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Abstract— This paper reports on an algorithm for underwa-
ter visual place recognition in the presence of dramatic appear-
ance change. Long-term visual place recognition is challenging
underwater due to biofouling, corrosion, and other effects that
lead to dramatic visual appearance change, which often causes
traditional point-feature-based methods to perform poorly.
Building upon the authors’ earlier work, this paper presents
an algorithm for underwater vehicle place recognition and
relocalization that enables an underwater autonomous vehicle
to relocalize itself to a previously-built simultaneous localization
and mapping (SLAM) graph. High-level structural features are
learned using a supervised learning framework that retains
features that have a high potential to persist in the underwater
environment. Combined with a particle filtering framework,
these features are used to provide a probabilistic representation
of localization confidence. The algorithm is evaluated on real
data, from multiple years, collected by a Hovering Autonomous
Underwater Vehicle (HAUV) for ship hull inspection.

I. INTRODUCTION

The localization problem has been an important topic in

robot navigation for many years. Being able to localize with

respect to a previously seen place or map is a prerequisite

in navigation systems for applications like long-term regular

surveying. However, the place recognition and relocalization

problem is challenging underwater due to contributing factors

such as biofouling, corrosion, and other dramatic visual

appearance changes. Phenomenon like these break the basic

appearance consistency assumption of many popular visual-

based algorithms. A low density of visually salient features

also make it more challenging to make putative visual

correspondences.

To address these challenges in making visual correspon-

dences for underwater images, in the authors’ prior work,

a high-level structural feature image matching approach

was proposed, which obtained a promising matching result

between corresponding images collected across years [1].

This paper extends the previous method by combining

the high-level structural feature matching approach with a

probabilistic framework that considers a set of sequential

images observed along the vehicle trajectory as well as

measurements from other modalities on the vehicle. The

algorithm is evaluated on real data collected in a multi-year
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(a) HAUV (b) Imaging footprint on the ship hull

(c) Typical robot trajectory

Fig. 1. Depiction of the ship hull inspection application using the HAUV.

ship hull inspection mission carried out with an Hovering

Autonomous Underwater Vehicle (HAUV) [2], as depicted

in Fig. 1. The contributions of this paper include:

• Development of a high-level feature detector using

segmentation and machine learning for images with a

low density of visual texture.

• Development of a SLAM-graph global relocalization

algorithm using high-level feature matching within a

particle filter framework.

The paper is laid out as follows: Section II gives a

brief introduction about related work in visual-based place

recognition and localization; Section III presents the key

steps in the algorithm starting with an overview of the

whole framework; Section IV evaluates the approach with

localization between ship hull inspection missions across

years and finally, Section V concludes with a summary and

future work discussion.

II. RELATED WORK

Place recognition and localization against dramatic scene

change has been explored for years in within the robotics

community. Representative works include [3]–[5]. SeqS-

LAM [3] localizes the robot using a topological strategy

that jointly considers visual feature comparisons along tra-

jectory segments to increase the robustness to dramatic scene

changes, as compared to individual image comparison alone.

However, such a topological approach make assumptions

about temporal trajectory similarly, for example, along a road

network, which are often incompatible with unstructured



Fig. 2. System Flowchart. A particle filter is initialized on an previous
SLAM graph that we will localize against. Onboard sensors including depth
and IMU are used to update the particles when the vehicle is moving. Planar
features estimated from DVL [6] as well as high-level features extracted
from visual images are used to do measurement correction by updating the
importance weight of each particle.

(a) Feature patches from raw seg-
mentation

(b) Salient feature patch after SVM
classification

Fig. 3. High-level feature extraction.

underwater robot surveys. Methods focusing on using higher-

level features to make visual correspondences robust against

appearance changes are also developed, such as [4] and [5].

Again, assumptions about sensor viewpoint exploited in the

ground vehicle domain are not feasible for an underwater

navigation system.

In the underwater domain, Ozog et al. proposed a regis-

tration algorithm that mitigates visual localization challenges

by limiting the search area using measurements from other

navigation sensors like the Doppler velocity log (DVL) [6].

