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Abstract

Large area mapping at high resolution underwater continues to be constrained by the
mismatch between available navigation as compared to sensor accuracy. In this paper we present
advances that exploit consistency and redundancy within local sensor measurements to build high
resolution optical and acoustic maps that are a consistent representation of the environment.

We present our work in the context of real world data acquired using Autonomous
Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) working in diverse
applications including shallow water coral reef surveys with the Seabed AUV, a forensic survey
of the RMS Titanic in the North Atlantic at a depth of 4100 meters using the Hercules ROV and a
survey of the TAG hydrothermal vent area in the mid-Atlantic at a depth of 2600m using the
Jason Il ROV.

Specifically we focus on the related problems of Structure from Motion and Visually
Based Navigation from underwater optical imagery assuming pose instrumented calibrated
cameras. We present general wide baseline solutions for these problems based on the extension of
techniques from the SLAM, photogrammetric and the computer vision communities. We also
examine how such techniques can be extended for the very different sensing modality and scale
associated with multi-beam bathymetric mapping. For both the optical and acoustic mapping
cases we also show how the consistency in mapping can be used not only for better mapping but
also to refine navigation estimates.

Introduction

A number of oceanographic applications require large area site surveys from underwater
imaging platforms. Such surveys are typically required to study hydrothermal vents and spreading
ridges in geology[1] , ancient shipwrecks and settlements in archaeology[2], forensic studies of
modern shipwrecks and airplane accidents[3][4], and surveys of benthic ecosystems and species
in biology[5]. Scientific users in these disciplines often rely on multiscalar, multisensor
measurements to best characterize the environment.

At finer scales, for resolutions down to millimeters, optical imaging of the seafloor offers
scientists a high level of detail and ease of interpretation. However light underwater suffers from
significant attenuation and backscatter, limiting the practical coverage of a single image to a few
square meters. To cover larger areas of interest, hundreds or thousands of images may be
required. The rapid attenuation of the visible spectrum in water implies that a composite view of
a large area (or photomosaic) can only be obtained by exploiting the redundancy in multiple
overlapping images distributed over the scene. Although there has been considerable effort in this
regard for land-based applications, the constraints on imaging underwater are far different.
Mosaicing assumes that images come from an ideal camera (with compensated lens distortion)
and that the scene is planar. Under these assumptions the camera motion will not induce parallax
and therefore no 3D effects are involved and the transformation between views can then be
correctly described by a 2D homography. These assumptions often do not hold in underwater
applications since light attenuation and backscatter rule out the traditional land-based approach of
acquiring distant, nearly orthographic imagery. Underwater mosaics of scenes exhibiting
significant 3D structure usually contain significant distortions. In contrast to mosaicing, the



information from multiple underwater views can be used to extract structure and motion estimates
using ideas from structure from motion (SFM) and photogrammetry.

For coarser resolutions (O(10cm)), but covering far greater (O(10m-100m)) swaths,
acoustic sensing centered at several hundred kilohertz is the modality of choice. Multibeam
sensors mounted on underwater platforms can provide high resolution three dimensional scans of
the environment that can be transformed into bathymetric maps.

Unfortunately for both optical and acoustic sensors, the fundamental limitation in
converting high resolution sensor measurements into quantitative maps is the mismatch between
sensor accuracy and navigation as illustrated schematically in Figure 1. Due to the rapid
attenuation of the electromagnetic spectrum, GPS signals are not available underwater. Instead
underwater imaging platforms typically rely on a combination of acoustic transponders and
inertial navigation systems. Acoustic transponders[6], like sonar systems, must trade off range for
resolution. Although transponders have been built to work as high as 300kHz providing
centimeter level accuracy over an area of 100 square meters, the typical large area surveys utilize
lower frequency (8-13 kHz) long-baseline transponders that provide meter level accuracy across
several kilometers. The deployment of such systems is nontrivial and usually requires significant
time and effort as each individual transponder must be deployed and its position independently
calibrated.

Inertial navigation sensors such as doppler velocity logs used in combination with fiber
optic or ring laser gyros can provide navigation estimates underwater[7] that grow as a function
of time (distance traveled). However, such systems inherently provide an estimate whose error
characteristic grows without bound over time (distance). Although expensive, from a cost, power
and size standpoint, these systems are far easier to use as they are integral to the underwater
vehicle and as such do not require any extra effort for deployment and use.

Figure 1. A schematic of error sources for high resolution optical and acoustic deep water mapping. Vehicle based
mapping is navigationally limited in comparison to other potential error sources.

