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Abstract— This paper reports a novel algorithm for boot-
strapping the automatic registration of unstructured 3D point
clouds collected using co-registered 3D lidar and omnidirec-
tional camera imagery. Here, we exploit the co-registration
of the 3D point cloud with the available camera imagery to
associate high dimensional feature descriptors such as scale
invariant feature transform (SIFT) or speeded up robust
features (SURF) to the 3D points. We first establish putative
point correspondence in the high dimensional feature space
and then use these correspondences in a random sample
consensus (RANSAC) framework to obtain an initial rigid
body transformation that aligns the two scans. This initial
transformation is then refined in a generalized iterative closest
point (ICP) framework. The proposed method is completely
data driven and does not require any initial guess on the
transformation. We present results from a real world dataset
collected by a vehicle equipped with a 3D laser scanner and an
omnidirectional camera.

I. INTRODUCTION

One of the basic tasks of mobile robotics is to automati-
cally create 3D maps of the unknown environment. To create
realistic 3D maps, we need to acquire visual information
from the environment, such as color and texture, and to
precisely map it onto range information. To accomplish
this task, the camera and 3D laser range finder need to be
extrinsically calibrated [1] (i.e., the rigid body transformation
between the two reference systems is known). The extrinsic
calibration allows us to associate texture to a single scan,
but if we want to create a full 3D model of the entire
environment, we need to automatically align hundreds or
thousands of multiple scans using scan matching techniques.

The most common method of scan matching is popularly
known as iterative closest point (ICP) and was first intro-
duced by Besl and McKay [2]. In their work, they proposed
a method to minimize the Euclidean distance between corre-
sponding points to obtain the relative transformation between
the two scans. Chen and Medioni [3] further introduced the
point-to-plane variant of ICP owing to the fact that most
of the range measurements are typically sampled from a
locally planar surface. Similarly, Alshawa [4] introduced a
line-based matching variant called iterative closest line (ICL).
In ICL line features are extracted from the range scans and

aligned to obtain the rigid body transformation. Several other
variants of the ICP algorithm have also been proposed and
can be found in the survey paper by Rusinkiewicz and Levoy
[5].

One of the main reasons for the popularity of ICP-based
methods is that it solely depends on the 3D points and
does not require extraction of complex geometric primitives.
Moreover, the speed of the algorithm is greatly boosted
when it is implemented with kd-trees [6] for establishing
point correspondences. However, most of the deterministic
algorithms discussed so far do not account for the fact that
in real world datasets, when the scans are coming from
two different time instances, we never achieve exact point
correspondence. Moreover, scans are generally only partially
overlapped—making it hard to establish point correspon-
dences by applying a threshold on the point-to-point distance.

Recently, several probabilistic techniques have been pro-
posed that model the real world data better than the determin-
istic methods. Biber et al [7] applies a probabilistic model
by assuming that the second scan is generated from the first
through a random process. Haehnel and Burgard [8] apply
ray tracing techniques to maximize the probability of align-
ment. Biber [9] also introduced an alternate representation
of the range scans, the normal distribution transform (NDT),
where they subdivide a 2D plane into cells and assign a
normal distribution to each cell to model the distribution of
points in that cell. They use this density to match the scans
and therefore no explicit point correspondence is required.
Segal et al [10] proposed to combine the iterative closest
point and point-to-plane ICP algorithms into a single prob-
abilistic framework. They devised a generalized framework
that naturally converges to point-to-point or point-to-plane
ICP by appropriately defining the sample covariance matrices
associated with each point. Their method exploits the locally
planar structure of both participating scans as opposed to just
a single scan as in the case of point-to-plane ICP. They have
shown promising results with full 3D scans acquired from a
Velodyne laser scanner.

