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Pose-graph SLAM using Forward-looking Sonar

Jie Li, Michael Kaess, Ryan M. Eustice and Matthew Johnson-Roberson

Abstract—This paper reports on a real-time simultaneous
localization and mapping (SLAM) algorithm for an underwater
robot using an imaging forward-looking sonar (FLS) and its
application in the area of autonomous underwater ship hull
inspection. The proposed algorithm overcomes specific challenges
associated with deliverable underwater acoustic SLAM, including
feature sparsity and false-positive data association when utilizing
sonar imagery. Advanced machine learning technique is used to
provide saliency aware loop closure proposals. A more reliable
data association approach using different available constraints is
also developed. Our evaluation is presented on real-world data
collected in a ship hull inspection application, which illustrates
the system’s performance and robustness.

Index Terms—Marine robotics, Localization, SLAM

I. INTRODUCTION

ECENT research development has seen dramatically

increasing performance in autonomous underwater vehi-
cles (AUVs). Platforms have improved in efficiency, compu-
tational capacity and sensor quality. AUVs have the potential
to revolutionize our access to the oceans, addressing a variety
of critical problems such as climate change assessment [1]],
marine habitat monitoring [2], and underwater structure in-
spection [3]-[5].

However, navigation and localization of AUVs is still a
challenging problem mainly due to the strong attenuation
of electromagnetic signals, including the global positioning
system (GPS), in the aqueous environment. One of the most
significant problems faced by these platforms is the un-
constrained drift that occurs without any external positional
observations. Theoretically, the unbounded drifting can be
corrected by two types of approaches: calibration through
external infrastructure (surveyed acoustic beacons) or self-
correction using environmental landmarks, which is part of the
well studied simultaneous localization and mapping (SLAM)
algorithm employed in many current systems [6]. While the
mathematical theory of the SLAM problem has been exten-
sively explored and reliable optimization approaches have been
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proposed to solve it, open practical problems still exist. In
the underwater domain, due to the aforementioned electro-
magnetic attenuation, both gathering and associating sensor
measurements are challenging. Due to the limited propagation
of light and signal sensitivity to water clarity as well as illumi-
nation conditions, more common and well-studied sensors in
terrestrial SLAM systems such as optical cameras and LIDAR
do not work well in some of the underwater environments. In
contrast, acoustics have a long and rich history as perceptual
sensors in the underwater domain [[7]-[9], as it offers greater
range and insensitivity to water visibility. A two-dimensional
acoustic sensor, forward-looking sonar (FLS), is a promising
alternative to optical sensing in underwater SLAM systems
against turbid water environment. Nevertheless, the utilization
of this modality suffers from unique challenges including low
image texture and high signal-to-noise ratio (SNR).

In this paper, we propose a novel pose-graph SLAM
algorithm leveraging FLS as the sole perceptual sensor to
provide ego-motion drift correction. In this work, we address
many of the practical problems associated with leveraging
signals from FLSs, including feature sparsity, low reliability
in data association, and singularity in geometry estimation.
Specifically, we propose the following novel contributions: 1)
Creation of a system to identify and select the most informa-
tive sonar frames for use in improving system efficiency and
reliability, while avoiding the singularities which pervade the
geometry estimation problem when using FLS; 2) development
of a robust sonar feature matching strategy using multiple
constraints including pose prior within a SLAM framework; 3)
evaluation of the efficacy of our algorithm for the application
scenario of underwater structure inspection and assessment.
This evaluation is done on several sets of large-scale real-
world data. This data was collected in a ship hull inspection
project [3[I, [10], [[11]. Experimental results show that the
proposed algorithm is able to provide robust loop closure
detection and relative pose constraint estimation from FLS,
which ultimately minimizes drift in vehicle localization.

The rest of the paper is arranged as follows: In Section
we give a brief introduction on related works using FLS in
AUV navigation; in Section we give an overview of the
ship hull inspection project by which the proposed algorithm is
motivated; in Section we provide a thorough introduction
to the proposed algorithm; in Section [V| we evaluate the pro-
posed algorithm through the use of ship hull inspection data;
and finally, in Section [VI, we conclude the work discussing
promising future directions.

