choose the sparse kernel [36]
as

k(x, x′) ={
σ0
[
1
3

(
2 + cos (2π dl )(1−

d
l ) +

1
2π sin (2π dl )

)]
if d < l

0 if d ≥ l
(10)

where d = ‖x−x′‖, l > 0 is the length-scale, and σ0 is kernel
scale parameter (signal variance).

The derived continuous semantic model can deal with
sparse and noisy sensor measurements better and allows for
queries at an arbitrary resolution. In the context of semantic
occupancy mapping, the query points are chosen to be the
grid centroids. Thus, (9) can be used to recursively update the
posterior parameters for each grid. We use a block to contain
a number of grids according to the block depth, where each
block is an octree of grids. For every block of test data, the
corresponding training data is comprised of all portions of
the new measurements that pass through the block’s extended
block [17], which is defined as the set of neighboring blocks
with faces adjacent to the block containing the test data of
interest.

Example 1 (Three-dimensional Toy Example). Figure 2 il-
lustrates a three-dimensional toy example of the continuous
semantic mapping via Bayesian kernel inference using a simu-
lated dataset made in Gazebo, with annotated semantic labels.
The simulated dataset has dimensions 10.0× 7.0× 2.0m. We
manually annotate the raw data into three semantic classes:
ground, wall, and cylindrical obstacles. Semantic occupancy
maps with resolution 0.05 m for both S-CSM and Semantic
Bayesian Kernel Inference (S-BKI) models are built using the
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: 3D toy example on a simulated dataset. (a) Environment model in
Gazebo. (b) Annotated point cloud raw data. (c) Semantic map of S-CSM.
(d) Semantic map of S-BKI. (e) Variance map of S-CSM. (f) Variance map
of S-BKI. Variance maps of two models (shown using the jet colormap)
provide useful information for robotic navigation and exploration [37]. We
found that Bayesian kernel inference decreases the variance of the wall by
considering neighboring measurements. There are some artifacts, however, on
the periphery of the wall where the variance is relatively high.

annotated point clouds as sensor measurements. The figure
shows that S-CSM can reconstruct the 3D environment with
correct semantic information but has a limited predictive
capability where sensor coverage is sparse. The S-BKI map
can interpolate the gaps in the walls due to the continuity and
smoothness of Bayesian kernel inference.

V. EXPERIMENTAL RESULTS

We now present experiments for evaluating semantic seg-
mentation accuracy, occupancy prediction accuracy, and the
impact of parameters using multiple real datasets. We also
compare the proposed methods with state-of-the-art systems
and present a qualitative evaluation using data collected with a
bipedal robot. C++ implementations of the proposed methods
are available open source 1, and make use of the Learning-
Aided 3D Mapping Library [21], the Robot Operating System
(ROS) [38], and Point Cloud Library (PCL) [39]. The pa-
rameters in Table I were manually tuned but remained fixed
throughout all experiments. For baselines, we used the avail-
able open-source implementations without any modification.
All experiments are conducted on an Intel i7 processor with
8 cores and 32 GB RAM.

A. KITTI Dataset

KITTI dataset with semantically labeled images contains 40
test images from sequence 05 [13], and 25 test images from

1https://github.com/ganlumomo/BKISemanticMapping

TABLE I: Kernel and Dirichlet prior hyperparameters for all experiments.

Hyperparameter Description Value

l Kernel length-scale 0.3 m

σ0 Kernel scale 0.1

αk
0 Dirichlet prior 0.001

sequence 15 [26] in KITTI odometry dataset. We qualitatively
and quantitatively compare the mapping performance of our
methods with the state-of-the-art CRF-based semantic map-
ping system proposed by Yang et al. [9]. However, Yang’s
method only predicts semantic labels on occupied voxels
using a discrete occupancy grid mapping algorithm. For a
fair comparison with respect to the occupancy model, we
implement another baseline, BGKOctoMap-CRF 2, by replac-
ing Yang’s discrete occupancy grid map with the continuous
BGKOctoMap, and then applying the same hierarchical CRF
model to refine the voxel labels.