Most of the ICP algorithms described above are based
on 3D point clouds alone and very few incorporate visual



information into the ICP framework. Johnson and Kang [11]
proposed a simple approach incorporating color information
in the ICP framework by augmenting the three color channels
to the 3D coordinates of the point cloud. Although this
technique adds color information to the ICP framework, it is
highly prone to registration errors. Moreover, the three RGB
channels are not the best representation of visual information
of the scene. Recently, Akca et al [12] proposed a novel
method of using intensity information for scan matching.
They proposed the concept of a quasisurface, which is
generated by scaling the normal at a given 3D point by its
color, and then matching the geometrical surface and the
quasisurfaces in a combined estimation model. This approach
works well when the environment is structured and the
normals are well defined.

All of the aforementioned methods use the color infor-
mation directly, i.e., they are using the very basic building
blocks of the image data (RGB values), which does not
provide strong distinction between the points of interest.
However, there has been significant development over the
last decade in the feature point detection and description
algorithms employed by the computer vision and image
processing community. We can now characterize any point
in the image by high dimensional descriptors such as the
scale invariant feature transform (SIFT) [13] or speeded up
robust features (SURF) [14], as compared to just RGB values
alone. These high dimensional features provide a better
measure of correspondence between points as compared to
the Euclidean distance. The extrinsic calibration of 3D lidar
and omnidirectional camera imagery allows us to associate
these robust high dimensional feature descriptors to the 3D
points.

Once we have augmented the 3D point cloud with these
high dimensional feature descriptors we can then use them
to align the scans in a robust manner. We first establish point
correspondence in the high dimensional feature space using
the image-derived feature vectors and then use these putative
correspondences in a random sample consensus (RANSAC)
[15] framework to obtain an initial rigid body transformation
that aligns the two scans. This initial transformation is then
refined in a generalized ICP framework as proposed by Segal
et al [10].

The outline of the rest of the paper is as follows: In section
II we describe the proposed method of automatic registration
of the 3D scans. We divide the method into two parts,
a RANSAC framework to obtain the initial transformation
from SIFT correspondences and a refinement of this initial
transformation via a generalized ICP framework. In section
III we present results showing the robustness of the proposed
method and present a comparison of our method with the
unenhanced generalized ICP algorithm. Finally, in section
IV we summarize our findings.

II. METHODOLOGY

In our previous work [1] we presented an algorithm for
the extrinsic calibration of a 3D laser scanner and an omnidi-
rectional camera system. The extrinsic calibration of the two

Fig. 1. The top panel is a perspective view of the Velodyne 3D lidar range
data, color-coded by height above the ground plane. The bottom panel shows
the above ground plane range data projected into the corresponding image
from the Ladybug3 camera.

sensors allows us to project 3D points onto the corresponding
omnidirectional image (and vice versa) as depicted in Fig. 1.
This co-registration allows us to calculate high dimensional
feature descriptors in the omnidirectional image (in this paper
we use SIFT) and associate them to a corresponding 3D lidar
point that projects onto that pixel location. Since only few
3D points are projected onto interesting parts of the image
(i.e., where visual feature points are detected), only a subset
of the 3D points will have a feature descriptor assigned to
them. To be consistent throughout the text we have adopted
the notation below for describing the different attributes of a
co-registered camera-lidar scan, here referred to as Scan A.

1) XA: {xi
a ∈ R3, i = 1, ...n} set of 3D lidar points.

2) UA: {ui
a ∈ R2, i = 1, ...n} set of reprojected pixel

coordinates associated with 3D lidar points.
3) SA: {sia ∈ R128, i = 1, ...m} set of extracted SIFT

descriptors.
4) YA: {yi

a ∈ R3, i = 1, ...m} subset of 3D lidar points
that are assigned a SIFT descriptor, YA ⊂ XA.