II. BACKGROUND

A majority of research work in FLS imaging focuses on
image registration between two sonar image frames. [12]]
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provides a thorough review on recent registration methods of
sonar images. Popular approaches span from spectral meth-
ods [13] to feature-based methods [[7]. These approaches have
shown promising results in pairwise image registration and
motion estimation under certain assumptions on scene geome-
try and sufficient frame overlapping. However, these methods
are mainly targeted at the application of image mosaicing. It is
non-trivial to adapt them to real-time navigation systems due
to computational complexity.

Pioneering research has been conducted to enable the use of
FLS in AUV navigation systems. Walter et al. [[14] proposed
the first SLAM implementation using the Exactly Sparse
Extended Information Filter (ESEIF) with manually selected
features from sonar imagery. Building the foundation of FLS
for SLAM, this work focused more on the efficiency in
building a feature map to ensure real-time performance and
less on feature detection or addressing geometric ambiguities.
Johannsson, Kaess, Englot, et al. [15] proposed detecting
and matching FLS image features using Normal Distribution
Transformation (NDT). This work makes a planar assumption
where all feature points are assumed to lie on a plane parallel
to the vehicle. This assumption helps to add extra constraints
to address the ambiguity in elevation measurements. However,
it also limits the application scenarios in which such an
algorithm can be used.

A similar assumption was made by Shin, Lee, Choi, ef al. in
their recent work on FLS-based bundle adjustment for seabed
mapping [16]. This work introduces the Accelerated-KAZE
(A-KAZE) [17] feature for acoustic sonar images and displays
impressive performance on the challenging data association
problem. Fallon, Folkesson, McClelland, ez al. [18] also pro-
posed an FLS-based SLAM system for the seabed surveying
scenario. They proposed to use multi-hypothesis analysis to
reacquire features extracted through seabed subtraction. Since
the data association is performed based on feature locations,
the approach is more adapted for feature sparse environments.

In more recent literature, Huang and Kaess [§]] introduced
Acoustic Structure From Motion (ASFM), which used multiple
sonar viewpoints to jointly reconstruct 3D structures as well
as sensor motion, with no specific assumption of the scene.
In their work, statistical analysis was conducted to identify
and discuss the degeneration cases for which ASFM would
fail. Particularly, they analyze which motion patterns make
for a poorly constrained optimization problem. In another
recent work on acoustic-inertial odometry estimation, Yang
and Huang [9] extended the discussion of this problem to more
abstract theoretical cases. Although ASFM shows promising
results for providing sonar-based geometry estimation without
underlying scene assumptions, this work was primarily evalu-
ated on simulated data.

However, despite ongoing work there are still open issues,
particularly when it comes to the practical deployment of an
acoustic SLAM system using FLS. These problems include,
but are not limited to, robust data association, efficient key
frame selection for real-time performance, and identification
and removal of degeneration cases in the optimization. This
paper is complementary of these works on ASFM. We present
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Fig. 1: HAUV sensor payload and its optical/acoustic footprint with respect
to a ship hull during the inspection.

novel algorithm that makes use of ASFM as front-end and
develop the missing pieces for a complete end-to-end real-time
acoustic SLAM system. The hurdles to creating a deployable
framework that can run on an AUV are addressed, providing
solutions to the practical problems discussed above.

III. SHIP HULL INSPECTION USING HAUV

We concretize the proposed SLAM system for use in a long-
term periodic ship hull inspection project using a Hovering
Autonomous Underwater Vehicle (HAUV) [3]], [19]. In this
project, an HAUV from Bluefin Robotics [20] is used (Fig. [I).
The vehicle is equipped with a hull-looking 1200 kHz RDI
Doppler velocity log (DVL) and Honeywell HG1700 IMU
providing odometry measurements. For perception, the vehicle
is equipped with a set of stereo cameras for underwater vision
and a periscope camera for above water vision. The vehicle is
also equipped with a 1.8MHz DIDSON Sonar [21]] to provide
acoustic-based perception looking to the right of the vehicle as
depicted in Fig. [T} During the inspection, the HAUV follows
a lawn mower pattern with respect to the ship hull keeping a
fixed standoff of 1m.