We adopt the same data pre-processing methods as used by
Yang et al. [9]. We use ELAS [40] to generate depth maps
from stereo image pairs, ORB-SLAM [41] to estimate 6DoF
camera poses, and the deep network dilated CNN [42] for prior
semantic label predictions. The superpixels used in Yang’s
CRF module and BGKOctoMap-CRF are generated by the
SLIC algorithm [43]. The common parameters for occupancy
mapping in all methods are set according to Yang’s work: the
resolution of 0.1 m, free and occupied thresholds as 0.47 and
0.6, respectively.

1) Qualitative Results: The 3D view of the semantic map
built by S-BKI model is given in Fig. 1. Our approach is
able to recognize and reconstruct general objects such as road,
sidewalk, building, fence and vegetation. We also show the
same view of the corresponding variance map of S-BKI in
Fig. 1. Most of the grids on the surface have relatively low
variance (cyan); the middle grids have the lowest variance
(blue) where the sensor measurements are dense, while the
grids on the margins of sensor scans show relatively high
variance (red) where the sensor measurements are sparse. It
can also be noticed that the uneven parts of the road in the
semantic map have high variance, which might be caused by
the discontinuity of the estimated camera poses.

We also found that a small portion of grids of the fence
on the left side are misclassified as vegetation, where the
corresponding variance is high. This nice property enables us
to reject misclassified grids by setting a variance threshold.
If the variance is too high, we can regard the state of the
grid as unknown and thus build safer semantic maps for robot
navigation. To compare the mapping performance, we project
semantic maps onto 2D left camera views and compare with
2D ground truth images as shown in Fig. 3.

2) Quantitative Results: We follow the evaluation method
given in [9] by projecting 3D semantic map onto the 2D left
image plane, ignoring voxels that are too far from the camera
(40 meters for all the methods), and calculating the standard
metric of Intersection over Union (IoU) based on labeled

2https://github.com/zeroAska/BGKOctoMap-CRF

https://github.com/ganlumomo/BKISemanticMapping
https://github.com/zeroAska/BGKOctoMap-CRF
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Fig. 3: Qualitative results on KITTI odometry sequence 05 dataset [13]. From left to right the figures show 2D projected images from Yang et al. [9],
BGKOctoMap-CRF, S-CSM and S-BKI, respectively. The projected image from Yang’s semantic map contains more gaps than other maps, compared with
the ground truth image where the road, buildings, and vegetation are continuous and dense, while the projected image of S-BKI has the least holes in those
regions, which resembles the ground truth better. BGKOctoMap-CRF outperforms Yang’s method, in spite of the misclassification of the sidewalk to road.

TABLE II: Quantitative results on KITTI odometry sequence 05 test set [13]
for 8 common semantic classes, containing 40 images.

Metric Method B
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IoU Exclusive
Yang et al. [9] 86.2 91.5 85.3 74.1 77.1 16.8 78.5 28.0 67.2
BGKOctoMap-CRF 86.1 88.0 82.3 73.6 71.9 15.5 73.8 27.7 64.9
S-CSM 86.3 93.2 84.3 80.0 76.8 25.5 77.5 30.1 69.2
S-BKI 87.4 93.3 84.7 79.9 76.9 18.6 78.7 29.2 68.6

IoU
Yang et al. [9] 32.5 70.1 45.2 55.7 39.5 13.0 46.6 18.9 40.2
BGKOctoMap-CRF 43.5 70.9 49.4 55.5 40.2 12.7 46.4 13.9 41.6
S-CSM 40.2 74.1 49.5 62.1 42.1 20.3 47.7 22.8 44.9
S-BKI 45.6 75.5 52.8 62.9 43.3 14.9 49.3 22.9 46.0

TABLE III: Quantitative results on KITTI odometry sequence 15 test set [26]
for 8 common semantic classes, containing 25 images.

