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Abstract: We propose an approach for external calibration of a 3D laser scanner with an
omnidirectional camera system. The utility of an accurate calibration is that it allows for
precise co-registration between the camera imagery and the 3D point cloud. This association
can be used to enhance various state of the art algorithms in computer vision and robotics. The
extrinsic calibration technique used here is similar to the calibration of a 2D laser range finder
and a single camera as proposed by Zhang (2004), but has been extended to the case where
we have a 3D laser scanner and an omnidirectional camera system. The procedure requires
a planar checkerboard pattern to be observed simultaneously from the laser scanner and the
camera system from a minimum of 3 views. The normal of the planar surface and 3D points
lying on the surface constrain the relative position and orientation of the laser scanner and the
omnidirectional camera system. These constraints can be used to form a non-linear optimization
problem that is solved for the extrinsic calibration parameters and the covariance associated
with the estimated parameters. Results are presented for a real world data set collected by a
vehicle mounted with a 3D laser scanner and an omnidirectional camera system.
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1. INTRODUCTION

One of the basic tasks of mobile robotics is to automat-
ically create a 3D map of the environment. However, to
create realistic 3D maps, we need to acquire visual infor-
mation (e.g. color, texture) from the environment and this
information has to be precisely mapped onto the range
information. To accomplish this task, the camera and 3D
laser range finder must be extrinsically calibrated, i.e.,
the rigid body transformation between the two reference
systems must be estimated. On platforms where a camera
provides intensity information in the form of an image
and laser supplies depth information in the form of a set
of 3D points, external calibration allows reprojection of
the 3D points from the laser coordinate frame to the 2D
coordinate frame of the image.
Most previous works on extrinsic laser-camera calibration
concern calibration of perspective cameras to 2D laser
scanners (Zhang (2004)). Mei and Rives (2006) have de-
scribed the calibration of a 2D laser range finder and
an omnidirectional camera. They showed the results for
both visible (laser is observed in camera image also) and
invisible lasers. Unnikrishnan and Hebert (2005) extended
Zhang’s (Zhang (2004)) method to calibrate a 3D laser
scanner with a perspective camera. Recently Aliakbarpour
et al. (2009) have proposed a novel approach for calibration
of a 3D laser scanner and a stereo camera, which uses an
Inertial Measurement Unit (IMU) to decrease the number
? This work is supported through a grant from Ford Motor Company
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of points needed for a robust calibration.
In contrast to previous works, here we consider the ex-
trinsic calibration of an omnidirectional camera with a
3D laser range finder. The problem of extrinsic calibration
of a 3D scanner and an omnidirectional camera was first
addressed by Scaramuzza et al. (2007). There, they pro-
posed a technique that requires manual selection of point
correspondences from a scene viewed from the two sensors.
In this work, we describe a method of extrinsic calibration
of an omnidirectional camera and a high resolution 3D
laser scanner (with invisible lasers) that does not require
any explicit point correspondence.
The outline of the paper is as follows: In Section 2.1
we describe a procedure for the automatic refinement
of the intrinsic calibration of the Velodyne laser scanner
range correction. Section 2.2 describes the omnidirectional
camera system used. Section 2.3 describes the proposed
extrinsic laser-camera calibration method and in Section 3
we present some calibration results. In Section 4 we discuss
the implications of the laser-camera mapping presented in
this paper.

2. METHODOLOGY

Extrinsic calibration requires co-observable features in
both camera and laser data, moreover these features
should be easy to extract from both sensor modalities.
In our calibration procedure we employ a checkerboard
pattern mounted on a planar surface, which we will refer
to as the target plane from now onwards. Our selection



Fig. 1. Depiction of the experimental setup used for
extrinsic calibration of the 3D laser scanner with
omnidirectional camera system.

Fig. 2. Depiction of the manual calibration technique used
by the manufacturers to estimate the range offset
corresponding to each laser.

of the target is based on (i) the checkerboard pattern is
easy to extract from the image data; and (ii) its planar
structure is easy to extract from the 3D point cloud. The
approximate setup for extrinsic calibration along with the
perception sensors (Velodyne HDL-64E 3D laser scanner
and Pointgrey Ladybug3 omnidirectional camera) used for
the experiments is depicted in Fig. 1.

