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ABSTRACT

Teams of autonomous robotic systems have the potential to have a dramatic positive effect

on our society. In the underwater domain specifically, collaborative multi-agent autonomous

systems have the potential to lead to significant increases in efficiency, safety, and data

quality. However, while autonomous systems have been widely accepted within structured

environments such as manufacturing plants and distribution facilities, they have not been

nearly as widely adopted in unstructured environments. The primary reason for this is that

the reliability of autonomous systems in unstructured environments has not yet reached a

level where it is cost and time effective to widely adopt such platforms. One key element of the

reliability of autonomous systems is the robustness of navigation and localization algorithms

to common failure cases such as outlier measurements, bad initialization, and inaccurate

characterizations of uncertainty. Accordingly, this thesis proposes methods for simultaneous

localization and mapping (SLAM), multi-agent map merging, trajectory alignment, and

uncertainty characterization that seek to address some of these failure cases.

First, we propose an algorithm for robust map merging that takes two pose graphs and a

set of potential loop-closures between them and selects a set of those potential loop-closures

that can be used to consistently align and merge the two maps. Our proposed algorithm

requires no initial estimate of alignment and can handle outlier ratios of over 90%. We take

advantage of existing maximum clique algorithms for increased efficiency and show that our

algorithm outperforms existing state-of-the-art methods.

Second, we propose an algorithm for localizing a query trajectory to a reference trajectory

based solely on low-dimensional data describing the environment around the robotic agent

at each position it visited. Our approach takes advantage of convex relaxation techniques

to avoid the need for initialization and data association, making it useful in cases where

high-dimensional data is unavailable. We compare our proposed method to other existing

convex optimization techniques and show that it better enforces a rigid body transformation

than other existing methods.

Third, we formulate the planar pose graph SLAM and landmark SLAM problems as

polynomial optimization problems and prove that the globally optimal solution to both can

always be found by solving a semidefinite program (SDP). Since SDPs are convex, this

xv



enables to guarantee that we can find the true maximum likelihood estimate (MLE) without

any initial estimate of the trajectory.

Fourth, we propose a framework for modeling the uncertainty of jointly correlated poses

using the Lie algebra of the Special Euclidean group. We then derive first order uncertainty

propagation formulas for the pose composition, pose inverse, and relative pose operations

when using the proposed framework. We evaluate using both simulated data and data

extracted from an existing SLAM dataset and show that our method leads to more consistent

uncertainty estimates than commonly used methods. Finally, we release a C++ library

implementation of the proposed method.

In summary, this thesis presents four methods for multi-agent map merging, trajectory

alignment, globally optimal SLAM, and pose uncertainty characterization that seek to ad-

dress some of the common failure cases of existing localization and mapping methods. Fur-

thermore, we demonstrate the performance of all of our proposed methods when compared

with other methods in the field.
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CHAPTER 1

Introduction

1.1 The Need for Reliable Multi-Agent Autonomy

Teams of cooperative autonomous mobile robotic systems have the potential to make a dra-

matic difference in our society. Over the past several decades, teams of robotic systems,

within structured domains such as the manufacturing and distribution industries, over the

past several decades, teams of robotic systems have made dramatic increases in safety, ac-

curacy, and efficiency and are widely adopted across the board.

While robotic teams have led to large changes within these domains, they have an even

greater potential to impact our day-to-day lives as they leave structured environments and

venture out into the wider world. Potential areas of impact for autonomous systems include

the transportation, distribution, and oil/gas industries in addition to disaster relief, security,

first response, and scientific exploration/data collection.

If we focus on civil infrastructure inspection alone, teams of cooperative robotic vehicles

have an immense potential to increasing public safety. In 2017, the American Society of Civil

Engineers estimated that there are 614,387 bridges and about 90,580 dams in the United

States. The average age of those bridges and dams are 43 and 56 years respectively. About

9% of bridges are estimated as being, structurally deficient and 17% of dams are classified as

having high-hazard potential (ASCE, 2017). Our marine infrastructure is in desperate need

of inspection and repair; however, the most common method of inspection is manual visual

observation by human divers.

Manual diver inspection is dangerous, costly, and time consuming with a typical inspec-

tion task sometimes taking several days to complete. However, if a team of autonomous

underwater vehicles (AUVs) were able to collaboratively perform this inspection task, in-

spection time and cost could be dramatically reduced. In addition, when performing manual

inspections, it is often difficult to ensure that the entire structure has been inspected or to

provided quantitative results. The data collected by a robotic system could be used to create
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(a) Automobile Manufacturing (b) Underwater Infrastructure Inspection

Figure 1.1: Multi-Agent Teams in Structured and Unstructured Environments. Teams of
robotic systems have the potential to enable dramatic increases in efficiency, safety, and accu-
racy. However, robotic systems in structured environments (such as the manufacturing line
shown in (a)) have been much more widely accepted than within unstructured environments
(such as the potential oil-rig inspection shown in (b)).

a 3D model of the inspected structure and to ensure full coverage.

However, teams of robotic systems in unstructured environments, such as the underwater

domain, have not been nearly as widely developed or accepted as those within the manu-

facturing domain. The primary reason for the delay is that robotic systems in unstructured

environments have not yet reached the level of reliability necessary for wide spread adoption.

