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Abstract— This paper reports on a system for estimating
the alignment between robotic trajectories under constrained
communications. Multi-agent collaborative inspection and nav-
igation tasks depend on the ability to determine an alignment
between robotic trajectories or maps. The properties of the
underwater environment make determining such an alignment
difficult because of extreme limitations on communication and
the lack of absolute position measurements such as GPS.
In this paper, we propose a method that takes advantage
of convex relaxation techniques to determine an alignment
between robotic trajectories based on sparse observations of
a low-dimensional underlying feature space. We use a linear
approximation of the l2-norm to approximately enforce that the
estimated transformation is an element of SO(2). Because the
relaxed optimization problem is linear, we can take advantage
of existing convex optimization libraries, which do not require
an initial estimate of relative pose. In addition, because the
proposed method does not need to perform data association, we
can align trajectories using low-dimensional feature vectors and
can thus decrease the amount of data that must be transferred
between agents by several orders of magnitude when compared
to image feature descriptors such as SIFT and SURF. We
evaluate the proposed method on simulated datasets and apply
it to real-world data collected during autonomous ship hull
inspection field trials.

I. INTRODUCTION

Multi-agent underwater inspection and mapping tasks de-
pend on the ability to determine an alignment between
multiple robot maps or trajectories. This is challenging in
underwater environments where global positioning systems
are unavailable and where acoustic positioning systems re-
quire extensive setup and calibration [1]. Moreover, in fully
submersed scenarios, communication is limited to a few
bits per second making data transfer a significant system
constraint [2].

Existing methods for estimating this alignment rely on
the matching of discrete feature points observed by mul-
tiple robotic vehicles [3]. However, performing this data
association requires that feature points transfer-ed between
agents be uniquely identifiable. This is usually accomplished
through the transfer of high dimensional feature descriptions
that often surpass the throughput available in the underwater
environment.

This paper proposes a method that efficiently estimates
the rigid body transformation between reference and query
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Fig. 1: An overview of the proposed trajectory alignment algorithm.
Given sparse observations of an underlying feature space, we
formulate a linear optimization problem that seeks to align a query
trajectory with a reference trajectory. We do this by iterativelly
creating a linear cost that minimizes feature distance and optimizing
over the transformation that minimizes that cost.

robot trajectories based on a sparsely sampled underlying
feature space. Because we formulate the problem as a convex
optimization problem, our method avoids performing data
association and decreases the amount of data that needs to
be transferred between robotic vehicles by several orders of
magnitude. In addition, because our formulation is convex,
our proposed method is not dependent on initialization and
does not require a prior estimate of the relative transforma-



tion between trajectories. Finally, our method is paralleliz-
able and takes advantage of existing commercial optimiza-
tion libraries to increase the efficiency of the optimization
process.

The contributions of this paper include the following:
1) The development of a system for alignment and local-

ization of robot trajectories that:
i) Relies only on low-dimensional feature observations.
ii) Avoids performing data association.
iii) Does not require an initial alignment estimate.

2) A novel linear approximation based method for ap-
proximate optimization over SO(2).

3) A parallelized implementation of the proposed method.
The remainder of this paper is organized as follows:

In §II, we provide an overview of related areas of work.
In §III we formalize the trajectory alignment problem. In
§IV, we present a method that takes advantage of convex
relaxation techniques to generate a linear cost function that
is minimized when query feature points are placed near ref-
erence feature points with similar value. In §V, we present a
novel method that uses linear programming to approximately
optimize over SO(2). In §VI, we provide an outline of the
full system and our released implementation. We evaluate the
proposed algorithm on simulated datasets in §VII and apply
it to multi-agent ship hull inspection in §VIII. Finally, we
conclude in §IX.

II. RELATED WORK

Multi-agent collaborative mapping has been heavily re-
searched and a variety of methods have been developed
for estimating the relative transformation between robot
coordinate frames. Early methods assumed that vehicles were
able to observe one another directly [4–6]. These methods
relied on a single direct observation to determine the relative
pose (position and orientation) of the two agents. Later,
maximum likelihood based simultaneous localization and
mapping (SLAM) methods enabled the use of multiple ob-
servations by estimating the most likely alignment and map
given all the observed measurements [7–11]. These methods
often relax the assumption that vehicles must be able to
observe one another directly. Instead, features present in
the environment observed by both vehicles are co-registered
and used to relate the pose of the two vehicles. Most
recent methods for determining multi-agent alignment are
based on co-registering data in this way [3, 12–14]. While
co-registering observed data works well in many cases, it
depends on the ability to transmit large amounts of data
between vehicles. This work focuses on developing methods
that minimize the amount of data that must be transmitted
between agents.