5) VA: {vi
a ∈ R2, i = 1, ...m} subset of reprojected pixel

coordinates that have a SIFT descriptor, VA ⊂ UA.
Once we have augmented the 3D point cloud with the high

dimensional feature descriptors, we then use them to align
the scans in a two step process. In the first step, we establish
putative point correspondence in the high dimensional feature
space and then use these correspondences within a RANSAC
framework to obtain a coarse initial alignment of the two
scans. In the second step, we refine this coarse alignment
using a generalized ICP framework [10]. Fig. 2 depicts an
overview block-diagram of our algorithm.

The novel aspect of our work is in how we derive this
initial coarse alignment. Our algorithm is completely data
driven and does not require the use of external information
(e.g., odometry). The initial alignment is intrinsically derived
from the data alone using visual feature/lidar primitives
available in the co-registered sensing modality. Note that
initialization is typically the weakest link in any ICP-based
methodology. By adopting our RANSAC framework, we are
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ICP Framework

Final Transformation
T = [R, t]

Fig. 2. Block-diagram depicting the two step scan alignment process.
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Fig. 3. A depiction of the Ladybug3 omnidirectional camera system and
a sample image showing the field of view of cameras 1 through 5.

able to extend the convergence of generalized ICP over three
times beyond the inter-scan distance that it normally breaks
down. In the following, we explain our two-step algorithm in
detail and discuss our novel concept of a camera consensus
matrix (CCM).

A. RANSAC Framework

In the first part of our algorithm, we estimate a rigid body
transformation that approximately aligns the two scans using
putative visual correspondences. We do so by matching the
SIFT feature sets, SA and SB , across the two scans and
make the assumption that the matched 3D feature points,
YA and YB , correspond to the same 3D point in Euclidean
space. If we have three correct point correspondences, then
we can calculate the rigid body transformation that aligns
the two scans using the method proposed by Arun et al
[16]. However, if there exist outliers in the correspondences
obtained by matching SIFT features, then this transformation
will be wrong. Hence, we adopt a RANSAC framework [15]
whereby we randomly sample three point correspondence
pairs and iteratively compute the rigid body transformation
until we find enough consensus or exceed a preset maximum
number of iterations based upon a probability of outliers.

The difficult aspect of this task is establishing a good set
of putative correspondences so as to get a sufficient number
of inliers. In our work we used the Point Grey Ladybug3 for
our omnidirectional camera system [17]. The Ladybug3 has
six 2-Megapixel (1600×1200) cameras, five positioned in a
horizontal ring and one positioned vertically. Each sensor of
the omnidirectional camera system has a minimally overlap-
ping field of view (FOV) as depicted in Fig. 3. The usable
portion of the omnidirectional camera system essentially
consists of five cameras spanning the 360◦ horizontal FOV.
Unless we use prior knowledge on the vehicle’s motion,
we do not know a priori which camera pairs will overlap
between the first and second scans. Hence, a simple global
correspondence search over the entire omnidirectional image
set will not give robust feature correspondence. Instead, in
order to improve our putative feature matching, we exploit
a novel camera consensus matrix that intrinsically captures
the geometry of the omnidirectional camera system in order
to establish a geometrically consistent set of putative point
correspondences in SIFT space.

1) Camera Consensus Matrix: If the motion of the cam-
era is known, then robustness to incorrect matches can
be achieved by restricting the correspondence search to
localized regions. Since we do not assume that we know
the vehicle motion a priori, we first need to estimate these
localized regions based upon visual similarity. To do so, we
divide the FOV of the omnidirectional camera into n equally
spaced regions. In our case we chose n = 5 because the
five sensors of the omnidirectional camera naturally divide
the FOV into five equispaced regions.1 Once the FOV is
partitioned we need to identify the cameras that have the
maximum overlap between the two instances when the scans
are captured. In our work, we assume that the motion of the
vehicle is locally planar (albeit unknown).

