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Abstract— This paper reports on a novel mutual information
(MI) based algorithm for robust place recognition. The pro-
posed method provides a principled framework for fusing the
complementary information obtained from 3D lidar and camera
imagery for recognizing places within an a priori map of a
dynamic environment. The visual appearance of the locations
in the map can be significantly different due to changing
weather, lighting conditions and dynamical objects present in
the environment. Various 3D/2D features are extracted from the
textured point clouds (scans) and each scan is represented as
a collection of these features. For two scans acquired from the
same location, the high value of MI between the features present
in the scans indicates that the scans are captured from the same
location. We use a non-parametric entropy estimator to estimate
the true MI from the sparse marginal and joint histograms
of the features extracted from the scans. Experimental results
using seasonal datasets collected over several years are used to
validate the robustness of the proposed algorithm.

I. INTRODUCTION

Today, robots are required to operate in an environment
for days, months or even years. One important task that
any robot needs to perform in these long-term environments
is to recognize places it has visited before. This place
recognition capability has a wide range of applications in au-
tonomous navigation including global localization and loop-
closure detection for simultaneous localization and mapping
(SLAM) [1]–[3]. The task of place recognition in a dynamic
environment becomes extremely challenging as a single
location appears different over time. The drastic changes in
environmental appearance due to changing seasons (summer,
fall, winter, etc.), lighting conditions, and dynamical objects
make the task of place recognition very challenging (Fig. 1).

Most place recognition literature has focused on obtaining
correct loop-closures for SLAM. In these situations, the robot
creates a map of an a priori unknown environment while
simultaneously localizing itself in this map. Therefore, the
robot has to recognize a place that has been recently visited
or added to the map. The time difference between the two
instances is usually small and hence the change in appearance
of the environment is not too large (apart from change in
viewpoint). Vision-based algorithms based on Bag-of-Words
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Fig. 1. Sample imagery extracted from three different datasets captured in
December 2009, October 2010 and February 2011; each row corresponds
to the same place. The datasets exhibit significant visual changes due to
different weather conditions, lighting and dynamical objects.

techniques [4], [5] have been successfully used for robust
place recognition in scenarios like this. Cummins et al. [6]
presented a probabilistic framework, Fast Appearance-Based
Mapping (FAB-MAP), that is robust to perceptual aliasing
for appearance-based place recognition over maps as big
as 1000 km long. Pronobis et al. [7] described a fully
supervised method for place recognition that is robust to dif-
ferent illumination conditions in indoor scenes. Sunderhauf
and Protzel [8] proposed a simple appearance-based place
recognition system based on Binary Robust Independent
Elementary Feature (BRIEF) descriptors and showed that
its performance is comparable to FAB-MAP for large-scale
SLAM problems.

Recently, the problem of long-term navigation in a chang-
ing environment has received significant attention in the
mobile robotics community. The ability to recognize places
across seasons, with significant appearance changes (e.g.,
Fig. 1) is very important for long-term autonomy. Glover



et al. [9] presented a combination of FAB-MAP [6] and the
biologically inspired RatSLAM [10] approach, and showed
that it is robust to illumination and structural changes in
outdoor environments. Milford et al. [11] proposed to match
sequences of images instead of a single image and showed
good precision in recognizing places across different seasons
(summer-rain). Churchill and Newman [12] introduced the
concept of plastic maps (i.e., a composite representation
constructed from multiple overlapping experiences). As the
robot repeatedly travels through the same environment under
different conditions, it accumulates distinct visual experi-
ences that represent the scene variation. They have shown
good results on a road vehicle operating over a three month
period at different times of day, in different weather, and
different lighting conditions. Neubert et al. [13] proposed
a novel idea of appearance change prediction. They learn
the change in the visual appearance of the environment
over time and then use this learned knowledge to predict
the appearance of any place under different environmental
conditions.

The methods mentioned so far are purely vision-based
and use camera as the primary sensing modality. However,
robots are often equipped with various perception sensors
besides camera like lidar, radar, etc. Although these sensors
provide useful complementary information to the camera
data, they are seldom used for place recognition. There
have been some attempts to increase the robustness of place
recognition in SLAM systems by fusing the multi-modal data
at the landmark level [14]. Paul and Newman developed a
more robust FAB-MAP 3D algorithm for large-scale SLAM
systems [15] by extending the appearance-only FAB-MAP
algorithm to incorporate spatial information of the visual
features obtained from laser scanners.