Structure from Motion Underwater — The two view Case

As outlined above, the fundamental problem of obtaining a large area perspective of an
underwater scene is constrained by the attenuation and backscatter of light, the highly
unstructured nature of underwater terrain, and issues associated with moving lighting on
underwater robotic vehicles.

Our methodology for Structure from Motion takes a local to global approach inspired by
mosaicing and other land-based applications of SFM [8][9][10][11][12] but differs in that it takes
advantage of navigation and attitude information[13]. Local sequences are derived
independently[11] and then registered in a global frame for bundle adjustment[10]. Our approach
seems more suitable than pure sequential methods[9][11] because in an underwater survey each



3D feature appears only in a few images making the global solution look more like a series of
weakly correlated local solutions.

We relate images using a feature-based approach under wide-baseline imaging conditions
with changing illumination and unknown scene structure. A modified Harris corner detector
yields interest points by selecting local maxima of the smaller eigenvalue of the second moment
matrix. We extract features by determining a neighborhood around each interest point that is
invariant to affine geometric transformations. In essence, we sample the neighborhood along lines
radiating from the interest point. For each line we select the extrema of an affine invariant
function (maximum difference in intensities between the interest point and points along the ray).
The set of these maximal points defines the boundary of a region that can be extracted under
affine geometric transformations. This region is approximated with an elliptical neighborhood
which is then mapped onto the unit circle. These circular patches are normalized for affine
photometric invariance. Features are then represented compactly using moment-based
descriptors. We chose to use Zernike[13] moments as descriptors for their compactness and
highly discriminative nature.

The core of the algorithm for SFM is based on robust estimation of the essential
matrix[8]. Similarity of descriptor vectors is used to propose correspondences between features.
The navigation-based estimates of inter-image motion and vehicle altitude are used to limit
possible correspondences by propagating pose and altitude uncertainties through the two view
point-transfer equation[13] as shown in Figure 2. A modified version of RANSAC determines the
correspondences which are consistent with that essential matrix and the essential matrix
consistent with the inliers as illustrated in Figure 3. In cases of multiple valid solutions we select
the one closest (in the Mahalanobis distance sense) to the navigation-based prior. The inliers and
the essential matrix estimate are used to produce a maximum a posteriori estimate of relative pose
with the navigation-based estimates as a prior. The solution includes the triangulated 3D features.

Figure 2. Prior pose restricted correspondence search on a pair of underwater coral reef images. A sampling of interest
points are shown in the top image along with their color coded sensor instantiated epipolar lines. The bottom image
shows the corresponding color coded constrained search regions for the interest points in the top image; the sensor
instantiated epipolar lines; and the candidate interests points which fall within these regions.



Figure 3. Epipolar geometry and correspondences. The given image pair illustrates the maximum likelihood refined
image-based epipolar geometry. RANSAC determined 106 consistent inliers designated ‘x’, from the putative set of
116 matches. The rejected outliers are designated ‘0’.

Large Area Structure from Motion

Figure 4. Two views of the registered submaps derived from images sequences that correspond to two
neighbouring sections along the images shown in figures 2 and 3. The blue and green dots correspond to features from
the neighbouring tracklines that have been successfully co-registered.



The temporal sequence of images is processed into a set of 3D submaps with estimates of
coordinate transformations between temporally adjacent submaps (Figure 4). This can be viewed
as a graph where each node is the origin of a submap and the edges in the graph are the
coordinate transformations between submaps. Our algorithm attempts to establish additional
spatial relationships between submaps corresponding to overlap from parallel tracklines or loop
closures.

¥

Figure 5. (Left) Two views of the reconstruction of poses and structure for the JHU tank dataset. The camera poses are
connected by a red line. A Delaunay triangulation interpolates a surface between 3D feature points. The structure is
color-coded according to height. Units are in meters. (Right) Distance map from SFM 3D points to the ground truthed
laser scan after ICP registration. Areas of large discrepancies tend to correspond to the carpet being buoyant for the
visual survey. An outlier in the reconstruction produced the large error visible at approximate x=1.4m,y=0.8 m.

While the sparse set of 3D points contained in the submaps do not consistently offer
discriminating structure, the very fact that they exist as 3D points implies that their appearance in
multiple views is characteristic enough to effectively establish correspondences and be
reconstructed by the SFM algorithm. We therefore extend the feature description and similarity
based matching between images to matching submaps by relying on the appearance of 3D points
to propose corresponding features between submaps. The average of the descriptors of the 2D
neighborhoods on all views is used as the appearance of the 3D point. The underlying assumption
is that a similarity measure which was effective to match 3D points along track will also be
effective when matching across submaps. Corresponding 3D points are proposed based on
appearance and a robust registration using RANSAC with Horn's algorithm[20] is used to
determine which points are in correspondence and the transformation parameters.