Previous work has been done within the project to establish
a real-time navigation system using visual sensors [3[], [19].
This is one of the key functionalities for the HAUV to perform
the inspection in a location-aware manner, which also provides
the basic requisition for active path planning in different
scenarios [22]. This work is mainly motivated by improving
the real-time navigation robustness and reliability in camera
inactive conditions, such as turbid water environment.

IV. METHODOLOGY

In this section, we describe the proposed acoustic SLAM
system in detail. An overview of the approach is given
in Fig.[] A pose-graph SLAM back-end is used to esti-
mate the vehicle’s full 6 degree of freedom (DOF) poses,
{x}; = {[z,y,2,¢,0,¢]}; given all constraints between
poses estimated from sensor measurements. Fig. [3] depicts
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Fig. 2: System flowchart: The proposed algorithm is supported by a pose-graph SLAM back-end. It optimizes the vehicle poses given all constraints sensor
measurements. Raw sonar frames are passed through a saliency test where salient frames are considered for loop closure proposal based on potential information
gain. Marginalized pose constraints, after local ASFM, will be fed to the SLAM back-end providing drift correction from sonar measurements.
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Fig. 3: Graphical model of pose-graph SLAM using constraints from local FLS bundle adjustment. An example of loop closure clique is marked in red

(4, 4, k). The constraint factors from local ASFM are colored in blue.

the general graphical model of our pose-graph representa-
tion. Each node in the graph, x;, corresponds to a vehicle
pose with a sensor measurement associated. Two types of
constraints from sensor measurements are considered in this
context: odometry measurements from the DVL and inertial
measurement unit (IMU), and sonar constraints from the FLS
local ASFM (described later in detail in Section [V-B)). We
assume independent Gaussian noise for both odometry and
sonar measurements. The measurement model for odometry
is given by:

z;')dom = f(xiﬂxi+1) + Wi, ey
where f() denotes the generative model of odometry between
two poses and w; is Gaussian noise with its covariance scaled
proportional to the elapsed time separating the poses x; and
Xi+1-

To model the constraints provided by FLS images, we
propose to use marginalized pose constraints from a local
ASFM problem within a clique of loop closure poses. We
will give a brief introduction of sonar geometry and sonar-
based ASFM in Section [V-A]and Section Then we give
more details about how we provide an advanced loop closure
hypothesis proposal and feature matching that improves the
robustness of the sonar based ASFM in Section [V-C] and
Section respectively.

A. Sonar Frame Geometry

The FLS sends out acoustic waves across the field of view
(FOV). Then an array of transducers observes reflected signal
from the scene and returns measurements in the form of range
and bearing (7, ). The limitation of this type of sonar lies in
the ambiguity in elevation (¢). The measurement for each data
point (r, #) can originate anywhere on the arc defined by (r, §)
in the spherical coordinate system centered at the projection
center of the sonar head, as depicted in Fig. ]

Fig. 4: Forward-looking sonar geometry.

In a local Cartesian coordinate system as defined in Fig. ]
the coordinates of a 3D scene point P can be converted from
the spherical coordinates as follows:

X r cos 6 cos ¢
P=|Y,| = [rsinfcos¢ 2)
Zs rsin ¢

The raw measurement of P, (r,0), can be converted to
a 2D image for easier interpretation and post processing.
The specific manner in which image conversion occurs can
vary depending on the application scenario. In this work, we
leverage one of the most common: the Cartesian coordinate
image conversion. Under this conversion, a 3D point P is
projected on the image plane (¢ = 0):

Ty
p= = _ 3)
v v (Tma;c Xs/COS(b)
where (u,v) is the pixel location centered at the upper left
corner of the sonar image and [w, h] are the width and height
of the image. ~y is a scaling factor between the image pixel
space and the physical space, which is given by:
w

T 27 maz SIN(Omaz/2)’
where 6,4, is the sonar FOV of bearing.

“4)
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B. FLS Structure from Motion

Given the geometry of imaging sonars described in
Section [V-A] we can build a local ASFM problem within
a small set of sonar frames by modeling both the odometry
measurements and sonar feature measurements. We consider a
three-frame ASFM in the implementation. It is straight forward
to generalize the work over any number of frames.