Most of the aforementioned methods either use the im-
age data alone or use the data from the two modalities
(camera/lidar) in a decoupled way, without exploiting the
statistical dependence of the multi-modal data. It is important
to note that the camera image and the lidar point cloud are
statistically dependent—as the underlying structure generat-
ing the two signals (3D point cloud / image) is the same.
It is not new to fuse multi-modal data by exploiting their
statistical dependence. In fact, registration of multi-modal
data by maximizing the mutual information (MI) has been
state-of-the-art in the medical imaging community for over a
decade. The idea of MI-based multi-modal image registration
was first introduced by Viola et al. [16] and Maes et al. [17].
Since then, researchers (especially in medical imaging)
have widely used the MI framework to focus on specific
registration problems in various clinical applications [18].
Within the robotics community, the application of MI has
not been as widespread, even though robots today are often
equipped with different modality sensors (e.g., camera/lidar).
Here, we present a novel MI-based algorithm for automatic
place recognition using co-registered 3D lidar and camera
imagery (Fig. 2). Our method provides a robust framework
for incorporating complementary information obtained from
these modalities into the recognition process.

Fig. 2. The top panel is a perspective view of the Velodyne 3D lidar range
data, color-coded by height above the ground plane. The bottom panel shows
the above ground plane range data projected into the corresponding image
from the Ladybug3 camera. Several recognizable objects are present in the
scene (e.g., people, stop signs, lamp posts, trees). Only nearby objects are
projected for visual clarity.

The remainder of this paper proceeds as follows: In
Section II we describe the proposed method of automatic
place recognition. In Section III we present results showing
the robustness of the proposed method and present a com-
parison against a standard Bag-of-Words approach. Finally,
in Section IV we summarize our findings.

II. METHODOLOGY

In our work, we have used data from a 3D laser scan-
ner and an omnidirectional camera system mounted on a
mobile robotic platform specifically designed for long-term
autonomous navigation in a dynamic environment [19]. The
robot travels through the environment in different seasons
(summer, fall, winter) and captures time synchronized lidar
and camera data. We assume that the intrinsic and extrinsic
calibration parameters for these sensors are either known or
estimated beforehand (e.g., using algorithms such as [20],
[21]).

The calibration of sensors allows us to project 3D points
from lidar onto the corresponding camera image (and vice
versa), as shown in Fig. 2. This co-registration allows
us to associate features extracted from the camera image
(grayscale value, scale invariant feature transform (SIFT)
[22], speeded up robust features (SURF) [23], etc.) to the
corresponding 3D lidar point that projects onto that pixel
location. The features extracted from the 3D point cloud
(reflectivity, normals, etc.) and camera image are fused
together (discussed later in section II-B) and every scan is
represented as a collection of these features. Thus, for any
two scans corresponding to the same physical location, the
joint distribution of these features should show maximum
correlation. Here, we use MI as a measure of this correlation
and a simple thresholding scheme to localize the scans within
a prior map. An overview of the proposed method is given
in Fig. 3.

A. Theory

The mutual information between two random variables X
and Y is a measure of their statistical dependence. Various
formulations of MI are present in the literature, each of



Fig. 3. Overview of the proposed algorithm.

which demonstrate a measure of statistical dependence of
the random variables in consideration. One such form of MI
is defined in terms of the entropy of the random variables:

MI(X,Y ) = H(X) + H(Y )−H(X,Y ), (1)

where H(X) and H(Y ) are the entropies of random variables
X and Y, respectively, and H(X,Y ) is the joint entropy of
the two random variables:

H(X) = −
∑
x∈X

pX(x) log pX(x), (2)

H(Y ) = −
∑
y∈Y

pY (y) log pY (y), (3)

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log pXY (x, y). (4)

The entropy H(X) of a random variable X denotes the
amount of uncertainty in X , whereas H(X,Y ) is the amount
of uncertainty when the random variables X and Y are co-
observed. Hence, (1) shows that MI(X,Y ) is the reduction
in the amount of uncertainty of the random variable X
when we have some knowledge about random variable Y.
In other words, MI(X,Y ) is the amount of information that
Y contains about X and vice versa.