The search of additional links continues until no links are left to check or an upper limit
is reached (we use eight times the number of submaps for sparse, locally-connected graphs). The
submaps are then placed in a global frame by minimizing the descrepancies between composed
global estimates and the transformations between submaps. Additional cost terms consider the
navigation prior.



Once submaps are in a global frame, camera poses within submaps can also be placed in
the global frame. These camera poses are then used to triangulate the location of 3D features.
Sparse bundle adjustment then refines both camera poses and 3D feature locations.

Figure 5 illustrates this process. The results are from a survey performed in the Johns
Hopkins University (JHU) Hydrodynamics Test Facility using the JHU ROV. As shown in the
figure the results were highly consistent with ground-truth obtained by draining the test tank and
laser scanning the scene geometry. We have also obtained similar results from a survey using the
Seabed AUV at a coral reef off of Bermuda[5].

Self Consistent Bathymetric Mapping

Another application of our techniques arises from the case of multibeam mapping[16]
where the areas of interest encompass several square kilometers that are typically mapped with a
sonar with ten centimeter sensor accuracy but where the navigation from the standard combine of
long baseline transponders and inertial navigation is only good to a meter. To avoid this
navigation limitation we break the total mapping problem down into small pieces, each of which
contains internal errors typical of the mapping sonar rather than the navigation [19].  This is
accomplished by assembling small bathymetry sub-maps using only the short term dead
reckoning information provided by the vehicle navigation sensors. Algorithmically this is
accomplished using a delayed state Extended Kalman Filter (EKF) and a simple constant velocity
dynamic model of the vehicle motion. This simple model is sufficient given the slow dynamics
typical of underwater survey vehicles. The current estimate of the filter state vector contains the
position and velocity information required for a 6 degree of freedom (DOF) state estimate.
The delayed portion of the state vector is used to archive historical poses of the vehicle which
serve as local 6 DOF origins for the small sub-maps.

After accounting for issues specific to acoustic sensors such as possible errors associated
with weak returns, beam patterns effects resulting in the acoustic pulse not striking the bottom,
and other false detections, we can approximate the sonar as a three dimensional line scanner.
These line scans are assembled into sub-maps using the range data and the vehicle position
estimates extracted from the state vector at the time each sonar ping is taken (Figure 6).
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Figure 6. The delayed state EKF block diagram. The sub-mapping algorithm utilizes vehicle
navigation data to create small bathymetric sub-maps. The sub-map origins are held in a delayed state
vector and used to create relative pose measurements that reduce navigation error.



Figure 7. Two sample sub-maps showing their outlines and local reference frames. Note the fine
scale features that can be resolved individually within each sub-map. Normal smoothed navigation tends to
blur these real and often significant features. Cf Figure 9.

The individual beam ranges are projected and kept as points (soundings) in 3D dot clouds
referenced to the delayed state local origins (Figure 7). Sub-maps are sized by collecting pings in
this manner over short time scales during which the vehicle position error associated with the
inertial navigation is considered small. A sub-map is broken, and a new one started, when the
one of several condition are met. A map will be broken when the terrain contained in the map
has sufficient 3D structure, the map has become too large or has poor outline shape or, when the
estimate of vehicle position uncertainty relative to the map origin becomes greater than a
threshold consistent with mapping sonar accuracy. The position error based end condition is
designed to keep the navigation errors from corrupting the mapping data.
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Figure 8. Sub-mapping pose network. This pose network was established by the sub-mapping algorithm.
Nodes indicate the location of the sub-map origins. Blue links indicate consecutive poses in time. Green
links indicate where relative pose measurements were made. Magenta links indicate links that were tried

but not established. The uncertainty ellipses have been scaled in size by 8 times for visibility. Note that

the poses fall into alignment with the LBL fix locations even though this algorithm did not utilized LBL

measurements. This survey consisted of 62 sub maps and 92 established links.



The mapping error growth associated with navigation errors across the entire survey is
reduced by registering the terrain sub-maps to one another and generating relative position
measurements between previously visited vehicle states. The sub-maps are compared and aligned
using a 2 DOF translation based on correlation followed by a 6 DOF alignment with a modified
Iterative Closest Point (ICP) [17][18] approach. Improved registration results are obtained by
selecting matching points bases on the quality of the individual sonar returns[19][21][22]. The
end result of the algorithm is a constraint network, between the sub-map origins (Figure 8). This
network enforces consistency based on the sub-map alignments and helps to significantly reduce
the inconsistency that would be present if navigation was used alone to produce the terrain map.