Our work is also related to research in the area of terrain
based navigation [15–17]. In the underwater environment,
this refers the use of a known bathymetric map of the seafloor
to improve navigation estimates. These methods, however,
are more focused on improving the estimate of a single
robot’s trajectory than on determining the alignment between
multiple trajectories. In addition, these methods require an a

prioi map of the environment, while our ultimate goal is to
directly align the trajectories of two robotic vehicles that are
simultaneously performing an inspection/mapping task in a
potentially unknown environment.

There has also been significant recent interest in the SLAM
and computer vision communities in developing estimation
algorithms that leverage convex optimization techniques to
avoid the need for an initial guess [14, 18–21]. This is
especially useful in the underwater environment where global
positioning system (GPS) is not available and global mea-
surements of position can be hard to come by. In 2014, Li
et al. [21] proposed a method that uses the convex hull of
a set of dissimilarity points to estimate the affine transfor-
mation that must have occurred to transform a set of points
observed in one image to a similar set of points observed in
another. Their proposed method results in a linear (convex)
cost function that can take advantage of existing optimization
libraries and does not require an initialization. However,
to apply their method to the trajectory alignment problem,
we need to ensure that the estimated trajectory is rigid as
opposed to affine.

Optimization over the group of rigid body transformations
is generally non-convex making it hard to guarantee the true
optimum. Recent works have investigated convex relaxation
based methods for performing optimization over the group
of rigid body transformations (the special euclidean group
SE(d)) [18, 19]. Specifically, these methods relax optimiza-
tion over the set of valid rotation matrices SO(d) to opti-
mization over the convex hull of SO(d). These methods work
well in many cases. However, they fail to enforce that the
estimated transformation be a valid rigid body transforma-
tion. The optimization problem used in our method also takes
advantage of convex relaxation techniques, however, we use
a linear approximation of the `2-norm to add an additional
set of constraints to the optimization that collectively enforce
that the estimated transformation be approximately rigid.
This results in more accurate transformation estimates than
optimization over the convex hull of SO(d).

III. PROBLEM FORMULATION

In this section, we outline the need for communication
constrained trajectory alignment in underwater inspection
and then formalize the trajectory alignment problem.

A. Trajectory Alignment w/o Data Association

In multi-agent inspection tasks, multiple vehicles navigate
through the environment collecting information and estimat-
ing a map of the structure or scene they are inspecting.
Some form of these local maps are then transmitted between
vehicles allowing the agents to use the data collected by
other vehicles for navigation, path planning, or global map
generation. However, before an agent can use the data col-
lected by another agent, it must first determine an alignment
between its own local trajectory/map and the trajectory/map
received from the other agent. Traditionally, this alignment
is determined by matching locations in the environment
observed by both agents [4–6].



However, communicating large amounts of data such
as point clouds or high-dimensional image feature vectors
between vehicles is often not practical in the underwater
domain. While one approach is to limit data transfer by
prioritizing data that is most likely to be useful, our approach
is to cut out the transfer of this high-dimensional data
completely. Instead, we take a descretized version of the
robot trajectory and summarize information observed near
each individual robot position using a small low-dimensional
feature vector. We then align the robot trajectories by trying
to find a rigid body transformation that places poses with
similar descriptions near one another, without trying to match
individual features. Taking this approach allows us to limit
the data that must be transferred between vehicles to the
discretized set of positions and the associated set of low-
dimensional feature vectors.

B. Convex Trajectory Alignment

Formally, our goal is to align a query trajectory with a
reference trajectory based only on low dimensional feature
vectors describing the environment at each position visited
by the two trajectories.