A winner-take-all matching is carried out within a pruned

candidate region using a traditional point feature the Scale

Invariant Feature Transform (SIFT). This approach works

robustly in registering data taken within a short time interval,

but is not applicable to large time intervals with dramatic

appearance changes under less reliable image matching. Our

approach shares the same spirit of Ozog et al. in using dif-

ferent sensor measurements to localize the vehicle, however,

instead of using a winner-take-all localization decision on

image matching, we use the visual matching results within a

particle filter framework, where more visual images along the

trajectory will be jointly considered in vehicle localization.

III. METHODOLOGY

A flowchart of the proposed localization approach is

shown in Fig. 2. Here, a particle filter is used to solve the

localization problem. An onboard depth sensor and inertial

measurement unit (IMU) are used to update the particles,

and measurements of the local planar-like shape of the ship’s

Algorithm 1 High-level feature extraction and description

initialization

E = (e1, ..., eM ) : Edges connecting neighboring pixels.

ei = (v1i , v
2

i ), w(ei) = |Img(v1i )− Img(v2i )|
S = (s1, ..., sN ) : The set of salient segments is initialed

as all individual pixels.

D = φ: A set of SVM as feature descriptors.

Csalient: A pre-train SVM classifier for salient segments.

1: Sort E into E = {ei}, so w(ei) ≤ w(ei + 1)
2: for i = 1 to M do

3: Find s
v
j

i
that vji ∈ s

v
j

i

4: MergeThresh = min( max
ek∈s

v1

i

w(ek), max
ek∈s

v2

i

w(ek))

5: if sv2

i
6= sv2

i
andw(ei) < MergeThresh then

6: snew = sv1

i
∩ sv2

i
, Insert(S, snew),

7: Delete(S, sv1

i
), Delete(S, sv2

i
).

8: end if

9: end for

10: for j = 1 to |S| do

11: if ! SVMTest(Csalient, sj) then

12: Delete(S, sj)
13: end if

14: end for

15: for k = 1 to |S| do

16: Hpos = HOG(Si)
17: for u = 1 to 20 do

18: x = Random(0,Width(Img)− 1)
19: y = Random(0, Height(Img)− 1)
20: P = Img(x, y, Size(si))
21: Hneg = Hneg ∩HOG(P )
22: end for

23: dk = SVMTrain(Hpos, Hneg)
24: Insert(D, dk)
25: end for

return S, D

hull and visual features are used to weight the particles at

each location. The planar measurements are estimated using

the DVL and the visual feature measurements are provided

by the high-level visual feature matching approach. When

the probability covariance converges to a limited area, the

vehicle localized.

A. Particle Filter

In the proposed method, we use a particle filter to provide

an estimate of the vehicle’s pose distribution, which enables

us to incorporate measurements from different modalities and

control inputs from other onboard sensors in a convenient

way:

p(xt|Z1:t, U1:t) ∝

p(Zt|xt)p(xt|xt−1, Ut)p(xt−1|U1:t−1, Z1:t−1).

Vehicle pose consists of position and orientation, xt =
x, y, z, roll, pitch, yaw. U is the set of control inputs used

to propagate particles and Z is the set of observations (i.e.,

measurements).



(a) Sample SVM positive response (b) Sample of geometry constraint defined by a pair of matching features,
which is incorrect in this case.

(c) Sample of geometry constraint defined by a pair of matching features,
which is correct in this case.

(d) The best geometry relationship model is selected as well as its supported
matching pairs.

Fig. 4. Image matching based on epipolar constraint.

1) Updating: We incorporate two different control inputs

for particle propagation. An onboard depth sensor and

IMU provide direct measurement of depth, roll and

pitch. The odometry input estimated from DVL pro-

vides a standard odometry update: p(xt|u
odom
t , xt−1) ∼

N(xt−1 ⊕ uodom
t ,ΣUodom

z
).

2) Weighting: Two measurements are considered in the

system: planar measurements (zdvlt ) and visual mea-

surements (zcamt ); Zt = {zdvlt , zcamt } are assumed to

be independent given a vehicle pose. We use the planar

feature proposed in [6] to evaluate DVL measurements.