Another application of our techniques arises from the case of multibeam mapping[21]
where the areas of interest encompass several square kilometers that are typically mapped with a
sonar with ten centimeter sensor accuracy but where the navigation from the standard
combination of long baseline transponders and inertial navigation is only good to a meter.

The results of our framework are illustrated in Figures 9 and 10 using data collected by
the Jason ROV at the TAG Hydrothermal Vent Site located at a depth of 2600 meters on the mid-
ocean ridge in the Atlantic Ocean. One can see that the resulting map is a far better representation
of the environment. We have also used consistency within the submaps to derive corrected
navigation estimates for the vehicle trajectory over the course of the survey.
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Figure 9. Error in bathymetric mapping as measured by self consistency across multiple sub-maps. (Left) Map to map

surface error for our algorithm versus (right) map to map surface error using a standard smoothing method.
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Camplate map created using the propoased sub-mapping algarithm
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Figure 10. A comparison between the terrain map created using sub-mapping, (top) , and a version of the map created
using a standard smoothing method (bottom). The sub-map created map shows significantly less registration error and
sonar scan patterning. The sub-mapped version also brings out details that were lost in the smoothed map due to
misregistration.



Visually Augmented Navigation

We can further build upon the delayed-state EKF framework and two-view structure from
motion case to formulate a vision-based simultaneous localization and mapping (SLAM)
approach to providing high precision, accurate navigation measurements on an underwater
robotic vehicle. Similar to the bathymetry-based EKF submapping strategy, our methodology is
to employ pairwise-generated image measurements as spatial constraints in a graph over a
collection of historical vehicle poses. However, because we are able to generate camera
measurements at the pairwise level, we choose to instead maintain all pose samples that are
associated with image acquistion (Figure 11). This differs from the aggregate submapping
strategy used for bathymetry-based navigation and implies that the EKF's scalability becomes a
severe issue (due to the quadratic complexity of maintaining the covariance) as the image-based
navigation uses orders of magnitude more delayed-states.

camera

camera camera
Figure 11. A conceptual depiction of the delayed-state graph network and its constraints.

A well known and very attractive property of formulating SLAM in the information form
is that the information matrix (as in Fisher information) has the direct interpretation as a Gaussian
graphical model[23][24]. Sparsity in this model (i.e., missing edges) implies available conditional
independencies in the joint-distribution, which can be exploited to realize efficient inference.
While others have shown that the feature-based SLAM information matrix obeys a "close-to-
sparse" structure when properly normalized [14][25] in our formulation of view-based
SLAMI15], the information matrix is exactly sparse without having to make any sparse
approximations. This implies that for a bounded graph structure, as is the case with typical
underwater surveys, view-based SLAM systems comprise a sparse information parameterization
without incurring any sparse approximation error.

Based upon this insight, we have implemented a view-based SLAM system for
underwater applications built around fusing 6-DOF relative-pose camera measurements from
monocular overlapping sea floor imagery with traditional underwater vehicle dead-reckon
navigation sensors. Our state vector consists of samples from the robot's trajectory acquired at
image acquisition and is maintained using a sparse extended information filter. We use our two
view image registration engine to provide non-Markov edge constraints in the corresponding pose
network. These "spatial” edges constrain the pose graph and enforce global consistency from
local constraints. This system was tested with data collected using the Hercules ROV operating
at a depth of 3750 meters at the wreck of the RMS Titanic. The survey covered an area of about
3100 square meters on the seafloor with a accumulated survey path length over 3.4 kilometers.
Results are shown in Figure 12.
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Figure 12 Mapping the RMS Titanic. (Top) An XY plot comparing the raw dead-reckon navigation data (gray), ship-
board ultra-short baseline tracking (brown), and reconstructed survey trajectory from a vision-based 6 DOF SLAM
information filter (red). (Middle) A photomosaic of the RMS Titanic constructed from the digital still images and
(Bottom) the complete 6 DOF visually based navigation results for the entire survey.



Conclusions

In this paper we have highlighted some of the fundamental issues associated with the lack
of precise and accurate navigation and how they affect our ability to conduct high resolution
mapping efforts in the deep sea. We have presented three different applications of systems level
approaches for deep water mapping that exploit vehicle attitude and navigation information and
enforce local and global consistency within sensor measurements to yield superior mapping
results commensurate with sensor accuracy. While improving mapping fidelity these methods
also provide us with independent mechanisms for ground truthing, refining and bounding the
coarse navigation estimates that are typical in the deep ocean.

These algorithms are applicable across the entire suite of imaging and robotic underwater
vehicles - manned, towed, tethered and autonomous. Our work in these areas is continuing with
an emphasis on implementing a number of these algorithms in real-time on board the vehicles to
better help us exploit our precision mapping algorithms for real-time adaptive surveys.
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