We denote the positions visited by the reference trajectory
by {pa

1 , · · · ,pa
na
} and the associated feature vectors by

{ξa1 , · · · , ξana
}, indexed by i. Similarly, the query trajectory

positions and feature vectors are denoted by {pb
1, · · · ,pb

nb
}

and {ξb1, · · · , ξbnb
}, respectively, indexed by j. We then frame

the trajectory alignment problem as an optimization that
seeks to find a transformation that transforms positions in the
coordinate frame of the query trajectory into the coordinate
frame of the reference trajectory, such that when the points
{pb

1, · · · ,pb
nb
} are transformed they lie nearby points in

{pa
1 , · · · ,pa

na
} with similar feature values. Thus, the feature

vectors ξ only need to describe the local environment as
opposed to uniquely identify a specific point and can, as a
result, have a much lower dimension.

Using a formulation similar to [21], we define a trans-
formation function T ab

j (Θ) : Rn 7→ Rd that maps the j-th
query point, pb

j , to a position represented with respect to the
reference trajectory coordinate frame. Specifically, we define
T ab
j (Θ) as

T ab
j (Θ) = Rabpb

j + tab, (1)

where Θ = (Rab, tab) are the parameters of the function.
Together, Rab ∈ SO(d) and tab ∈ Rd parameterize a global
rigid body transformation relating the local coordinate frames
of the two vehicles. The points pb

j are fixed in the function
T ab
j and we thus define nb transformation functions, one for

each feature in the query trajectory.
We also define a function cj : Rd 7→ R that takes a

position represented in the reference trajectory coordinate
frame, pa ∈ Rd, and calculates the feature dissimilarity
between ξbj and the given position. As before, because
there are nb query feature points, we define nb different
dissimilarity functions cj , j = 1, · · · , nb. §IV provides more
detail on how these functions are defined.

With these definitions, we can formulate the final overall
objective function as follows:

minimize
Rab∈SO(d)

tab∈Rd

nb∑
j=1

cj(T
ab
j (Θ)) (2)

where cj(T
ab
j (Θ)) is the dissimilarity between the feature

vector ξbj and its new transformed position in the reference
trajectory coordinate frame. Solving this optimization prob-
lem would allow us to find the transformation that minimizes
the dissimilarity between query feature points and their
associated positions in the reference trajectory coordinate
frame.

Note, that while our formulation is based on that of [21],
their method assumes the transformation is affine, while we
restrict it to be an isometric (or rigid body [22]) transforma-
tion. This assumption on their part, results in the associated
terms of their cost function being affine and the resulting
optimization problem being convex. However, when dealing
with physical transformations between coordinate frames, an
affine transformation does not represent reality and a rigid
body transformation must be used. This makes our resulting
optimization problem non-convex and more difficult to solve.
In §V we explain a novel method to approximately optimize
over SO(2).

IV. CONVEX TRANSFORMATION ESTIMATION
VIA THE LOWER CONVEX HULL

In this section, we discuss the formulation of the dissim-
ilarity functions cj , j = 1, · · · , nb that measure the feature
dissimilarity of the feature vector ξbj and a position in the
reference trajectory coordinate frame. We then compose the
dissimilarity functions cj with the transformation function
(1) so that we can optimize over the transformation param-
eters as opposed to individual pose positions. There are two
cases that we cover:

1) The 2D case where both maps lie in a 2D world(d = 2)
2) The known depth case where both maps lie in the 3D

world(d = 3), but one coordinate is known.

We first cover the 2D case which follows directly from [21].
We then generalize this to the case with known depth.

A. Convex Dissimilarity Function Definition in 2D

Following [21], we denote the feature dissimilarity be-
tween ξai and ξbj by Cab

ij . If we use every possibly pairing,
there are na×nb of these values and they can be calculated
before performing registration via an arbitrary dissimilarity
function. However, because we want to find a transformation
as opposed to a discrete matching, we create nb continuous
and convex feature dissimilarity functions cj , j = 1, · · · , nb.
Each cj takes a position represented with respect to the
reference trajectory coordinate frame and returns a predicted
lower bound on the dissimilarity of that position with respect
to the feature vector ξbj . We derive this function by taking



the lower convex hull of the following point cloud:
xa1 ya1 Cab

1j

xa2 ya2 Cab
2j

...
...