Metric Method B
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IoU Exclusive
Yang et al. [9] 95.6 90.4 92.8 70.0 94.4 0.1 84.5 49.5 72.2
BGKOctoMap-CRF 94.7 93.8 90.2 81.1 92.9 0.0 78.0 49.7 72.5
S-CSM 94.4 95.4 90.7 84.5 95.0 22.2 79.3 51.6 76.6
S-BKI 94.6 95.4 90.4 84.2 95.1 27.1 79.3 51.3 77.2

IoU
Yang et al. [9] 32.9 85.8 59.0 79.3 61.0 0.9 46.8 33.9 50.0
BGKOctoMap-CRF 50.0 86.6 64.1 74.9 61.0 0.0 47.5 36.7 52.6
S-CSM 42.6 87.3 62.9 77.9 62.6 17.1 47.7 34.8 54.1
S-BKI 49.3 88.8 69.1 78.2 63.6 22.0 49.3 36.7 57.1

ground truth left images. IoU is defined as TP/(TP+FN+FP),
where T/F P/N stands for true/false positive/negative.

Yang et al. [9] exclude the data that has not been projected
onto images (gray color in the projected images), even when
there exists corresponding ground truth data of it (as shown in
the ground truth images in Fig. 1). For a fair comparison, we
follow this approach for all methods and call it IoU Exclusive.
However, this evaluation ignores the classification error of
gaps in the map, and cannot show the advantage of continuous
mapping. Therefore, we compute a more rigorous IoU by
taking all projected data except the sky class into account.

The quantitative results are given in Table II and III, where
the two metrics are computed. For this experiment, the average
runtime of Yang et al. is 4.41 sec/scan, BGKOctoMap-CRF
is 1.10 sec/scan, S-CSM is 0.75 sec/scan, and S-BKI is
0.36 sec/scan. S-BKI has the highest IoU among almost all
semantic classes compared with other maps, and S-CSM is
the second-best method. We reiterate that the IoU Exclusive is
not a reasonable metric for mapping performance evaluations;
nevertheless, S-CSM and S-BKI still outperform the compared
baselines using this metric. In the latter case, as expected, S-
CSM and S-BKI perform similarly.

BGKOctoMap-CRF has a higher IoU than Yang’s method
because of the continuous occupancy model of BGKOctoMap.
The gaps in the measurements are interpolated and CRF fills
the labels from adjacent voxels. S-CSM outperforms both
CRF-based methods, because even if the 3D CRF model
further optimizes the grid labels, it is only post-processing
pre-calculated occupied grids and, therefore, it cannot recover
the correct semantic labels for misclassified occupancy or

unknown grids. Specifically, even if BGKOctoMap-CRF is
a continuous model for occupancy, it is not continuous for
semantics and color. Thus, the predicted occupied voxels might
not contain observation of semantics and color, leading to
improper initialization of them for CRF potentials. In contrast,
the counting sensor model uses a statistical model to infer the
grid statistics. By adding the Bayesian kernel inference, S-
BKI outperforms S-CSM as it can fill the gaps in the map
using nearby measurements. Even for fully observed regions,
by considering local correlations the map becomes more robust
to noisy measurement.

B. SemanticKITTI Dataset

SemanticKITTI [30] is a large-scale dataset based on the
KITTI odometry dataset. It provides dense annotations for
each LiDAR scan of 22 sequences including camera poses
estimated from a surfel-based SLAM approach (SuMa) [44].
The input data of this dataset is collected by a Velodyne HDL-
64E laser scanner. The semantic measurements are generated
by RangeNet++ [45], which is a state-of-the-art LiDAR-only
semantic segmentation deep neural network. To investigate
mapping performance on noisy data, we choose two backends
provided in RangeNet++: the best-performing one, Darknet53-
kNN, and SqueezeSegV2-kNN which has lower performance.
All maps are built at a resolution of 0.1 m and without any
pre-processing of the input data.