Given the planar-like shape of the ship hull in the

camera field of view, [6] estimates a planar feature

zπt using Principle Component Analysis (PCA) on

DVL point-based outputs. We model the measurement

model as follows: wf
p = p(zdvlt |xp

t ) ∼ ||zπt − ẑxp
||,

where ẑxp
is the expected planar factor estimated from

planar features in the old graph neighboring to particle

xp. For visual measurements, wdvl
p = p(zdvlt |xp) is

assigned according to the high-level feature matching

result between current observed image and the nearest

image in the old graph corresponding to state xp. More

details of visual feature weighting will be discussed in

III-C

B. High-level Feature

An improved version of high-level feature matching ap-

proach proposed in the author’s previous work [1] is used

to provide visual measurements by making correspondences

between the current observation and previous observations

from the old missions.

An algorithm outline to detect and describe the feature

is presented in Algorithm 1. An input image is segmented

into a set of segments based on pixel intensity similarity

using graph-based segmentation strategy [7]. Then we em-

features Definition

Contrast |Mean(si)−Mean(bi)|
Size |si|
SizeRatio Wsi/Hsi

Shape ||si| − |bi||

Fig. 5. Features used in salient segment classification. si is a set of pixels
in the segment. bi is a set of pixels in the neighboring area of si defined
by a bounding-box.

ploy a pre-trained Support vector machine (SVM) classifier

(Csalient) to select salient segments as the support region for

high-level features, differing from the a hard coded threshold

cutting method previously employed in the earlier paper [1].

The vector space that Csalient is defined on, is comprised on

the feature described in Figure 5. The features are extracted

considering the pixels in the segments si and the pixels in the

bounding box of the segments bi. These features contribute

to how salient the segment is, compared to it’s neighboring

area. In function SVMTest(si, Csalient), these features of

the si are extracted and the SVM response is returned.

For each segment that is classified as salient, a SVM

similarity classifier over the Histogram of oriented gradients

(HOG) feature is trained(SVMTrain()). The positive sam-

ples Hpos are the HOG features extracted from the image

patch defined by the segments bounding box as well as image

patches extracted by slightly shifting the bounding box. The

negative samples for the training Hneg are the HOG features

extracted from random sampled image patches with the same

size as the positive training examples.

To increase the computation efficiency, only the images

over a predetermined threshold of salient segments are used

to weight the particles as visual measurements.



Algorithm 2 Image matching using model selection

input

S: Salient segments extracted in Algorithm 1

D : SVM classifiers extracted in Algorithm 1

img2: image from old graph needs to match

initialization

P = pi, ..., p|D|, pi = φ. Matching pairs in img2.

F = φ: the set of geometry models between two im-

ages

1: for i = 1 to |D| do

2: [pi, bestresponse] = SVMTest(di, img2)
3: if pi! = φ then

4: Insert(F,ModelExtract(si, bestresponse))
5: end if

6: end for

7: Best_F = φ
8: Max_Num_Support = 0
9: for j = 1 to |F | do

10: Num_Support = ModelTest(Fi, P )
11: if Num_Support > Max_Num_Support then

12: Best_F = Fj

13: end if

14: end for

return Best_F

C. Particle Weighting Visual Measurement

When a salient image with its high-level feature de-

scriptors is passed into the particle filter, the image will

be matched against all the images in the previous graph

consistent with particle positions. A matching strategy using

high-level features and a two-view epipolar constraint is

given in Algorithm 2.

A set of SVM positive responses for each feature is found

by a sliding window search as shown in Figure 4(a). The

best positive response of a feature, ranked by its distance

to the SVM boundary, is then used to estimate a funda-

mental matrix between the two images. In the function

ModelExtract(), we estimate the fundamental matrix by

utilizing correspondences from sub-blocks from within each

feature match. Multiple fundamental matrix will be defined

by different features, which might indicate different geome-

try relationships between the two images, as shown in Fig-

ures 4(b)and 4(c). To figure out the best fundamental matrix

among them, a model selection is carried out to search for the

geometry model that is supported by the maximum number

of matching features in the previous step. Once the optimal

model is selected, an image correspondence with geometric

consistency is found, as shown in Figure 4(d). Finally, a

matching score between the two image is calculated:

Sm = ΣN
j=1

Area(PBest_F )/Area(Img)

N = Best_Num_Support

To maintain the diversity in the particle filter representa-

tion, the number of particles is often larger than the number

of nodes in the old graph. Thus, multiple particles are

Fig. 6. This figure gives an example when a set of particles (orange dot)
are associated with a single image node in previous graph (blue dot). The
transform vector T from the old graph node to the new one (green dot)
is estimated in image matching. The transform vector T ′ from old graph
node to particles are compared with T . The line weights of T ′ in the figure
indicate the relative value of sg in this example.

Fig. 8. The best match pair at the convergence location. Left: current
image. Right: the best matched candidate image in previous graph.

associated to the same candidate image from the old graph,

that is to say, they share the same Sm as visual measurement

confidence.

Given the geometric relationship we estimated from the

image matching procedure, a particle weight is calculated

based on the image matching score as well as the geometric

consistency: wcam
p = spg · spm. spg = TT ′

|T ′| is the geometry

consistency score of the current particle position given the

estimated position from the epipolar constraint in image

matching. T is the estimated transformation from the position

of the current image to the candidate image position, and

T ′ is the putative position calculated between the particle

position and the candidate image position. This step also

increases the convergence speed of the particle filter in

that it makes the best of the output information of image

matching and penalizes particles that are inconsistent with

the underlying image geometry.

IV. EXPERIMENT AND DISCUSSION

We evaluate the proposed method on data collected for

automated ship hull inspection. We derive the trajectory of

the HAUV from a graph-based Visual SLAM system [6].



(a) Initial distribution (b) Planar feature: Particle distribution after re-sampling with importance
weight provided by planar features.

(c) Depth update: When the vehicle is moving, the depth is updated by
depth sensor

(d) Non-distinguishable match: A salient image is observed and matched
against the previous images, but no distinguish matching is found. The
distribution will not change significantly because all the Sm are evenly
low

(e) Distinguishable match: A salient image is observed and matched
against the previous image corresponding to particle positions. However,
more than one previous images are considered to be similar to the current
observation, the particles converge to some candidate regions

(f) Particles converge. For the particles around the correct location, when
more salient images are consider, their importance weight increase until
the particle distribution converge to a small area

Fig. 7. Typical particle filter converging procedure.



We wish to localize the HAUV in two different surveys

runs, from different years, into the same reference frame

to measure the effectiveness of the proposed algorithm. The

proposed method is able to localized the vehicle in a previous

built SLAM graph given dramatic appearance changes.

One localization mission that capture a lot of properties

of the system is shown in Fig. 7. As shown in Fig. 7(a), the

particles are initialized with uniform distribution and updated

using estimates from the depth sensor. When a salient image

is observed, but which is not capable of making a strong

match, the matching score with all candidate images will

be uniformly low and the distribution of particles remains

almost unaffected, as shown in Figure 7(d). When a salient

image produces a strong match, the particles start to converge

to the locations where the matching scores are high, as shown

in Fig. 7(e). However, the visual evidence provided by a

single salient image is insufficient for localization. The parti-

cles converge to some candidate regions where the matching

scores are outstanding. As the mission goes on, more salient

images are used to correct the particle distribution and the

probability of the correct position finally stands out. When

the determinant of the covariance passes a threshold it is

considered localized. Fig. 8 gives the best matching image

pair right before the vehicle localized, which indicates the

validness of the localization. The highly structured visual

features are identified in the boxes and correctly matched

across years despite the significant ship hull biofouling.

V. CONCLUSION

We proposed an algorithm for underwater localization with

respect to a SLAM graph using a high-level feature matching

approach in a particle filter framework. The approach was

evaluated on real data collected by an HAUV in a ship

hull inspection mission. Experimental results show that the

method is able to make use of high-level visual features from

a low feature density environment and perform robust local-

ization by incorporating observations in different locations

in a probabilistic framework. Future work will concentrate

on involving other onboard modalities, such as imaging

sonar, to improve the performance of long-term localization

against dramatic environment changes that could take place

underwater.
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