...
xana

yana
Cab

naj

 . (3)

For a given feature vector ξbj with d = 2, the point cloud (3)
defines discrete points in a space that relates 2D positions in
the reference trajectory coordinate frame to their associated
dissimilarity value with respect to ξbj . Because this space is
3D, we can calculate the convex hull of these points using
an algorithm like [23]. The lower convex hull with respect
to the dissimilarity value dimension is made up of a set of
planes (facets) that represent lower bounds on the discrete
dissimilarity values Cab

ij for a given fixed j. These planes
can be found by selecting the planes that have normal vectors
with a negative component in the dimension corresponding to
dissimilarity. Assuming there are Mj planes in the lower con-
vex hull for feature ξbj , we can define these planes using the
equations amx+bmy+cmCm+dm = 0, for m = 1, · · · ,Mj ,
where x and y correspond to the position dimensions and Cm

corresponds to the dissimilarity dimension in the point cloud
(3). We then rearrange these equations to arrive at the plane
functions Cm = rmx+ smy + tm, for m = 1, · · · ,Mj that
calculate the predicted dissimilarity given a specified feature
position. Finally, we can now define the feature dissimilarity
function cj as

cj([x, y]
>) = max

m
(rmx+ smy + tm), m = 1, · · · ,Mj .

(4)

This function is both continuous and convex and its
minimization can be transformed into an equivalent linear
program [24]:

minimize
uj ,x,y

uj

subject to rmx+ smy + tm ≤ uj ,
m = 1, · · · ,Mj .

(5)

Using the dissimilarity function (4) and the linear program
(5) enables us to efficiently solve for an arbitrary 2D position
[x, y]> ∈ R2 that minimizes the dissimilarity with respect to
ξbj for a given value of j. The next section describes how
to compose cj( · ) with the transformation T ab

j (Θ) which
enables us to optimize over the parameters Θ = (Rab, tab).

B. Composition with the Transformation Function

Our goal is to estimate the rigid body transformation
between respective trajectories. As such, rather than estimate
the individual locations of points, we estimate the parameters
of the transformation, Θ, or more specifically the parameters
Rab and tab. We do this by minimizing cj(T ab

j (Θ)), for all
j = 1, · · · , nb, as opposed to cj([x, y]>) directly.

Remembering that T ab
j (Θ) ∈ Rd represents the trans-

formed coordinates of pb
j , we represent the function that

calculates the first coordinate of T ab
j (Θ) by fj(Θ) and the

second coordinate by gj(Θ). Specifically, define

fj(Θ) = Rab(1)pb
j + tab(1) (6)

and

gj(Θ) = Rab(2)pb
j + tab(2), (7)

where the notation (i) denotes the i-th row of the given matrix
or vector and again pb

j is fixed for both fj and gj .
Using this, we can rewrite (5) to be a minimization of

cj(T
ab
j (Θ)) over Θ as

minimize
uj∈R

Rab∈SO(2)

tab∈R2

uj

subject to rmfj(Θ) + smgj(Θ) + tm − uj ≤ 0,

m = 1, · · · ,Mj .

(8)

If the elements of the matrix Rab are treated as individual
elements in Θ, then both fj(Θ) and gj(Θ) are affine
functions of Θ and rmfj(Θ) + smgj(Θ) + tm − uj is also
an affine function of Θ and uj . This was noted in [21].
However, in our case the resulting problem (8) is non-convex
because of the implicit constraint that Rab ∈ SO(2). §V
proposes a solution to this problem.

The next section explains how this can be generalized to
three dimensions when depth is known.

C. The Known Depth Case

The prior section is defined with a planar world in mind.
However, the real world exists in three dimensions. Although
the prior section can be generalized to three dimensions, in
the underwater domain we can take advantage of the fact that
we can accurately measure depth and just estimate translation
in the xy-plane and rotation about the z (vertical) axis. Under
these assumptions, we can restrict T ab

j to the following:

T ab
j (Θ) =

[
Rab

z 0
0 1

]
pb
j +

[
tabz
0

]
, (9)

with Rab
z ∈ SO(2), tabz ∈ R2, and pb

j ∈ R3. This restriction
simplifies the problem and enables us to work on SO(2) as
opposed to SO(3) when relaxing the optimization problem.