For evaluation, we use all sequences in SemanticKITTI.
For training (00-07, 09-10) and validation (08) sequences,
we compare the 3D predictions with ground truth labels.
To obtain the IoU metrics for test (11-21) sequences, we
submitted our results to the official evaluation server which are
shown on the multi-scan leaderboard3. As our method is for
static environments, we cannot differentiate between static and
dynamic objects. For static semantic classes, we outperforms
Darknet53-kNN for 18 out of 19 classes on test sequences.

Quantitative results on all sequences are given in Table IV.
For this experiment, the average runtime of S-CSM is 9.48
sec/scan, S-BKI is 1.67 sec/scan. For all sequences, our se-
mantic mapping methods can improve the prior segmentation
IoU by fusing multiple scans. We note that S-BKI consistently
outperforms S-CSM in almost all semantic classes, which
shows the advantage of Bayesian kernel inference and con-
tinuous semantic maps. When S-CSM does outperform S-
BKI, the IoUs are close to each other. Moreover, the mapping
improvement over SqueezeSegV2-kNN is much higher than
Darknet53-kNN, which shows our methods can deal with
noisy input data.

3https://competitions.codalab.org/competitions/20331#results (ganlumm)

https://competitions.codalab.org/competitions/20331#results
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TABLE IV: Mean IoU on SemanticKITTI dataset sequence 00-21 [30] for 19 semantic classes. SqueezeSegV2-kNN (Sq.-kNN). Darknet53-kNN (Da.-kNN).
Training (00-07, 09-10), Validation (8), Test (11-21).
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Training

Sq.-kNN 88.2 14.4 45.7 67.3 60.9 33.3 58.7 63.1 92.6 62.0 81.3 49.2 77.3 63.6 76.7 34.5 71.5 32.8 49.5 59.1
S-CSM (w/ Sq.-kNN) 92.6 21.6 62.2 73.1 70.6 44.1 80.3 67.4 94.3 70.9 85.1 52.3 82.0 69.1 81.4 47.8 75.4 50.8 65.0 67.7
S-BKI (w/ Sq.-kNN) 93.5 29.1 73.9 82.0 77.0 54.6 87.2 73.7 93.8 73.6 84.2 55.7 83.8 70.1 82.8 53.9 75.9 54.6 70.4 72.1
Da.-kNN 94.7 42.3 81.8 83.4 69.4 69.4 72.5 53.7 96.7 88.6 92.6 82.1 95.4 85.0 92.0 71.0 88.3 70.6 82.4 79.6
S-CSM (w/ Da.-kNN) 96.0 48.6 88.3 84.5 71.4 77.3 83.6 54.3 96.8 89.7 93.3 84.2 96.6 86.7 93.5 79.2 90.0 80.0 88.9 83.3
S-BKI (w/ Da.-kNN) 96.9 53.2 90.9 85.9 73.3 83.5 88.4 59.8 96.8 89.9 93.1 85.4 97.3 87.4 94.2 81.3 90.9 82.0 90.6 85.3

Validation

Sq.-kNN 86.7 14.4 24.6 21.0 23.3 23.5 40.9 0.0 90.1 32.4 74.8 1.2 79.6 42.7 79.2 36.5 71.1 28.3 24.8 41.8
S-CSM (w/ Sq.-kNN) 90.5 23.0 34.9 26.8 29.1 32.4 49.4 0.0 92.6 38.7 79.0 1.1 84.6 51.6 83.3 48.3 72.9 44.1 31.6 48.1
S-BKI (w/ Sq.-kNN) 92.3 30.0 39.7 29.3 32.1 38.8 54.7 0.0 92.9 40.9 79.9 1.1 86.6 54.6 84.9 52.3 74.2 47.9 34.7 50.9
Da.-kNN 91.0 25.0 47.1 40.7 25.5 45.2 62.9 0.0 93.8 46.5 81.9 0.2 85.8 54.2 84.2 52.9 72.7 53.2 40.0 52.8
S-CSM (w/ Da.-kNN) 92.6 32.5 54.9 43.4 26.2 51.3 69.2 0.0 94.6 49.2 84.0 0.1 87.9 58.4 85.8 59.9 73.3 61.7 43.0 56.2
S-BKI (w/ Da.-kNN) 93.5 33.5 57.3 44.5 27.2 52.9 72.1 0.0 94.4 49.6 84.0 0.0 88.7 59.6 86.9 62.5 75.3 63.6 45.1 57.4