B. Sensor Data Fusion

In this section we describe two novel techniques to fuse the
various features extracted from the co-registered lidar/camera
data. A mobile robot equipped with 3D lidar and camera
drives through the environment and captures time-aligned
lidar and camera data. We extract both simple features (e.g.,
reflectivity, grayscale) and high dimensional features (e.g.,
SIFT, SURF) from this data. It is important to note that
simple features, like the reflectivity of the 3D points obtained
from the lidar, or the color of the pixel obtained from the
camera, are discrete signals generated by sampling the same
physical scene but in a different manner. Since the underlying
structure generating these signals is the same, they are
statistically dependent upon each other and can be fused
together at the signal level; whereas the high dimensional
features (such as SIFT/SURF) from imagery are generally
independent from the reflectivity of the lidar point and are
therefore fused at the information level.

Fig. 4. The top panel shows the omnidirectional image of a location
captured in fall 2009. The bottom panel shows the omnidirectional image
of the same location in winter 2011. The significant change in the scene
is clearly visible from the two images, for example, snow on the ground
(marked in red), dynamic objects (marked in orange), lighting conditions,
etc. Such drastic changes make registration of the 2009 and 2011 datasets
a challenging problem. However, there are also common objects (marked
in green) that have stationary statistics and can be used for registration
of sensor data. The 3D space around the sensor is divided into voxels of
equal size. Here we have illustrated the voxelization process in the image
via yellow check pattern, however actual voxels are 3-dimensional. The
voxelization allows us to use stationary statistics within each voxel for
registration.

Fig. 5. Sensor data fusion at the signal level. The joint statistics of the
quantized features present in each voxel constitute the marginal distribution
of the features present in the scan.

1) Sensor Data Fusion at the Signal Level: In this section
we describe a novel method of fusing lidar/camera data at
the signal level. The reflectivity from lidar and grayscale
intensity from the camera are measurements generated by
the same underlying physical scene. These two modalities
are therefore highly correlated (i.e., a highly reflective point
in lidar data will typically have a high grayscale value for the
corresponding pixel). In order to fuse such highly correlated
features we divide the 3D scan into voxels (Fig. 4) of fixed
dimension and calculate the joint-statistics of these simple
features extracted from lidar/camera data in each voxel in the
form of a multi-dimensional histogram (Fig. 5). This multi-
dimensional histogram represents the marginal distribution of
the fused features present in the scan, which is later used for
estimation of MI. The voxelization of scene allows us to use
stationary statistics within each voxel for robust registration.
When we consider the statistics of features across two scans
captured at two different time (fall 2009 and winter 2011)
the local stationary statistics shows higher correlation as
compared to the global correlation of the entire scene.



2) Sensor Data Fusion at the Information Level: In the
previous section we described a method of fusing sensor data
that exhibit some correlation (e.g., reflectivity from lidar and
grayscale intensity from camera). However, there are also
high-dimensional features (e.g., SIFT, SURF) extracted from
the camera data that do not necessarily show any correlation
with the reflectivity from the lidar data. This is mainly
because these high-dimensional features are computed from
the grayscale values of the local neighborhood of the pixel,
which is generally quite different from the grayscale value
of the pixel itself. Therefore, although the grayscale values
and the corresponding lidar reflectivity values show high
correlation, the corresponding high-dimensional features are
generally not correlated with the lidar intensity value. For
example, consider a textured surface that has a distinct
SIFT feature (128 dimensional vector) at a given pixel
(mainly because of the gradient around the pixel), the
reflectivity of the 3D point projected onto that pixel is a
single value between [0, 255], which does not contain the
neighborhood information and is not necessarily related to
the image feature. Therefore, we consider such features to
be statistically independent of each other and hence do not
fuse them at the signal level; however, they contain useful
information necessary for place recognition. Therefore, we
propose to fuse these features at the information level by
simply computing the total MI between any two scans as
the sum of mutual information of each of these independent
features,

TMI(X,Y ) =
∑
i

MI(FX
i , F

Y
i ), (5)

where TMI(X,Y ) is the total MI between the scans X
and Y , and FX

i and FY
i are various features (fused or

independent) extracted from the scan data. It should be noted
that if we compute some high-dimensional SIFT/SURF like
features from the local neighborhood of the lidar point then
they are more likely to be correlated with the corresponding
image features and can be fused at signal level (after
quantization) as shown in previous section (§II-B.1).