In addition, if the feature value varies with depth, then we
can limit the reference trajectory feature points that need to
be paired with each query feature ξbj to those with a depth
within a threshold γ of the estimated depth of pb

j . This allows
us to decrease the size of the point cloud (3) and tighten the
lower bounds defined by the planes in the lower convex hull.

V. ENSURING THE TRANSFORMATION IS RIGID

The ultimate optimization problem we want to solve, (2),
is non-convex because of the implicit constraint that Rab

(or equivalently Rab
z ) ∈ SO(d). This makes it difficult to

ensure that the solution obtained is globally optimal without
a good initialization. However, this constraint is essential
because it ensures that the estimated transformation is rigid
as opposed to affine. A general affine transformation allows
scaling and distortions of the object in addition to rotation



and translation. Physical rigid body transformations on the
other hand preserve distance between points and thus do not
allow scaling or distortions [22].

A. Definition of SO(2) and conv SO(2)

Formally, SO(d) is defined as follows:

SO(d) =
{
R ∈ Rd×d : R>R = RR> = I,detR = 1

}
.

(10)

In the two dimensional case, an alternative definition for (10)
is:

SO(2) =

{
R =

[
c −s
s c

]
∈ R2×2 : c2 + s2 = 1

}
.

(11)

A variety of recent papers have investigated the use of the
convex hull of SO(d) [18, 19]:

conv SO(2) =
{

R̃ =
[
c−s
s c

]
∈ R2×2 :

[
1+c s
s 1−c

]
≤ 0

}
.

(12)

These methods relax optimization over SO(d) to optimiza-
tion over the smallest convex set of matrices containing it.
In this case the set of valid rigid body transformations lies
on the border of the convex hull. However, if the minimum
of the cost function lies within that convex hull as opposed
to outside it or on its border, then these methods still return
a transformation that scales and/or distorts the transformed
trajectory. While rounding to the nearest rigid body trans-
formation is possible, if the estimated transformation is no
where near valid then the rounded solution tends to be
inaccurate.

Instead of using the convex hull of SO(2), we break the
problem up into linear sub-problems, within which we can
use a linear approximation of the `2 norm [25] to enforce that
c2+s2 ≈ 1 and thus that the transformation be approximately
rigid.

B. Linear Approximation of `2

Celebi et al. [26] evaluate several potential linear approx-
imations of the `2-norm. According to their evaluation, the
approximation presented by Barni et al. [25] has the lowest
maximum error. This approximation states that given a vector
x = [x1, x2, · · · , xn]> ∈ Rn,

||x||2 ≈ δ∗
n∑

i=1

α∗i x(i), (13)

where (x(1), x(2), · · · , x(n)) is a permutation of
(|x1|, |x2|, · · · , |xn|) such that x(1) ≥ x(2) ≥ · · · ≥ x(n),
and δ, αi are parameters optimally given by (See (20) and
(21) in [25]):

α∗i =
√
i−
√
i− 1, δ∗ =

2

1 +
√∑n

i=1 α
∗2
i

. (14)

In the two dimensional case, α∗1 = 1, α∗2 =
√
2 − 1,

and δ∗ = 2

1+
√

1+(
√
2−1)2

≈ 0.96044. In addition, in the

two dimensional case, the sorting of (|x1|, |x2|) can be

Fig. 2: The planes in these plots represent a piece-wise linear
approximation of the `2-norm of x = [x1, x2]

> (16). The pink
circle represents where the `2-norm is one, ||x||2 = x2

1 + x2
2 = 1.

implemented via a maximization term, and (13) can be
rewritten as

||x||2 ≈ δα1 max(|x1|, |x2|) + (15)
δα2(|x1|+ |x2| −max(|x1|, |x2|).

Implementing max and absolute value in convex optimiza-
tion problems is not always possible. Instead of actually
evaluating the max and absolute values, we can enumerate
the possible values and rewrite (15) as:

||x||2 ≈ max(δ(α1x1 + α2x2),

δ(α1(−x1) + α2x2),

δ(α1(−x1) + α2(−x2)),
δ(α1x1 + α2(−x2)),
δ(α1x2 + α2x1), (16)
δ(α1(−x2) + α2x1),

δ(α1(−x2) + α2(−x1)),
δ(α1x2 + α2(−x1)))

This function is shown plotted in Fig. 2.