2.1 Velodyne Laser Scanner

The Velodyne HDL-64E is a high definition lidar (HDL)
sensor designed to meet the demands of autonomous
navigation, surveying, mapping and other applications.
This commercially available sensor became popular in the
2007 DARPA Urban Challenge and since then it has been
used in various research works. The HDL-64E operates
by pulsing a laser diode for a short duration (typically 4
nanoseconds) and precisely measuring the amount of time
it takes for the pulse to travel to an object, reflect off and
return to a highly sensitive photodetector. This results in
a time of flight (TOF) range measurement Dl for each
pulsed laser.
The HDL-64E has two blocks of lasers each consisting
of 32 laser diodes mounted on the front assembly with
photo-detectors in the middle. Each laser diode is precisely
aligned at predetermined vertical angles, resulting in an
effective 26.8 degree vertical field of view. The entire
unit can spin about its vertical axis at speeds up to
900 rpm (15 Hz) to provide a full 360 degree azimuthal
field of view. More technical details about the sensor
can be found in McBride et al. (2008). The calculated
range measurement Dl contains some bias due to the
errors in TOF calculation and thus has a bias correction
δD from the actual measurement. The manufacturers of

Fig. 3. Depiction of the proposed automatic calibration
procedure. The sensor is placed in front of a wall and
laser measurements are recorded. The omnidirectional
image is for visualization only and not required for the
calibration procedure.

the HDL-64E provide a per laser calibration value of δD
to compensate the error in range measurement. They
obtain an approximate value of this δD correction by
manually calibrating each laser range measurement using
a calibration procedure as depicted in Fig. 2. The laser
scanner is mounted on a support in front of a wall and
the offset in the range measurement is calculated by
considering the manually measured distance between the
wall and the laser scanner as ground truth, i.e.

δD = Dm −Dl, (1)

where Dm is the range calculated manually by measuring
the distance between the wall and the sensor and Dl is the
TOF range measurement.
The extrinsic calibration of the laser-camera sensors is
greatly affected by the intrinsics of the sensors themselves.
Therefore, it is important that the laser scanner is well
calibrated, so before considering the problem of extrinsic
calibration we propose a robust way to automatically cal-
culate this optimum offset δD in the range measurement.
In contrast to the calibration method used by the manu-
facturers we propose an in-situ method that only requires
the user to bring the platform mounted with the laser
scanner in front of a wall or a planar surface and record
the range measurements (Fig. 3). The laser measurements
are recorded for different positions of the sensor platform
in front of the wall or planar surface. Now if we use the
δD correction as calculated in (1) and consider the points
lying on the wall, they should all be coplanar. But since
the δD corrections are not exact the reprojection error of
these points on to the estimated plane is significant. We
can thus minimize this reprojection error over different
values of δD, jointly for all the lasers, to get an optimum
value of the individual range corrections. We use RANSAC
(Fischler and Bolles (1981)) to estimate the equation of
the best fit plane for all the points lying on the wall.
We first generate a bounding box that contains the target
plane and establish potential laser points lying in the box.
Then, these potential laser points {Q̃il; i = 1, 2, · · · , N}
are passed to the RANSAC plane fitting algorithm, which
returns the set of inliers (3D points in laser reference
frame) corresponding to the best fit plane to these po-
tential laser points. The RANSAC plane fitting algorithm
can be described in the following steps:



(1) Randomly choose 3 points from {Q̃il; i = 1, 2, · · · , N}.
(2) Find the equation of the plane passing through these

points.
(3) Find the inliers corresponding to the plane calculated

in step 2.
(4) Repeat until we find the best plane, i.e., the plane

containing most of the points.

Let the plane calculated by RANSAC be parametrized
by the normal to the plane from the origin of the laser
coordinate frame, given by N = [nx, ny, nz]>, such that
‖N‖ is the perpendicular distance of the plane from the
origin. So if P̃ = [X,Y, Z]> is any point lying in this plane
then the projection of the vector P (from origin to point
P) on the normal N is equal to the length of the normal
itself i.e.,

P ·N = ||N||2. (2)
If D be the range of this point, measured by laser i, and θ
and ω be the corresponding elevation and azimuth angle,
respectively, then:

X = D cos θ sinω, (3)

Y = D cos θ cosω, (4)

Z = D sin θ. (5)
So the actual range of this point in terms of the plane
normal can be written as:

D =
‖N‖

nx cos θ sinω + ny cos θ cosω + nz sin θ
. (6)

So now we have the range measurement as obtained from
the RANSAC plane fitting algorithm and we have one
range measurement from the manufacturers, Dm = Dl +
δD, where δD is the distance correction calculated by
manual calibration. Here we find the offset δD′, which
when added to the laser range measurement, projects the
laser point to the wall or the calculated plane. This is
obtained by iteratively minimizing the following non linear
least squares error for all 64 lasers and all the points lying
on the plane:

δDi
′ = argmin

δDi
′

64∑
i=1

n∑
j=1

||Dij − (Dlij + δDi
′)||, (7)

whereDij is the range of the jth point corresponding to ith
laser as calculated from (6) and Dlij

is the corresponding
TOF range measurement from the laser. The result of the
above mentioned optimization process is shown in Fig. 4.
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Fig. 4. Histogram of error in range of points falling on
the plane. The error is the perpendicular distance
of the inlier points from the estimated plane. The
plane equation and the inliers are estimated using
RANSAC.