C. Mapping and Place Recognition

We first create a map of the environment from the sensor
data. The map consists of equally-spaced scans with known
location in a global reference frame. Each scan in the map is
a collection of quantized features extracted from the sensor
data. Simple features, like the reflectivity from lidar and
the grayscale intensity values from camera data, are integer
values and, therefore, easy to quantize between a given
range (generally [0–255] for 8-bit sensors). However, for
high-dimensional features (SIFT, SURF, etc.) we first create
a dictionary of codewords representing the quantization of
these features extracted from the scans. We extract N such
features (training samples) from a set of scans called the
training dataset (Fig. 6). We use a hierarchical k-means
clustering [5] algorithm on the training samples to cluster the
feature space into K clusters. The centroids of these clusters
are defined as codewords {ci; i = 1, 2, · · · ,K} and the
collection of these codewords is called the codebook. We use

(a) Sample images from the training dataset (Ford Campus)

(b) Sample images from the testing dataset (Downtown)

Fig. 6. The codebook is learned from the training dataset, and all
experiments are performed on the testing dataset. It should be noted that
the training and testing datasets are captured in similar urban environments,
though not the same. It is important for the codebook to be representative,
but the testing and training environments need not be identical.

this codebook to map any feature vector to a unique integer
i corresponding to the codeword ci that gives a maximum
similarity score with the feature vector.

We consider the collection of these codewords present
in a scan (extracted from the map) as the random variable
X . In a given map we have N such scans representing a
unique place in the map. The goal of place recognition is to
identify the correct location of the robot when it revisits a
place in an a priori map. Here we assume that the map is
created once and the robot revisits some place in the map
after a significant amount of elapsed time. We consider the
collection of codewords extracted from this scan (which we
will refer to as the query scan) as the random variable Y . The
marginal and joint probabilities of these random variables,
pX(x), pY (y) and pXY (x, y), can be obtained from the
normalized marginal and joint histograms of the codewords
present in the scans. Let Q be the query scan and P be
one of the scans in the map. Let CP = {cpi ; i = 1, · · · , n}
and CQ = {cqi ; i = 1, · · · ,m} be the set of codewords,
and {pi; i = 1, · · · , n} and {qi; i = 1, · · · ,m} be the
set of 3D points corresponding to the codewords present in
scans P and Q, respectively. If the rigid-body transformation
that perfectly aligns these scans is given by [R, t], then the
coordinate transformation of any point in scan P onto the
reference frame of scan Q is given by:

q̂i = Rpi + t. (6)

For a correct rigid-body transformation, the codeword cpi
of point pi should be the same as the codeword cqi of the
corresponding point q̂i. Thus, for a given rigid-body trans-
formation, the corresponding codewords cpi and cqi are the
observations of the random variables X and Y, respectively.

We use nearest neighbor search to establish the codeword
correspondence (Fig. 7). A codeword cpi in scan P is first
transformed to the reference frame of Q. All the codewords
in scan Q that are within a sphere of radius r around cpi are
considered as potential correspondences. The codeword cqi



Fig. 7. Illustration of the nearest neighbor search algorithm used to
establish codeword correspondence; each shape above represents a different
codeword—green colorings belong to scan Q and red to scan P. All the
codewords in scan Q that are within a sphere of radius r around cpi are
considered as potential correspondences. The codeword cqi that gives the
maximum similarity score with cpi is chosen as the correspondence.

Fig. 8. The left panel shows a sample codeword (on the lamp-post)
extracted from the query image. The right panel shows the epipolar line
(green) for the same codeword in the corresponding image from the
map. The potential correspondences are marked in blue and the correct
correspondence computed based on codeword similarity is marked in red.

that gives the maximum similarity score with cpi is chosen
as the correspondence. In the case where we have multiple
codeword assignment within the sphere, then the codeword
that is closest in Euclidean space to cpi takes precedence.