The ASFM solves for the maximum a posteriori (MAP)
vehicle poses and landmark positions © = {x;, P, } given all
the measurements Z = {z;;*"", z;7"*"} in a given clique:

O* = argmaxy p(6|Z) = argmax, p(©)p(Z|©). (5)

In the ASFM setting, the poses in a clique are not necessar-
ily sequential. Instead of direct odometry measurements from
the sensors, we use relative pose-to-pose constraint from the

current SLAM estimate, given by:

Zf}"ior _ f(iiaij) + sz;“ior7 (6)
where X; and X; are pose estimates from the SLAM back-end,
and wa;‘inr is given by the propagated covariance of f(X;,X;).
We define sonar measurement as:

zf’r(;znar = h(Pm?Xi) + Vim, @)
where h() denotes the generative model that converts a land-
mark position P, to the local frame of vehicle pose x;, then
projects the landmark on the image plane following Eq. [3]
Vim denotes the Gaussian noise associated with the feature
measurement on the sonar frame. We model the measurement

uncertainty proportional to the radius of the detected key point.

The whole ASFM is then a solution to the least squares
problem of:
sonarH%

0" = argming [S5,_ B4 [[1(Pn, X;) — 257,

+ 3 S (ki %) — ZZ—MOTH%], ®)
where M is the number of landmarks that can be detected in all
the sonar frames in the ASFM clique and /N is the number of
poses in the clique. Mahalanobis distance (||x||3 = xT X ~!x)
is used to measure all the residuals. Note one implementation
detail is that we inflate the uncertainty of the relative odometry
constraint in the z-axis to compensate for the spatial ambigu-
ities in the biased motion pattern particular to the ship hull
dataset.

After the optimization, we take the marginalized odometry
constraints as new pose constraints for the SLAM back-end,
which is given by:

Z;‘XjSFM _ f(X*’ivx*j) _~_w7.3_SFM. (9)

C. Saliency Aware Loop Closure Proposal

To ensure real-time performance of the system, an efficient
hypothesis proposal system is essential. This system will
propose loop closures of sonar frame cliques to build a local
ASFM problem. The selection of these loop closure cliques
is based upon the evaluation of both potential information
gain given successful registration and the estimated saliency
of the underlying sonar frames (a proxy for potential matching
quality).

The use of information gain for link proposal was intro-
duced by Ila, Porta, and Andrade-Cetto [23] in which one

only adds informative links to keep the SLAM graph compact.
Kim and Eustice [3]] also extend this approach for loop closure
hypothesis proposal between camera images. The information
gain of a new measurement between two nodes under the
assumption of a jointly Gaussian distribution is given by:
1. S|
L=H(X) - H(X|z)) = 5 In 1o
where H(X) and H(X|z;;) is the prior and posterior entropy
of the graph. R is the measurement covariance and S is the
innovation covariance.
Y Xij

S =R+ [H;,H,] [Eﬁ 5 (11)

The above equation can be extended to the case of several
measurements:

(10)

] H;, H;]"

Si Sy S 18%18
Sk =R HH D B Ny H" (12
ki Dkj  Bkk

where R here becomes the covariance of the new measurement
Znew = (Zij,Z;;) and H is the corresponding Jacobian matrix
of Z,¢w. They are given by:

Yoz Dz
R, .. = ZijZij ZijZik 13
bk {Zzikzij Zzik,zik:| (13)
Hju HZ1] 0
H= [Hf’“’“ (J) Hz‘,k:| (14

Eq. |10| provides an evaluation of potential information gain
that will contribute the SLAM optimization problem. Another
advantage of the information gain metric is that it encourages
the cliques with higher complexity in motion pattern, which
decreases the chance of a singularity in the local ASFM
problem, as discussed in [8]], [9].

However, as we discussed in Section [l the sparse distribu-
tion of sonar features is a fundamental challenge in making
a successful ASFM constraint. Proposals based solely on
information gain can lead to a lot of failed attempts, due to
lack of features, decreasing the efficiency of the entire system.
To address this problem, we combine both information gain
and the sonar image saliency to determine which images to
use for proposing loop closures.