For a small forward translational motion of the vehicle
(Fig. 4) the maximum FOV overlap between scans A and B
occurs for the following pairs of cameras: {1-1, 2-2, 3-3, 4-
4, 5-5}. Similarly, for large forward translational motion the
maximum overlap of camera 1 of scan A can be with either
of {1, 2 or 5} of scan B (i.e., the forward looking cameras)
(Fig. 4), whereas for the remaining four cameras of scan A
the maximum overlap is obtained between {2-3, 3-3, 4-4,
5-4} of scan B. This overlap of the cameras is captured in
a matrix called the camera consensus matrix (CCM). The
CCM is a [5 × 5] binary matrix where each element C(i, j)
defines the correspondence consensus of the ith camera of
scan A with the jth camera of scan B, where 0 means no
consensus and 1 means maximum consensus between the
regions.

Similar to our translational motion example, we can also
obtain the CCM for pure rotation of the vehicle about the
yaw axis by circularly shifting the columns of the identity
matrix as depicted in Fig. 5. Moreover, we can calculate
the CCM matrices resulting from the combined rotational

1Note that in the case of catadioptric omnidirectional camera systems,
the entire panoramic image can be divided into smaller equispaced regions.
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Fig. 4. Top view of the omnidirectional camera system depicting the
intersecting FOV of individual camera sensors as the omnidirectional
camera-rig moves forward along the Y axis. For small translational motion
(blue to red), the FOV of the cameras between scan A and scan B does
not change much, thereby giving maximal overlap with the same sensors
and is described by the identity CCM matrix shown on the left. For large
forward translational motion (blue to green), the FOV of the individual
camera sensors does change and what was visible in camera 1 of scan A
can now be visible in either of the forward looking cameras {1, 2 or 5} of
scan B, resulting in the sample CCM matrices shown on the right.
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Fig. 5. Top view of the omnidirectional camera system depicting the
intersecting FOV of individual camera sensors as the camera-rig rotates
about the yaw axis. Here we have shown one possible discrete rotation such
that the FOV of each sensor is circularly shifted by one unit, resulting in
the sample CCM shown on the left. In this case, five such discrete rotations
are possible.

and translational motion of the vehicle by circularly shifting
the CCM matrices from Fig. 4. Each resulting binary CCM
represents a consistent geometry hypothesis of the camera
motion and can be considered as a set of basis matrices
spanning the entire space of possible CCMs arising due to the
discrete planar vehicle motion assumed here. We vectorize
these basis matrices by stacking the rows together into a
vector, denoted hi, where each hi corresponds to a valid
geometry configuration CCM hypothesis.

2) Camera Constrained Correspondence Search: To use
the concept of the CCM to guide our image feature matching,
we first need to empirically compute the measured CCM

arising from the visual similarity of the regions of scan A
and scan B using the available image data. Each element
of the empirically derived CCM is computed as the sum
of the inverse SIFT score (i.e., squared Euclidean distance)
of the matches established between camera i of scan A and
camera j of scan B. This yields a measure of visual similarity
between the two regions:

C̃(i, j) =
∑
k

1/sk, (1)

where sk is the SIFT matching score of the kth match. This
matrix is then normalized across the columns so that values
are within the interval [0, 1] to comply with our notion that
0 means no consensus and 1 means maximum consensus:

Ĉ(i, j) = C̃(i, j)/max(C̃(i)). (2)

Here max(C̃(i)) denotes the maximum value in the ith row
of the matrix C̃.

This matrix Ĉ is then vectorized to obtain the correspond-
ing camera consensus vector ĉ. To determine which ideal
CCM hypothesis is most likely, we project this vector to all
the hypothesis basis vectors hi and calculate the orthogonal
error of projection:

ei = ‖ĉ− hi
ĉ ·hi

‖ĉ‖‖hi‖
‖ (3)

The basis vector hi that has the least orthogonal error of
projection yields the closest hypothesis on the CCM. This
geometrically consistent camera configuration is then used
for calculating the camera constrained SIFT features. Fig. 6
depicts a typical situation where the CCM yields a more
robust feature correspondence as compared to the simple
global correspondence search alone. The CCM-consistent
putative correspondences are then used in the RANSAC
framework to estimate the rigid body transformation that
aligns the two scans. The complete RANSAC algorithm
to estimate the rigid body transformation is outlined in
Algorithm 1.