We use the method described above when the 3D location
of the codewords is known. However, for certain image
features (e.g., SIFT, SURF), their 3D location are often not
known due to the sparseness of data obtained from the lidar
or due to limited overlap between the field of view of the
two sensors. In that case we use the epipolar constraint [24]
to establish the correspondence between image features. If
CP = {cpi ; i = 1, · · · , n} and CQ = {cqi ; i = 1, · · · ,m}
are the set of codewords present in images IP and IQ

corresponding to scans P and Q, and [R, t] are the rotational
and translation parameters between the two cameras, then
the two corresponding codewords are related by the epipolar
constraint:

p̃>i Fq̃i = 0, (7)

where p̃i and q̃i are the homogeneous pixel coordinates of
the codewords cpi and cqi , respectively. F is the fundamental
matrix that maps the codeword in image IP to the corre-
sponding epipolar line in the image IQ (Fig. 8). Therefore,
all points within a certain distance of the epipolar line are
considered a potential correspondence and the codeword cqi
that gives the maximum similarity score with cpi is taken to
be the true correspondence.

We use this correspondence to create the joint histogram of
codewords for the given transformation [R, t]. The maximum
likelihood estimate (MLE) of the marginal and joint proba-
bilities of the random variables X and Y can be obtained
from the normalized marginal and joint histograms of these
codewords. It is important to note that the number of different

codewords present in any scan is generally (especially for
high-dimensional features) only a fraction of the size of the
codebook. For instance, since the maximum range of the
Velodyne laser scanner is 100 m and the vertical field of
view (FOV) of the sensor is 20◦, the dimensions of the
viewing cube around the sensor becomes [200 m× 200 m×
50 m]. If we use voxels of size 1 m and consider the lidar
reflectivity and grayscale intensity values quantized between
[0, 255], the size of the histogram that needs to be created
becomes extremely large (200 × 200 × 50 × 256 × 256 =
131, 072, 000, 000 bins). The total number of points (n)
extracted from a single scan is typically much less than the
dimensions of this huge joint histogram. This causes most
of the entries of the joint and marginal histograms to be
unobserved, leading to high mean-squared-error (MSE) in
the MLE due to overfitting. Therefore, we use the Chao-
Shen estimator for regularized entropy estimation [25]. This
technique has been successfully used in estimating entropy of
gene data in an under-sampled regime with missing species
in the observed data. In this approach the entropy of the
random variable (with few observations, n � K × K) is
estimated by applying the Horvitz-Thompson estimator [26]
in combination with the Good-Turing correction [27] of the
MLE. The Good-Turing-corrected probability estimates are
given by:

XGT
k = (1− m1

n
)XML

k , (8)

where m1 is the number of bins with single observation (i.e.
xk = 1 and XML

k is the maximum likelihood (ML) esti-
mate). Combining this with the Horvitz-Thompson estimator,
the required entropy is:

HCS = −
n∑

k=1

XGT
k log(XGT

k )

(1− (1−XGT
k )n)

. (9)

Once we have a good estimate of the joint and marginal
entropies, we can write the total MI of the features present in
the two scans as a function of the rigid-body transformation
between the scan pair:

TMI(X,Y ;Θ) =
∑
i

MI(FX
i , F

Y
i ;Θ), (10)

where Θ = [x, y, z, φ, θ, ψ]> is the six degree of freedom
(DOF) parametrization of the rigid-body transformation
[R, t]. This rigid-body transformation is unknown in the
absence of any inertial measurement unit (IMU) or global
positioning system (GPS) device. Here we assume that the
robot motion is mostly planar, so for every query scan the
corresponding scan in the map should be acquired from
the same location within a few meters in the x-y plane.
Therefore, we perform a linear search over all the scans
present in the map dataset with Θ = [0, 0, 0, 0, 0, 0]> as the
transformation parameter. Since we assume planar motion
of the vehicle, we also search over certain discrete values
of the heading angle (ψ) of the transformation parameters.
During this linear search if the TMI is greater than a certain
threshold, then we optimize the total MI over the full 6-DOF



rigid-body transformation:

Θ̂ = argmax
Θ

∑
j

MI(FX
j , F

Y
j ;Θ), (11)

thereby obtaining the exact location of the query scan in the
map. We use the simplex method proposed by Nelder and
Mead [28] to estimate the optimum value of the registration
parameter, Θ, that maximizes the cost function given in
(11). This process is repeated for all the scans in the map
and the scan that gives the maximum value of total mutual
information with respect to the query scan corresponds to
the desired location. The computational complexity of the
proposed algorithm depends upon the size of the map that is
being searched. Since we do not assume any prior knowledge
of the location of the query scan from odometry or any
other source, the linear search gets computationally very
expensive. The main emphasis of this work though is to
show the robustness of a framework that allows to use multi-
modal data for recognizing places under significant changes
in the appearance of the environment due to changes in
weather, lighting, dynamical objects, etc. The complete place
recognition method is summarized in Algorithm 1.

Algorithm 1 Mutual Information based Place Recognition
1: Input: Co-registered camera and lidar scans [P]Ni constituting

the map and query scan Q.
2: Output: Scan index from the map that is closest to query scan
{INDEX} and its estimated registration parameter {Θ̂}.

3: Extract generalized feature vectors from query scan {FY }Mj .
4: Quantize and fuse features.
5: Let MAX = THRESHOLD, INDEX = 0;
6: while i = 1 to N do
7: Get the quantized feature vectors from map {FX}Mj ← Pi.
8: for ψ = 0 : 60◦ : 360◦ do
9: Θ← [0, 0, 0, 0, 0, ψ]>;

10: Calculate the total MI:
TMI =

∑
j MI(FX

j , F
Y
j ;Θ);

11: if TMI ≥ MAX then
12: Θ̂ = argmax

Θ

∑
j MI(FX

j , F
Y
j ;Θ)

13: MAX =
∑

j MI(FX
j , F

Y
j ; Θ̂)

14: INDEX = i;
15: end if
16: end for
17: end while

III. EXPERIMENTS AND RESULTS

We present results from real data collected from a 3D laser
scanner (Velodyne HDL-64E) and an omnidirectional camera
system (Point Grey Ladybug3) mounted on the roof of a
Ford F-250 vehicle (Fig. 9(a)). We use the pose information
available from a high end IMU (Applanix POS-LV 420
INS with Trimble GPS) as the ground-truth to compare the
place recognition errors. The dataset used in our experiments
are divided into two distinct runs: (i) Downtown and (ii)
Ford Campus, both taken in Dearborn, Michigan [19]. We
have several different sets of data recorded at different times
of the year from these locations. One such set recorded in
December 2009 is also available online. In our experiments

(a) Test vehicle (left). The 3D laser scanner and omnidirectional
camera system mounted on the roof of the vehicle (right) as described
in [19]

(b) 3D map of a section of downtown Dearborn created from the
data collected in December 2009. Each node in the map is comprised
of a textured 3D point cloud representing a distinct place in the map.

Fig. 9. The top panel shows the autonomous vehicle platform and the
bottom panel shows a section of the map generated from the data collected
from the sensors mounted on the vehicle.

we have used the Downtown dataset for testing and the
Ford Campus dataset for learning the codebook. We have
used five different runs of the Downtown dataset recorded
in December 2009, September 2010, October 2010, Febru-
ary 2011 and March 2011 for testing. Each of these runs
exhibit significant changes due to weather (e.g., snow on the
ground in 2011, no leaves on the trees in December 2009),
construction (road blocked, trailers parked) and lighting, etc,
thereby making place recognition a challenging task. In our
experiments we have used the December 2009 dataset as
the prior map (Fig. 9(b)) and used scans from the other
four datasets as query scans for place recognition. The map
dataset contains about 500 equi-spaced scans (approximately
10 m apart), where each scan represents a unique location.
We performed the following experiments to analyze the
robustness of the proposed algorithm.