C. Breaking the Optimization into Linear Sub-Problems

Using (16) to enforce unit norm is still difficult because
enforcing the max operation requires simultaneous mini-
mization and maximization, instead, we split the problem
into eight sub-problems in a way that enables us to ignore the
max operation. Each of the eight terms in (16) correspond to
a single plane in Fig. 2. Additionally, each term is maximal
only when the signs and relative values of x1 and x2 meet
certain conditions. These conditions correspond to sections
of the unit circle (Fig. 3(b)) and can be enforced with linear
constraints on x1 and x2.

Specifically, we can enforce that x lie within any given
section by adding the corresponding choice of the following
constraints to the optimization problem:

x1 ≤ x2 or x2 ≤ x1
x1 ≤ 0 or x1 ≥ 0 (17)
x2 ≤ 0 or x2 ≥ 0.

Within a given section, only a single plane is maximal and
the approximation of `2 becomes linear (Fig. 3(a)). Thus, we



(a) Division into Sections (b) Unit Circle

Fig. 3: By dividing the optimization into eight sub-problems, we
no longer need to execute the max operation in (16) and each sub-
problem then becomes convex. The red lines in (a) demonstrate
where this division takes place. These divisions correspond to the
unit circle (b) and the enumerated sign/max combinations in (16).

can enforce that our solution be close to unit norm by adding
the following linear constraint to the problem:

δ(α1xp + α2xq) = 1 (18)

where xp and xq represent the appropriately selected el-
ements of {x1,−x1, x2,−x2}, such that they match the
respective maximal term in (16). The maximum error of this
approximation (18) is related to, but likely slightly higher
than εmax as defined in (4) and Table 3 of [26].

Formulating the problem in this way makes each sub-
problem a linear program, and so we can take advantage
of existing efficient optimization libraries to solve each sub-
problem to a global minimum [27]. In addition, because
the sub-problems divide the space and optimize over the
same linear cost function, the solution to the sub-problem
with lowest optimal value is identical to what the solution
would be if we were able to constrain (16) to be equal to 1.
Finally, the sub-problems are independent and thus can be
parallelized.

VI. THE FULL SYSTEM

We are now able to create a general system for aligning
robot trajectories.

A. The Final Optimization Problem

We can rewrite the optimization problem (2), by combin-
ing (8), (17), and (18).

minimize
uj∈R
c,s∈R
tab∈R2

nb∑
j=1

uj

subject to rmjfj(Θ) + smjgj(Θ) + tmj − uj ≤ 0,

mj = 1, · · · ,Mj , j = 1, · · · , nb

Rab =

[
c −s
s c

]
c ≤ s or s ≤ c
c ≤ 0 or c ≥ 0

s ≤ 0 or s ≥ 0

δ(α1xp + α2xq) = 1,
(19)
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(d) Aligned Query Trajectory

Fig. 4: The feature space for a sample simulated trial is shown
in (a). The reference and query trajectories are then generated
as shown in (b) and (c). To simulate the fact that the relative
transformation between trajectories is unknown, we then randomly
rotate and translate the query trajectory and use the proposed
and evaluated methods to estimate the inverse of the random
transformation. The resulting trajectories are shown in (d).

where the inequality constraints and xp and xq are chosen
according to the specific sub-problem.

Enumerating the possible combinations of these con-
straints results in eight sub-problems. Solving all eight sub-
problems and then selecting the solution with lowest cost
enables us to estimate a transformation to align the two tra-
jectories without an initial estimate of alignment. In addition,
this method enables us to avoid performing data association
and thus perform alignment based on relatively indistinct,
low-dimensional, feature observations. We then iterate over
this process with consecutively smaller regions of interest,
as explained in Section 4 of [21], to decrease the number of
reference trajectory points used to create the cost function
and thus increase accuracy.

B. Parallel and Feature Agnostic Implementation

We implemented the proposed system in c++. The released
implementation uses MOSEK [27] and multiple threads to
efficiently solve the linear sub-problems in parallel. The
released code can be found at the following link:
https://bitbucket.org/jmangelson/cte.

Our implementation and method are agnostic to the under-
lying feature space. When specifying a problem to be solved,
the user provides feature point positions and a function that
calculates the feature dissimilarity of a given pair of points.
As such, the specifics of the feature space being used and
the dissimilarity function are free to be chosen by the user.