B. ICP Framework

Our method to refine the initial transformation obtained
from section II-A is based upon the generalized ICP (GICP)
algorithm proposed by Segal et al [10]. The GICP algorithm
is derived by attaching a probabilistic model to the cost
function minimization step of the standard ICP algorithm
outlined in Algorithm 2. In this section we review the GICP
algorithm as originally described in [10].

The cost function at line 13 of the standard ICP algorithm
is modified in [10] to give the generalized ICP algorithm. In
GICP the point correspondences are established by consid-
ering the Euclidean distance between the two point clouds
XA and XB . Once the point correspondences are established,
the ICP cost function is formulated as a maximum likelihood
estimate (MLE) of the transformation “T” that best aligns the
two scans.

In the GICP framework the points in the two scans are
assumed to be coming from Gaussian distributions, xi

a ∼



Algorithm 1 RANSAC Framework
1: input: YA, YB , SA, SB ,
2: output: The estimated transformation [R0, t0]
3: Establish camera constrained SIFT correspondences be-

tween SA and SB .
4: Store the matches in a list L.
5: while iter < MAXITER do
6: Randomly pick 3 pairs of points from the list L.
7: Retrieve these 3 pair of points from YA and YB .
8: Calculate the 6-DOF rigid body transformation [R, t]

that best aligns these 3 points.
9: Store this transformation in an array M , M [iter] =

[R, t]
10: Apply the transformation to YB to map Scan B’s

points into the reference frame of Scan A: Y′B =
RYB + t

11: Calculate the set cardinality of pose-consistent SIFT
correspondences that agree with the current transfor-
mation (i.e., those that satisfy a Euclidean threshold
on spatial proximity): n = |(Y′B(L)−YA(L)) < ε|

12: Store the number of pose-consistent correspondences
in an array N , N [iter] = n

13: iter = iter + 1
14: end while
15: Find the index i that has maximum number of corre-

spondences in N .
16: Retrieve the transformation corresponding to index i

from M . [R0, T0] = M [i]. This is the required trans-
formation.

Algorithm 2 Standard ICP Algorithm [10]
1: input: Two point clouds: XA, XB ;

An initial transformation: T0

2: output: The correct transformation, T, which aligns XA

and XB

3: T← T0

4: while not converged do
5: for i← 1 to N do
6: mi ← FindClosestPointInB(T ·xi

a)
7: if ‖mi − T ·xi

a‖ <= dmax then
8: wi ← 1;
9: else

10: wi ← 0;
11: end if
12: end for
13: T← argminT

∑
i wi‖T ·xi

a −mi‖2
14: end while
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Fig. 6. This figure shows the pairwise exhaustive SIFT matches obtained
across the five cameras of scan A and scan B. The corresponding empirically
measured CCM is shown below on the left, and the closest matching binary
CCM hypothesis is shown below on the right. The blocks highlighted in
red indicate the CCM-consistent maximal overlap regions. In this case, the
resulting CCM hypothesis indicates a clockwise rotational motion by one
camera to the right (refer to Fig. 5).

N (x̃i
a; C

A
i ) and xi

b ∼ N (x̃i
b; C

B
i ), where x̃i

a and x̃i
b are

the mean or actual points and CA
i and CB

i are sample
based covariance matrices associated with the measured
points. Now in the case of perfect correspondences (i.e.,
geometrically consistent with no errors due to occlusion or
sampling) and correct transformation, T∗:

x̃i
b = T∗x̃i

a. (4)

But for an arbitrary transformation T, and noisy measure-
ments xi

a and xi
b, the alignment error can be defined as

di = xi
b−Txi

a. Now the ideal distribution from which d
(T∗)
i

is drawn is given as:

d
(T∗)
i ∼ N (x̃i

b − T∗x̃i
a,C

B
i +T∗CA

i T
∗>)

= N (0,CB
i +T∗CA

i T
∗>).