We analyze sonar frame saliency based upon the loca-
tion sensitivity of a global image feature learned using a
Convolutional Neural Network (CNN). In the authors’ previ-
ous work [24], we proposed a global image feature descriptor
using a CNN that provides informative features that helps
vehicle localization. Fig. [5] depicts the data flow for training
and run-time use of the feature model. For more details of
the model specifics the reader is referred to [24)]. In this
work, we propose an on-line saliency evaluation based on local
sensitivity of the CNN trained image feature given by:

S| — 13
Sa; = ~——————, p; € Bj, (15)

S b — plI3
where Sa; is the saliency score of frame j and B; is the
support area of frame j. Bj; includes all the N; frames
that contain overlapping observation areas with frame j.
p; = (x,y,2); is the vehicle location and p denotes the

mean vehicle location in B;. f; is a 3000 dimensional feature
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[24].

5]

N b O o e

-40 -20 y[m]

80 -60
Fig. 6: Saliency score estimated from image-level sonar feature with respect
to the vehicle position.
descriptor extracted from frame i and f denotes the mean
descriptor in B;. The saliency score captures the variability of
sonar features f; within a fixed physical support area around
frame j. Fig. [6 depicts the distribution of the scores evaluated
online as the vehicle moves with respect to the environment
(in this case the ship hull). Examples of the sonar frames with
associated saliency scores are given in Fig. [/| As can be seen,
the saliency score presents correlation with sonar image texture
diversity.

We use the proposed saliency score to prune the loop
closure proposals by evaluating information gain within only
the salient frames:

L(i,j,k) = 3 In [7oet)

Sa > A

S(i i) — ikl s

LG50 0 otherwise. (16)
Sa denotes the mean saliency score in the clique (4,7, k)
and )\ is a cut-off threshold for the saliency score. Ay = 5
was experimentally found to be optimal for the data gathered
in the ship hull dataset. The saliency aware information
gain L°(i,j,k) is used to propose and prioritize the cliques
considered in the local ASFM front-end.

Since the proposal of a clique of size m is a O(n™)
problem, we use a sampling-based method for the initial
proposals and feed them into a fixed-size queue prioritized
by L5(i, j, k).

In Section [V] we show that the saliency aware information
gain helps to prioritize the proposals that could construct a
well constrained local ASFM problem.

D. Sonar feature matching using constraint

The problem of constructing feature point associations be-
tween sonar frames is one of the most challenging tasks in
using an imaging sonar in a pose estimation and reconstruction
problem. Inspired by the work in [25] that leveraged pose
constraints in underwater image feature matching, we propose
to constrain the search area of feature matching by modeling
the uncertainty and constraints of all the variables in the
feature generative model. For a feature point p?, detected on
frame 7, we expect the corresponding feature point location in
frame j to be defined as:

P, = (P (P, dm), Xi, X;), (17)

(d)

Fig. 7: Example sonar frames with saliency scores. (a) (b) and (c) give
examples of high saliency sonar frames, where we can see strong texture
and features. (d) (e) and (f) give examples of low saliency frames, where
little texture or features can be recognized.

(e) Sa =1.99

where ¢,, is the elevation of underlying a 3D scene point
P,, and x;,x; are the corresponding vehicle poses. Given
the elevation ¢,, and feature point p’,, P,, can be uniquely
reconstructed following Eq. 2] and Eq. [3

From Eq. we can approximate a Gaussian probability
distribution of p/, using linear covariance propagation:

Mpzn - h(Pm(pzna¢m)axiaxj)‘¢m:0 (18)
. = I pxin I (19)

Where J is the Jacobian matrix of function he Xpi b xii
denotes the joint covariance matrix of p;,, ¢m,X;;. Note that
P, dm, (Xi,X;) are independent variables. We can simplify
Eq. [T9] by:

Sp =T S Jpi + 05, 36,35, ey Do Iy, - (20)
aim = @mae 18 the covariance of ¢,, since we have no cue of
¢m due to the ambiguity. Yy y; is the joint covariance of pose
frame x; and frame x; available from SLAM. The radius of
the feature scale of the keypoint is used to give the covariance
of the detected feature point Xy .