2.2 Ladybug3 Omnidirectional Camera

The Pointgrey Ladybug3 (LB3) is a high resolution omni-
directional camera system. It has six 2-Megapixel cameras,
with five CCDs positioned in a horizontal ring and one
positioned vertically, that enable the system to collect
video from more than 80% of the full sphere. More tech-
nical details about the camera can be obtained from the
manufacturer’s website (Pointgrey (2009)). The camera is
pre-calibrated from the manufacturer so that the intrinsic
parameters of individual camera are well known. Moreover,
the rigid body transformation of all the cameras with
respect to a common coordinate frame called the camera
head is also known. Therefore, we need to estimate the
pose (orientation and position) of the camera head (with
respect to some local reference frame) so that we can
represent any 3D point in the camera head’s frame and
thereafter to the coordinate frame of any camera. We
used Zhang’s (Zhang (1998)) method to calculate pose of
the camera head with respect to the local reference frame
attached to the target plane as discussed in section 2.3.

2.3 Extrinsic Calibration of 3D Laser Scanner and the
Omnidirectional Camera System

The extrinsic calibration technique is similar to the one
proposed by Zhang (2004), which requires the system
to observe a planar pattern in several poses, and the
constraints are based upon data captured simultaneously
from the camera and the laser scanner. The normal to the
target plane and the laser points on the target plane are
related, and constrain the relative position and orientation
of the camera and laser scanner. We know the equation of
the target plane in the coordinate system attached to the
plane itself, which for convenience is given by:

Z = 0. (8)

Let P̃w be the coordinate of any point in the world
reference frame (here it is the coordinate frame attached
to the target plane) and ci

wR be the orthonormal rotation
matrix that rotates frame w (world frame) into frame
ci (ith camera frame) and citciw be the Euclidean 3-
vector from ci to w as expressed in frame ci. Then the
transformation equation that transforms a point from the
world reference frame to the reference frame of the ith
camera can be written as:

P̃ci = ci
wRP̃w + citciw, (9)

where P̃ci
is the coordinate of that same point in ith cam-

era’s reference frame. Since we know the transformation
matrices h

ci
R and hthci

that transform a point from the
ith camera frame to the camera head frame, we can write
the coordinate of this point in the camera head frame as:

P̃h = h
ci
RP̃ci + hthci

. (10)

Thus, we can transform any point P̃w, lying in the target
plane, into the camera head reference frame if we know the
transformation ci

wR and citciw. We used Zhang’s (Zhang
(1998)) method for finding this transformation relative to
the planar target.
For a usual pin hole camera model, the relationship be-
tween a homogeneous 3D point P̃w = [X Y Z 1]> and its
image projection p̃ = [u v 1]> is given by:

p̃ = Ki[ci
wR

citciw]P̃w, (11)



where (ci
wR,

citciw), called the extrinsic parameters, are the
rotation and translation that relates the world coordinate
system to the camera coordinate system, and Ki is the
camera intrinsic matrix.
Assuming that the image points are corrupted by indepen-
dent and identically distributed noise, the maximum likeli-
hood estimate of the required transformation (ci

wR,
citciw)

can be obtained by minimizing the following reprojection
error (Zhang (1998)) for n images of the target plane and
m points per image:

argmin
ci
w R,

citciw

n∑
k=1

m∑
j=1

‖ ˜pkj −Ki[ci
wR

citciw]P̃j‖. (12)

Here, ci
wR is an orthonormal rotation matrix parametrized

by the 3 Euler angles. Now, if ci
wR = [r1, r2, r3] and citciw

is the Euclidean 3-vector from ci to w as expressed in frame
ci then we can write the equation of the target plane in
the ith camera frame as:

r3 · (p + citciw) = 0, (13)
where p is the vector from origin to any point lying on the
plane.

Therefore, the normal of the target plane in the ith camera
frame is given by:

Nci
= (r3 · citciw)r3. (14)

Here, ‖Nci
‖ = r3 ·citciw is the distance of the target plane

from the ith camera’s center. Since we know the pose of
the ith camera with respect to the camera head we can
calculate the normal of the plane Nh in the camera head
frame.