Here xi
a and xi

b are assumed to be drawn from independent
Gaussians. Thus the required transformation T is the MLE
computed by setting:

T = argmax
T

∏
i

p(d
(T∗)
i ) = argmax

T

∑
i

log p(d
(T∗)
i ) (5)

which can be simplified to:

T = argmin
T

∑
i

dT
i (C

B
i +TCA

i T
T )−1di. (6)

The rigid body transformation T given in (6) is the MLE
refined transformation that best aligns scan A and scan B.



III. RESULTS

We present results from real data collected from a 3D
laser scanner (Velodyne HDL-64E) and an omnidirectional
camera system (Point Grey Ladybug3) mounted on the roof
of a Ford F-250 vehicle (Fig. 7). We use the pose information
available from a high end inertial measurement unit (IMU)
(Applanix POS-LV) as the ground truth to compare the scan
alignment errors. We performed the following experiments to
analyze the robustness of the bootstrapped generalized ICP
algorithm.

Fig. 7. Test vehicle equipped with a 3D laser scanner and omnidirectional
camera system.

A. Experiment 1

In the first experiment we selected a series of 15 con-
secutive scans captured by the laser-camera system in an
outdoor urban environment collected while driving around
downtown Dearborn, Michigan at a vehicle speed of approx-
imately 15.6 m/s (35 mph). The average distance between
the consecutive scans is approximately 0.5 m - 1.0 m. In
this experiment we fixed the first scan to be the reference
scan and then tried to align the remaining scans (2–15)
with the base scan using (i) the generalized ICP alone, (ii)
our RANSAC initialization alone, and (iii) the bootstrapped
generalized ICP algorithm seeded by our RANSAC solution.
The error in translational motion between the base scan
and the remaining scans obtained from these algorithms is
plotted in Fig. 8. We found the plotted error trend to be
typical across all of our experiments—in general the GICP
algorithm alone would fail after approximately 5 or so scans
of displacement when not fed an initial guess. However,
by using our RANSAC framework to bootstrap seed the
GICP algorithm, we were able to significantly extend GICP’s
convergence out past 15 scans of displacement.

We repeated this experiment for 10 sets of 15-scan pairs
(i.e., 150 scans in total) from different locations in Dearborn
and calculated the average translational and rotational error
as a function of the intra-scan displacement. The resulting
error statistics are tabulated in Table I where we see that the
bootstrapped GICP is able to provide sub 25 cm translational
error at 15 scans apart, while GICP alone begins to fail after
only 5 scans of displacement.

B. Experiment 2

In the second experiment, we compared the output of
GICP and our bootstrapped GICP in a real-world application-
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(a) Error comparison between GICP and bootstrapped GICP.
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Fig. 8. Graph showing the error (a) in translation as the distance between
scans A and B is increased. Top view of the 3D scans aligned with the
output of GICP (b) and bootstrapped GICP (c) for two scans that are 10
time steps apart. Note that the GICP algorithm fails to align the two scans
when unaided by our novel RANSAC initialization step.

driven context. For this experiment we drove a 1.6 km loop
around downtown Dearborn, Michigan with the intent of
characterizing each algorithm’s ability to serve as a registra-
tion engine for localizing and 3D map building in an outdoor
urban environment. For this purpose we used a pose-graph
simultaneous localization and mapping (SLAM) framework
where the ICP-derived pose constraints served as edges
in the graph. We employed the open-source incremental
smoothing and mapping (iSAM) algorithm by Kaess [18]
for inference. In our experiment the pose-constraints are
obtained only from the scan matching algorithm and no
odometry information is used in the graph.