(P = 3, )5, (Pl — 1) = K7, 1)
where 2 follows a x2 distribution.

A set of example matching results is given in Fig. [§ and it
is also compared to nearest neighborhood matching. A-KAZE
detection and speeded up robust features (SURF) feature
descriptors are used in the implementation. It can be seen
that our matching approach results in many more correct
associations. While some outliers still exist, in the improved
matching approach, the ratio of inliers is high enough to
be effective in an ASFM framework. In the implementation
of the system an initial ASFM is conducted to enable the
identification of gross outliers that can be excluded from
a second ASFM pass. Only the feature points that can be
detected in every frame in the clique are used in the ASFM.

V. EXPERIMENT

In this section, we evaluate our proposed algorithm on real-
world data collected in a ship hull inspection application.
We provide quantitative and qualitative results evaluating the
vehicle localization accuracy of the proposed SLAM algorithm
using FLS as the only perceptual sensor. During the ship
hull inspection, the HAUV is operating in a GPS-denied
environment with no external reference set up. No ground
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Fig. 8: Sonar feature matching using constraints. The first column gives sonar image ¢ with detected feature points marked in red. The second column gives
sonar frame j. Expected correspondent location of the feature points in frame j is marked in red on frame j. Searching area in frame j is marked in green. The
third column gives feature matching results using a constrained searching area. The fourth column gives feature matching results using the nearest neighboring

matching searching in the whole image.

7 [m] ‘ Mission 1 - Mission 2 - Mission 3 - Mission 4 - Mission 5 - Mission 6

Fig. 9: SLAM missions collected in the inspection of the SS-Curtiss in 2014.
This figure depicts six missions in a common reference frame.

TABLE I: SLAM inference statistics. We record the process time with or
without Saliency information (Sa.) in the loop.

Mission 1 2 3 4 5 6
Number of frames 2240 2210 | 4389 2987 2597 5440
Number of salient frames | 113 609 1142 569 874 1037
Mission duration [min] 40.0 36.3 74.6 49.0 46.6 98.8
Process w/o Sa. | 72.1 76.3 170.0 | 108.1 | 939 252.2
time [min] w/ Sa. 43 2211 | 43.0 223 333 471
Speed up w/o Sa. | 0.55x | 0.48x | 0.43x | 0.45x | 0.49x | 0.39x
over real time | w/ Sa. 9.30x | 1.64x | 1.73x | 2.20x | 1.40x | 2.09x

truth is available on vehicle localization. To provide better
evaluation of the proposed method, we compare the estimated
trajectory with recovered vehicle poses using an off-line

CAD model-assisted bundle adjustment framework reported
by Ozog and Eustice in [[10]]. This offline method leverages
visual measurements as well as other on-board sensors with
exhaustive feature correspondence searching, which provides
a reasonable benchmark on the localization accuracy for this
application under clear water quality. We also compare the
results to dead reckoning localization as a baseline.

The dataset used in our experiment comes from the inspec-
tion of the SS-Curtiss in 2014. A set of trajectories around
different portions of the ship hull is included in the experiment,
focused on areas that exclude the rudder and screws. Fig. ]
depicts the spatial distribution of each trajectory. Detailed
statistics of each trajectory as well as SLAM inference in-
formation are summarized in Table [l

All the experiments are conducted on a Lenovo laptop
with an Intel(R) Core(TM) i7-3840QM CPU@2.80GHz and a
Quadro K2000M GPU. The sonar image descriptive feature
is extracted on a separate thread through the GPU, while
everything else is implemented single threaded on the CPU.
We use Ceres Solver [26] as the optimization solver. The
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Fig. 10: Trajectory estimation result of Mission 2. As the drift accumulates,
the constraints from the sonar local structure from motion are able to correct
the trajectory towards the benchmark trajectory. Our propose method provides
promising drifting correction on the X axis in this single mission. On the Y
axis, correction is presented when the error is relatively large, but it is less
obvious than the correction on the X axis.

process efficiency meets the real time requirement based on
the current implementation, as shown in Table m

Table [[l] depicts SLAM localization accuracy with respect
to benchmark positions compared with dead-reckoning tra-
jectories. To account for the variability introduced by the
randomization of the sample-based initial proposal selection
method introduced in Section [V-C| we conduct 20 trial runs
for each mission. The mean and standard deviation of the
absolute error in each trial are reported.