Nh =
h
ci
RNci

‖Nci
‖

(‖Nci
‖+ Nci

· hthci
). (15)

Once we know the normal vector to the target plane
in camera head’s reference frame, we need to find the
3D points in the laser reference frame that lie on the
target plane. We use the RANSAC plane fitting algorithm
described in section 2.1 to compute these 3D points. We
also know the normal vector to the target plane from
(15). These two measures provide a constraint on the
required 3D rigid body transformation between the laser
and the camera system. Let {P̃ il ; i = 1, 2, · · · , n} be the
set of 3D points lying on the plane given by RANSAC;
the coordinates of these points are known in the laser
reference system. The coordinates of these points in the
camera head’s frame are given by:

P̃ ih = h
l RP̃

i
l + hthl, (16)

where h
l R and hthl are the required rotation and transla-

tion matrices that project any point in the laser reference
system to the camera head’s frame and thereby to the
respective camera. Now, if we shoot a ray from the camera
head to any point P̃ ih lying on the plane, the projection of
this ray on to the normal of the plane is equal to the
distance of the plane from the origin. Therefore for m
different views of the target plane and n 3D laser points
per view, the laser-camera extrinsic parameters can be
obtained by minimizing the following reprojection error:

F =
m∑
i=1

n∑
j=1

(
Ni

h

‖Ni
h‖
· ( hl RPj

l + hthl)− ‖Ni
h‖)2, (17)

where Ni
h is the normal to the ith pose of the target

plane in the camera head’s frame. We can solve the non

linear optimization problem given in (17) for hl R and hthl

using Levenberg Marquadrt algorithm (Levenberg (1944),
Marquadrt (1963)).

2.4 Minimum number of views required

(a) One plane (b) Two planes

Fig. 5. Geometrical interpretation of minimum number
of views required for calibration. (a) The translation
of the sensors along the target plane and rotation
about the axis parallel to normal of the plane is
not constrained. (b) The translation of the sensors
along the line of intersection of the two planes is not
constrained.

A minimum of three non-coplanar views of the target plane
are required to fully constrain the optimization problem
(17) for the estimation of the calibration parameters. If
only one plane is considered, as shown in Fig. 5(a), then
the cost function (17) does not change when the sensors
are either translated along the plane parallel to the target
plane or rotated about the axis parallel to the normal of
the target plane. Thus the solution obtained from a single
view does not converge to the actual value in the following
three parameters: 2D Translation along the target plane
and a rotation about the normal of the target plane.
Similarly for two views (Fig. 5(b)) the translation of the
sensor along the line of intersection of the two planes
does not change the cost function, thereby giving large
uncertainity in that direction. Three views are required to
completely constrain the 6 degee of freedom (DOF) pose
of one sensor with respect to the other.

2.5 Covariance of the estimated parameters

The parameters estimated by minimizing the cost function
given in (17) have some error due to the uncertainity in
the sensor measurements. The laser we have used in our
experiments has unertainity in the range measurements of
the order of 0.02m. This uncertainity due to the random
perturbations of the range measurements is propagated to
the estimated parameters. It is very important to know
this uncertainity in order to use the parameters calculated
here in any vision or SLAM algorithm. Haralick (1998)
has described a method to propagate the covariance of
the measurements through any kind of scalar non-linear
optimization function. The only assumptions are that the
scalar function be non-negative, has finite first and second
order partial derivatives, that its value be zero for ideal
data, and the random perturbations in the input be small
enough so that the output can be approximated by the first
order Taylor series expansion. The optimization function
(17) we use here satisfies these assumptions, so we can
calculate the covariance of the estimated parameters as
described by Haralick. Let us consider the laser-camera



system such that the relative pose of the camera head with
respect to the laser range finder be described by

Θ = [ltlh,Φlh]>. (18)
Here, ltlh = [tx, ty, tz]> is a Euclidean 3-vector from l to
h as expressed in frame l, and Φlh = [θx, θy, θz]> is a 3-
vector of xyz-convention roll, pitch, heading Euler angles
that parametrizes the orthonormal rotation matrix l

hR
(that rotates the frame h into frame l). The covariance
of the estimated parameters Θ can thus be given as:

ΣΘ =

[
∂2F

∂Θ2
(X, Θ)

]−1
∂2F T

∂X∂Θ
(X, Θ)ΣX

∂2F

∂X∂Θ
(X, Θ)

[
∂2F

∂Θ2
(X, Θ)

]−1

(19)

Here, X = [N1
h, P̃

1
l , P̃

2
l . . .N

i
h, P̃

1
l , . . .]