Test Da.-kNN 82.4 26.0 34.6 21.6 18.3 6.7 2.7 0.5 91.8 65.0 75.1 27.7 87.4 58.6 80.5 55.1 64.8 47.9 55.9 47.5
S-BKI (w/ Da.-kNN) 83.8 30.6 43.0 26.0 19.6 8.5 3.4 0.0 92.6 65.3 77.4 30.1 89.7 63.7 83.4 64.3 67.4 58.6 67.1 51.3

TABLE V: Comparison of map quality using the Area Under ROC Curve
(AUC) and runtime of the four methods on the example shown in Fig. 4.

Method OctoMap BKIOctoMap S-CSM S-BKI

AUC 0.7226 0.7801 0.7274 0.7801

Runtime (s) 252.32 73.30 480.44 68.17

Beam Board Bookcase Ceiling Chair
Clutter Door Floor Table Wall

Fig. 4: S-BKI map of a conference room in Area 3 of Stanford 2D-3D-
Semantics Dataset [46].

C. Occupancy Evaluation

To support the claim that S-BKI is a semantic occupancy
mapping method, we evaluate the accuracy of occupancy
prediction of S-CSM, S-BKI, OctoMap and BGKOctoMap.
The experiment is performed using a conference room in
Area 3 of Stanford 2D-3D-Semantics Dataset [46], as ground-
truth occupancy values are provided. For S-CSM and S-BKI,
we use the annotated point clouds to build the semantic
occupancy maps, and the same point clouds without semantics
for OctoMap and BGKOctoMap. The semantic map built by
S-BKI is shown in Fig. 4. Comparisons of map quality and
runtime of the four methods are given in Table V. For S-
CSM and S-BKI, the probability of occupancy is computed
as the sum of all probabilities of valid semantic classes.
Among all methods, S-BKI and BGKOctoMap have the high-
est (identical) performance, which shows that S-BKI reduces
to BGKOctoMap when only occupancy is of interest, not only
theoretically, but also experimentally. S-CSM is slower than
S-BKI because the block depth is set to one, thus S-CSM has

Fig. 5: Impact of parameters on mapping performance for KITTI dataset
sequence 15 [26] (stereo camera) and SemanticKITTI dataset sequence 04 [30]
(LiDAR). Only one parameter at a time is varied while the others are kept at
the values in Table I. Both figures show reasonable robustness to the parameter
variations.

more blocks to be computed.

D. Impact of Parameters

We empirically study the sensitivity of S-BKI mapping to
the kernel length-scale and signal variance. The experiments
are conducted using KITTI dataset sequence 15 [26] for
stereo camera and SemanticKITTI datase sequence 04 [30]
for LiDAR data. All other parameters are fixed to the values
indicated in Table I. In Fig. 5, we plot the kernel length-scale
l and signal variance σ0 against the mean IoU metrics. The
influence of the kernel length-scale on mapping performance
for both stereo camera and LiDAR data is similar: the mean
IoU increases rapidly as the length-scale varies from 0.01
to 0.1, gradually increases to a peak value, and then drops
gradually as the length-scale increases. S-BKI achieves the
best performance when l = 0.3 for stereo camera data and
l = 0.4 for LiDAR data. This is reasonable because LiDAR
data is sparser than stereo camera data and longer distance
should be considered. The mapping performance is insensitive
to signal variance over a large scale; this is because we use
the same signal variance for all semantic classes. To see an
effect, one would need to allow signal variance to vary from
class-to-class.