It can be told from Table [[I] that the incorporation of the
sonar constraint is able to improve the localization accuracy in
most of the missions. The improvement becomes more obvious
when the relative error is higher, mainly due to the limited
resolution of the sonar image with respect to the corresponding
physical sensor footprint. To better illustrate how the constraint
from FLS is helping to correct the drift, the SLAM trajectories
of Mission 2 compared to other methods are given in Fig. [I0]
with its sonar constraints depicted in Fig. [[T} It can be seen
that the benefit of the FLS local structure from motion front
end becomes more obvious as the accumulated error increases.
It is also observed from both Fig. [I0] and the overall statistics
results that the proposed algorithm presents better performance
on the X axis comparing to the Y axis. This is mainly due to
the different spatial resolution captured in the sonar image
frames for our specific application. As depicted in Fig.[T]
much lower spatial resolution is captured in the image on the
Y axis as the HAUV performs the inspection with consistent
distance and heading towards the ship hull.

a few failure cases exist where the sonar constraint is not
able to improve the localization accuracy. For example, in
Mission 1, the vehicle is performing a surface mission at the
water line of the ship hull. In this type of mission, motion
patterns within any loop closure cliques are close to pure
translation, which is a singular pattern that causes failure to
ASFM as discussed in [8]]. This is an example of how, given
the properties of acoustic imaging, sonar constraints are only
useful for recovering gross relative motion.

It should be noted that the corrections applied by the sonar
are more modest than typical SLAM corrections using optical
image approaches. This is mainly due to the much lower

0 —— —
5 10
y [m]
Fig. 11: FLS structure from motion constraints added to SLAM graph. The
results are shown in a time elevation map. Nodes in the trajectory are colored
by the saliency score associated with the sonar frames.
spatial resolution of the sonar, in the application of ship hull
inspection. This finding highlights that if water clarity permits,
optical constraints should be leveraged with a high priority.
Ultimately, we envision that the system should be able to
make use of both constraints within different parts of the same
mission depending on the environment, relative hull position,
and imaging geometry.
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Fig. 12: Success rate of hypothesis proposals with respect to saliency
threshold.

We also provide analysis on the loop closure clique proposal
approach by the success rate of all hypothesis proposals when
different saliency thresholds are used. Given a proposed hy-
pothesis clique, feature correspondence searching is conducted
and a local ASFM problem is created based on the matched
features. If the optimization of the resulting ASFM problem
converges, we mark the proposal as a successful proposal as it
provides sufficient feature association and motion diversity to
support a well-constrained ASFM problem. The success rate
of hypothesis proposals with respect to the saliency threshold
is given in Fig. [I2] The results show that the saliency aware
hypothesis proposal method is able to effectively suppress
proposals in the low saliency area, which provides sufficient
system efficiency to support real-time navigation as also
depicted in Table |I} If the threshold of the saliency score is
too high, however, the system becomes over-selected and the
ASFM success rate will drop resulting from lack of motion
variety among the frames.

VI. CONCLUSION

In this paper, we proposed a real-time acoustic SLAM
system for underwater robot navigation, which makes use of
the measurements from FLS images. We have demonstrated
a complete end-to-end acoustic SLAM system, particularly
addressing the practical challenges of using FLS features,
including data association, key frame selection and outlier
rejection. The proposed method is evaluated on a real-world
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TABLE II: SLAM estimation accuracy with respect to camera-image-based offline bundle adjustment for each mission. In this table we compare the localization
accuracy of our proposed algorithm (Prop.) and the dead reckoning (DR). For the proposed method, the means (1) and standard deviations (o) of absolute
error over 20 runs for each mission are given (u[o]). The smallest error for each mission in each axis is in bold.

this problem.
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(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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