In addition to our own proposed method for approximate
optimization over SO(2), we also implemented functionality
for estimating affine and symmetric transformations [21], as
well as rigid body transformations via conv SO(2) [19] for
comparison.



TABLE I: Comparison of the proposed linear programming
based method with other convex transformation estimation algo-
rithms. Standard deviation shown is after removing outliers outside
1.5*IQR, IQR=Inter-Quartile-Range.

Proposed SOConvHull [19] Symmetric [21] Affine [21]
Rotation Median SE 0.011 0.039 0.042 0.338
Rotation Stddev SE 0.017 0.096 0.095 0.498
Trans. Median SE (m2) 4.796 10.974 11.601 32.582
Trans. Stddev SE (m2) 6.770 18.219 20.318 57.370
% Approx. Valid Rotations 100.0 37.0 25.5 1.0
Avg Runtime (s) 41.444 29.527 25.416 23.926

VII. COMPARISON WITH EXISTING CONVEX
OPTIMIZATION METHODS

To provide quantitative results, we generated 200 synthetic
worlds with smoothly varying feature spaces. We then sim-
ulated both a reference and a query lawn-mower trajectory
within that space and randomly rotated and translated the
query trajectory. Finally, we compared the alignment results
from a variety of convex alignment methods formulated as
in §IV but with different types of transformation constraints.
Specifically, we compared our proposed linear programming-
based approach to methods based on [21] that allowed either
affine or symmetric transformations as well as a method
that enforced that the estimated transformation lie within the
convex hull of SO(2) [19]. Fig. 4 shows a sample simulated
trajectory and associated alignment results. The nominal
trackline width for this dataset was two meters and the
feature vector dimension was three.

Table I provides a summary of the comparison results. Our
proposed method outperforms other methods in all metrics
except for runtime. Note that the median translation squared
error for the proposed method is 4.796 meters squared while
the resolution of the tracklines simulated was two meters,
meaning that the median error is only slightly higher than
the resolution of the input data.

The current implementation uses four threads that indepen-
dently solve two linear programs each via the optimization
library Mosek [27]. However, the speed of the algorithm can
be additionally improved by increasing the number of cores
or by using a faster convex optimization library.

VIII. APPLICATION TO MULTI-AGENT AUTONOMOUS
SHIP HULL INSPECTION

We also tested this method on real-world field data col-
lected using a Hovering Autonomous Underwater Vehicle
(HAUV) performing autonomous ship hull inspection. We
used the sparse range returns of the Doppler velocity log
(DVL) to estimate the curvature of the hull. Then, by treating
the local curvature of the ship hull as a feature vector, we
are able to re-localize to an earlier trajectory using only the
DVL. Fig. 5 shows an alignment using this method.

Using the proposed alignment method limits the infor-
mation that needs to be passed between vehicles to six
fixed or floating-point values for each position visited by
the agent (including three position coordinates and three
curvature feature values), while the throughput needed to
transfer image features between agents would be on the order
of 1000-10000 fixed or floating-point values per position.

Thus, the proposed method results in a decrease in required
throughput of approximately 3-4 orders of magnitude.

The final accuracy of the alignment is dependent on the
distinctiveness of the features being observed as well as the
sampling resolution inherited from the reference trajectory.
However, as formulated, the proposed method is independent
of the specific feature and thus can be applied to whatever
feature set is most distinctive in a given environment, sub-
ject to the communication bandwidth available. In addition,
alignment can be further refined if desired using higher
dimensional data such as imagery once an initial estimate
of alignment has been obtained, thus minimizing the amount
of image data that must be transferred between agents.

IX. CONCLUSION

In this paper, we propose a method for aligning robot tra-
jectories that is linear and thus does not require initialization.
In addition, the proposed method aligns trajectories without
performing data association which decreases the amount of
information that must be transferred between agents. We
compared the existing method to similar convex methods that
fail to enforce that the estimated transformation be rigid. We
also applied the proposed algorithm to localization in the
context of multi-agent autonomous ship hull inspection.

Future work would include: extending the proposed ideas
to three dimensions and relaxing the assumption that the
query trajectory be contained within the convex hull of the
reference trajectory.
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