E. Experimental Results on a Cassie Bipedal Robot

We test our mapping methods on data collected using
the bipedal robot Cassie Blue shown in Fig 6. To obtain
semantic measurements, we manually annotated 1194 training
images and 457 validation images from the NCLT dataset [47].
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Fig. 6: Top Left: Cassie Blue has a custom designed torso on which is
mounted an Intel RealSense depth camera capable of providing both RGB
images and corresponding organized point clouds in outdoor environments.
Top right: Google satellite map of the Wave Field of the University of
Michigan - North Campus. Bottom: From left to right are the 3D and 2D
views of S-BKI map. While the robot is navigating along the sidewalk, S-CSM
produces discontinuous semantic maps from sparse sensor measurements,
which may cause the robot’s planner to regard the gaps in the map as
unwalkable areas, a practical problem when we conduct autonomous walking
experiments with Cassie Blue (a video of the experiment is available at
https://www.youtube.com/watch?v=uFyT8zCg1Kk&t=3s). S-BKI model pro-
duces a continuous and smooth map, where gaps are assigned with labels
inferred from local correlations in the map.

The NCLT dataset was selected because it shares a similar
environmental domain as the Wave Field data, which includes
background, water, road, sidewalk, terrain, building, vegeta-
tion, car, person, bike, pole, stair, traffic sign and sky for a total
of 14 classes. We used these images to fine-tune a modified
2D segmentation network MobileNet [48] with a pre-trained
model on the ImageNet dataset [49] for efficiency. The fine-
tuned network segments the RGB images, and then we can
directly label the organized point clouds.

The qualitative results are given in Fig. 6. To show the
mapping performance of our methods on sparse data, we
downsample the point clouds per scan to a resolution of 0.2
m, and build a semantic occupancy map with a resolution of
0.1 m. S-BKI runs at about 2 Hz. The mapping drift after
one full round of the Wave Field is because of the odometry
system [50] instead of SLAM used in the experiment.

VI. DISCUSSIONS AND LIMITATIONS

In practice, semantic measurements do not necessarily come
in the form of a one-hot vector, but rather a pseudo-probability
vector obtained from the softmax output of a classifier. Taking
the max rather than the softmax results in the current formu-
lation. Taking the softmax, on the other hand, results in other
models corresponding to a set of model-averaging techniques

(i.e., the linear opinion pooling and Nadaraya-Watson kernel-
regression) that are similar, but not identical, to the Bayesian
model presented in Sec. III.

There are still several limitations to this work. First, the
length-scale of the kernel function trades off predictive ability
and classification accuracy. When the length-scale is large,
the model can extrapolate large-scale trends in data, and thus
be more predictive; however, the classification accuracy may
drop for small objects in the environment. In the current
approach, we manually tune the length-scale and use the same
scale everywhere, independent of the class. Optimizing the
hyperparameters in a Bayesian framework can be helpful. In
addition, varying the length-scale and signal variance based
on geometric features and semantic properties may further
improve semantic mapping performance. Secondly, the mem-
ory and space storage for large-scale mapping is another
limitation. We currently store the entire semantic map in
computer memory without any pruning. However, with the
current test-data octrees data structure, even when storing the
map after pruning, the save in memory consumption is not
substantial. How to compress the continuous semantic maps is
an interesting future research direction. Finally, the current se-
mantic map is for static environments, differentiating between
static and dynamic semantic labels is also an interesting future
work.

VII. CONCLUSION

In this paper, we extended the counting sensor model for oc-
cupancy grid mapping to a semantic counting sensor model for
semantic occupancy mapping. To relax the independent-grid
assumption in occupancy grid mapping, we used a Bayesian
spatial kernel inference to generalize the semantic counting
sensor model to continuous semantic mapping. Extensive
experimental results show the proposed methods work with
both dense stereo camera and LiDAR data. We improved
the mapping performance over the state-of-the-art semantic
mapping system using the KITTI dataset, and increased the
segmentation accuracy over a 3D deep neural network with
kNN processing using the SemanticKITTI dataset. We labeled
the NCLT dataset and collected data using Cassie Blue biped
robot to further evaluate the mapping performance in real
world experiments. The S-BKI model consistently outperforms
S-CSM, which shows the advantage of using Bayesian kernel
inference in continuous mapping.
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