A. Effect of Using Data from Both Camera and Lidar

In this experiment we demonstrate the effect of choice of
features on the robustness of the algorithm. We show that
incorporating features from both modalities (camera/lidar)
into the registration process improves performance. We tested
our algorithm for the following features:
• Reflectivity and Normal: The reflectivity of the point

obtained from lidar and the surface normal at the
point are used as features. They are assumed to be
independent and fused together at the information level
as described in §II-B.2

• Reflectivity, Grayscale and Normal: The reflectivity and
corresponding grayscale value of a 3D point show high



correlation and are fused at the signal level as described
in §II-B.1. The combined reflectivity and grayscale
feature is then fused with the extracted surface normals
at the information level (§II-B.2).

• SURF: We use OpenCV’s [29] implementation of the
SURF feature detector and descriptor. It should be
noted that we utilize the 3D location of these SURF
features to establish correspondences as described in
§II-C. Therefore, it should not be confused with pure
vision-based technique since we are accounting for the
3D location of these features coming from the lidar data.

• Reflectivity, Normal and SURF: Here we combine the
SURF features with the 3D features (reflectivity and
normal). Since SURF features are completely indepen-
dent of the reflectivity or normal of the 3D point, these
features are fused at the information level.

Here we created a prior map from the Downtown dataset
recorded in December 2009, scans from the data recorded
in 2010 and 2011 are treated as query scans. The December
2009 data corresponds to a typical winter day with no snow
on the ground anywhere and trees without any leaves. We
used the scans from the data recorded in 2010 and 2011 as
query scans. The query scan is aligned with each scan in
the map and the one that gives the highest value of total
MI is considered as the best match. In Fig. 10(a) and (b)
we have plotted the precision-recall (PR) curves for the data
collected in September and October 2010, respectively. If the
scan from the map that gives the highest MI is within 1 m of
the query scan then it is considered as a true positive. We use
the GPS information available from the IMU as ground truth
to calculate the correct distance between any two scans. The
query dataset here is quite different from the winter map
dataset not only due to change in dynamical objects (cars
parked on the roads/parking lot, etc.) but due to change in
weather also. The trees in this dataset are filled with leaves
unlike the map dataset. Similarly, in Fig. 10(d) and (e) we
have plotted the precision-recall curves for data collected in
February and March 2011, respectively. These datasets col-
lected in winter have snow on the ground and hence exhibit
significant change in the appearance of the same location as
compared to the map dataset. In both cases we observed
that the precision of the proposed algorithm increases as
we increase the complexity of features (i.e., using high-
dimensional SURF features improves the performance of the
algorithm). We also observed an increase in performance
when we incorporated data from both modalities.

B. Comparison with Bag of Words Method

Here we compare the output of the proposed algorithm
with the standard bag-of-words algorithm proposed in [5].
We used the same training dataset for learning the vo-
cabulary for both methods. We observe that the proposed
algorithm outperforms the bag-of-words algorithm, which is
not surprising since our algorithm takes full advantage of
the additional laser modality. In Fig. 10(c) and (f) we have
plotted the precision-recall curve for 2010 and 2011 datasets,
respectively, for both of the methods. The performance of

the proposed algorithm (the best output that uses reflectivity,
normals and SURF together) is significantly higher as com-
pared to the bag-of-words method. This is mainly because
the bag-of-words algorithm only uses the images and does
not exploit the 3D information available from the lidar data.

IV. CONCLUSION AND FUTURE WORKS

This paper reported on a MI-based place recognition
algorithm that allows for the principled fusion of camera and
lidar modality information within a single framework. The
proposed algorithm showed good results for real data col-
lected from an autonomous vehicle platform, over a period of
3 years at different times of day, under different weather con-
ditions, and with significant lighting and structural changes.
The proposed method outperformed the standard image-
based technique (bag-of-words) used for place recognition.
The ability of the proposed algorithm to recognize places
across seasons, with significant appearance changes makes it
very suitable for long-term autonomous operation of robots.
Future work includes using the proposed algorithm as a front-
end for loop-closure detection in a real-time SLAM system.
We also intend to compare the proposed algorithm with other
state-of-the-art methods for place recognition.
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(a) Precision-Recall curve (Sep. 2010)
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(b) Precision-Recall curve (Oct. 2010)
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(c) Comparison with Bag-of-Words (2010)
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(d) Precision-Recall curve (Feb. 2011)
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(e) Precision-Recall curve (Mar. 2011)
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(f) Comparison with Bag-of-Words (2011)
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