T is the vector of
measurements (i.e. the normals of the planes observed and
the laser points lying on these planes).

3. RESULTS

We performed experiments on both simulated data as well
as real data. With simulated data we can identify the
optimum orientation and area of the target plane and the
number of views needed to get a reasonable estimate of
the extrinsic parameters.

3.1 Simulated Data

In this experiment we check the sensitivity of the algorithm
to the area of the target plane and its orientation with
respect to the laser-camera system and the number of nor-
mals (views) needed. We simulate a laser-camera system
such that the relative pose of the camera head with respect
to the laser range finder is described as:

Θ = [0.5m,−1.0m, 0.8m, 85o, 80o, 5o]> (20)
The position, orientation and area of the plane are chosen
according to the experiment to be performed. The laser
points lying on the plane are computed based on the
relative pose of the laser and camera head. We then add
uniform gaussian noise of 10 cm to the range measurements
of the laser points. These noisy points are then used to es-
timate the calibration parameters. The error in translation
parameters is computed as the euclidean distance between
the true and estimated translation vector. We use an axis
angle representation for rotation parameters and the error
is computed as the angle between the true and estimated
axis of rotation, and the absolute difference in true and
estimated angle of rotation about the axis of rotation.
Following are the observations based on our simulations:

(1) Area of the plane: As shown in Fig. 6 the estimation
error decreases as the area of the planar surface
increases. This is because when we have a larger
surface area the number of 3D laser points falling on
the plane increases thereby increasing the number of
constraint in the optimization (17). In practice we can
stick a small (1m x 1m) checkerboard pattern on the
walls available in the experimental site to get large
target planes for the 3D laser data.

(2) Number of Normals/Views: The estimation error de-
creases with the increase in the number of views of the
target plane (Fig. 7). Increasing the number of views
increases the number of constraints in the optimiza-
tion (17). Since the omnidirectional camera system

is composed of six different cameras, we should take
a sufficient number of planes viewed from all the
cameras so that our estimate is not biased towards
any one camera of the system.
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Fig. 6. Simulation results: Error in estimation decreases as
area of target plane increases. Number of views = 10
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Fig. 7. Simulation results: Error in estimation decreases
as number of views of target plane increases. Area of
plane = 1m2

3.2 Real Data

The proposed extrinsic calibration method has been tested
on real data collected by a vehicle mounted with a 3D
laser sensor and an omnidirectional camera system, as
shown in Fig. 8. We have two sets of results verifying the
accuracy of the algorithm. In the first case, we considered
the setup similar to the calibration setup. The calibration
was performed inside a garage and checkerboard patterns
were mounted on all available planar surfaces (including



side walls and ground floor). As shown in Fig. 9, the
points from different planes, denoted by different colors,
have been projected onto the corresponding image. In
the second case we took the vehicle outside the garage
and collected some data from the moving vehicle around
the Ford campus. The result of projection of this 360
degree field of view point cloud over the 5 cameras of the
omnidirectional camera system is shown in Fig. 10.

Fig. 8. Test vehicle showing sensor arrangement

Fig. 9. Reprojection results for the calibrated system. The
left panel shows the 3D points lying on the plane
projected onto the images. The right panel shows
the entire point cloud projected onto the image, the
projected points are color coded based on depth of
the point from the camera center.

Fig. 10. The top panel is a perspective view of the Velodyne
lidar range data, color-coded by height above the
estimated ground plane. The bottom panel shows
the above-ground-plane range data projected into the
corresponding image from the Ladybug cameras.

4. CONCLUSION AND FUTURE WORKS

In this paper, we presented an extrinsic calibration method
to estimate the rigid body transformation between an
omnidirectional camera system and a laser scanner. The
proposed method minimally requires three views of a

planar pattern visible from both the camera and the laser
scanner. The laser points lying on the planar surface and
the normal of the plane as estimated from the image data
provide a constraint on the rigid body transformation
between the two sensors. Fusion of data provided by range
and vision sensors constitutes an appropriate framework
for mobile robot platforms to enhance various state of
the art computer vision and robotics algorithms. The co-
registration allows us to construct textured 3D maps of
the environment, which can be used for robust navigation
tasks. Moreover, the data association established here can
also be used in the cost function of the state of the art
ICP algorithm as an additional measure. We can also
calculate the SIFT features in the image and associate
these SIFT descriptors at a point in the image to the
corresponding 3D point, thereby adding the appearance
information to the 3D point, which will boost the various
3D object detection/classification algorithms. Thus, the
method presented here is the first step to the enormous
research opportunities that are available, in terms of using
image and laser data together in various state of the art
computer vision and robotics algorithms.
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