Fig. 9 shows the vehicle trajectory given by the iSAM
algorithm (green) overlaid on top of OmniStar HP global
positioning system (GPS) data (∼2 cm error) for ground-
truth (red). Here the pose constraints were obtained by
aligning every third scan using GICP with no initial guess
from odometry. As we can see in Fig. 9(b), the resulting
iSAM output differs greatly from the ground truth. This
mainly occurs because the generalized ICP algorithm does
not converge to the global minimum when it is initialized
with a poor guess, which means the pose-constraints that we



TABLE I
THIS TABLE SUMMARIZES THE ERROR IN SCAN ALIGNMENT. WE SHOW HERE THE TRANSLATION AND ROTATIONAL ERROR BETWEEN SCAN PAIRS

{1-2, 1-5, 1-10, 1-15} OBTAINED AT DIFFERENT LOCATIONS. HERE WE HAVE USED THE POSE OF THE VEHICLE OBTAINED FROM A HIGH END IMU
AS GROUND TRUTH TO CALCULATE ALL THE ERRORS.

Generalized ICP with no initial 
guess

Initial guess from RANSAC Bootstrapped generalized ICP

Scans T 
(m)

Ax 
(degrees)

An 
(degrees)

T 
(m)

Ax 
(degrees)

An 
(degrees)

T 
(m)

Ax 
(degrees)

An 
(degrees)

Err Std Err Std Err Std Err Std Err Std Err Std Err Std Err Std Err Std

1-2 .047 .011 0 0 .05 .02 .15 .02 0 0 .223 .0003 .04 .010 0 0 .057 .110

1-5 .546 .173 .570 .20 1.15 .344 .20 .03 .43 .15 .230 .0001 .084 .010 .025 .090 .058 .006

1-10 6.37 .868 .710 .25 1.72 .573 .51 .09 .59 .01 .745 .0044 .145 .015 .030 .010 .057 .012

1-15 10.34 .834 1.86 .13 2.86 .057 1.02 .02 1.35 .54 1.15 .0021 .220 .008 .042 .015 .070 .017

T = Error in translation (meters); Ax = Error in rotation axis (degrees); An = Error in rotation angle (degrees)
Err = Average Error; Std = Standard Deviation

get are biased, and hence a poor input to iSAM. Fig. 9(d)
shows the resulting vehicle trajectory for our bootstrapped
GICP algorithm when given as input to the iSAM algorithm,
which agree well with the GPS ground-truth.

IV. CONCLUSION

This paper reported an algorithm for robustly determining
a rigid body transformation that can be used to seed a
generalized ICP framework. We have shown that in the
absence of a good initial guess, the pose information obtained
from the generalized ICP algorithm is not optimal if the scan
alignment is performed using the 3D point clouds alone. We
have also shown that if we incorporate visual information
from co-registered omnidirectional camera imagery, we can
provide a good initial guess on the rigid body transformation
and provide a more accurate set of point correspondences to
the generalized ICP algorithm by taking advantage of high
dimensional image feature descriptors. We introduced the
novel concept of a camera consensus matrix and showed how
it can be used to intrinsically provide a set of geometrically-
consistent putative correspondences purely using the image
data alone. We call this approach “visually bootstrapped
GICP”, and it is a completely data driven approach that does
not require any external initial guess (e.g., from odometry).
In the experiments performed with real world data, we have
shown that the bootstrapped generalized ICP algorithm is
more robust and gives accurate results even when the overlap
between the two scans reduces to less than 50%.
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(a) iSAM with generalized ICP open-loop. (b) iSAM with generalized ICP closed-loop.

(c) iSAM with bootstrapped generalized ICP open-loop. (d) iSAM with bootstrapped generalized ICP closed-loop.

Fig. 9. iSAM output with input pose constraints coming from generalized ICP and bootstrapped generalized ICP. Here, the red trajectory is the ground
truth coming from GPS and the green trajectory is the output of the iSAM algorithm. The start and end point of the trajectory are the same and is denoted
by the black dot.