The highly structured manufacturing/factory environment lends itself to solutions that

can easily increase the reliability of these systems because the environment itself can be

modified or engineered in ways that simplify the problem. For example, in a manufacturing

line, the robotic systems can be fixed in place, eliminating the need to estimate the position

of the robotic vehicle in order for it to interact with the environment. Similarly, on a

manufacturing line, the objects the robot needs to interact with can also be moved to a

predetermined location, eliminating the need for a robotic system to use perceptual sensors

to observe its environment (See Fig. 1.1). However, in an unstructured underwater inspection

task, each vehicle needs to accurately estimate where it is in space as well as where it is in

relation to both the object it is inspecting and the other vehicles it needs to collaborate with.

In addition, the physical proximity of a robotic system to the operator in a manufacturing

plant or distribution center lowers the bar of reliability because the system is relatively easily

accessible and a failure of the system does not necessarily mean a loss of the system itself. In

contrast, an underwater robotic vehicle is relatively inaccessible once a dive has commenced

and a failure could result in the loss of the entire vehicle.

I am primarily interested in solving the problems that inhibit the reliability of multi-agent
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teams and autonomous systems in real world settings. In the next section, I break down

several elements that are crucial to reliable autonomy.

1.2 Elements of Reliable Autonomy

The reliability of a robotic system can be defined by describing four main areas: algorithmic

robustness, constraint management, system cognizance, and system interoperability. The

next four subsections describe each of these elements in turn.

1.2.1 Algorithmic Robustness and Consistency

An autonomous system must perform several important sub-tasks to successfully achieve its

goals, such as: navigation, perception, goal planning, trajectory planning, control, communi-

cation, etc. Each of these sub-tasks is usually performed by an algorithm or set of algorithms

that takes input information and generates some form of output that is either used by a task

farther down the line or results in an action on the environment. An incorrect output can

result in a failure of the system.

Algorithmic robustness deals with developing the underlying algorithms such that the

set of situations where the output of the algorithm is incorrect is minimized. Algorithmic

consistency is focused on developing the underlying algorithms/models in such a way that

the output it provides is consistent enough with reality as to not cause a failure of the system.

1.2.2 Constraint Management

The domain the robotic system is operating in as well as the design of the robotic system,

induce constraints that must be met if the system is to operate reliably. For example, in the

underwater domain, communication is heavily limited because the properties of the water

inhibit the propagation of electro-magnetic signals. In order for a team of robotic vehicles

to cooperate reliably, the amount of information that is required to pass between them

must be lower than the throughput available. Similarly, both an AUV and a micro aerial

vehicle (MAV) have a limited amount of battery power that has to be conserved throughout

the mission. In addition, to operate reliably, it must be ensured that certain algorithmic

processes, such as navigation, planning, and control, run in real-time. Every autonomous

system has its own set of constraints that must be managed effectively if the system is to

operate reliably.
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1.2.3 System Cognizance

System cognizance refers to the level of awareness the system has of itself and the task that

it is instructed to carry out, as well as its ability to re-plan or revise its actions part way

through a mission. This can be primarily broken into two different sub-elements: system-

level awareness and task-level awareness.

At the system-level, a robotic system would be ideally aware of its own system com-

ponents and architecture to the point where if a system component (either software or

hardware) failed, it would be able to recognize the failure and modify its actions so it can

continue operating.

At the task-level, ideally a robotic system would be aware of its own capabilities (as well

as those of its team members, for a multi-agent system) and the task it has been assigned,

such that it can replant on the fly to ensure that the goals of the task are carried out.

1.2.4 System Interoperability

Lastly, system interoperability refers to how effectively the system is able to interact and

cooperate with a human operator as well as other agents in a team.

If reliability is interpreted to mean how much trust a human operator is willing to place in

the system, then communication between the system and operator is essential. An operator

will require consistent feedback in order to be assured that the system is likely to perform

the task it has been assigned. Likewise, the instructions from the operator may be vague

or high-level and the system will need to consistently interpret them accurately if it is to

reliably perform the assigned task.

In addition, if multiple robotic agents are involved, the ability of each individual system

to communicate the most essential information between them and to integrate the received

information into their own plan of action is integrally tied to the reliability of the system.

1.2.5 The Focus of this Dissertation

Although all four of the listed elements of reliable autonomy are important and in future work

I am interested in addressing each of them, the topic of this thesis is primarily focused on

the element of algorithmic robustness and consistency, and more specifically, the algorithmic

robustness and consistency of the localization and mapping task.

Section 1.3 describes a use case that was used as the primary motivation for this work

and Section 1.4 provides a review of historical and modern approaches to localization and

mapping in a priori unknown environments for both the single and multi-agent cases.
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1.3 The Multi-Agent Ship Hull Inspection Use Case

As described briefly in Section 1.1, reliable teams of collaborative autonomous agents have

vast potential to positively impact our society in many domains and areas of application.

In particular, in the underwater domain, reliable multi-agent autonomous systems have the

potential to dramatically increase safety, decrease cost, and advance scientific knowledge.

Autonomous ship hull inspection is of particular interest to the naval and shipping in-

dustries. The need to perform regular inspection of the underwater portion of a ship for

damage and security reasons can be quite costly and dangerous for human divers. Multiple

autonomous agents working in collaboration with one another to automatically search for

damage and react to such occurrences can result in increased efficiency and the removal of

human divers from danger.

For the past several years, the Office of Naval Research (ONR) has funded a project

focused on developing a robotic system for autonomous ship hull inspection as well as the

navigation and mapping algorithms needed to enable its use (Hover et al., 2012). Initially,

this project began at Massachusetts Institute of Technology (MIT) and led to the devel-

opment of the Hovering Autonomous Underwater Vehicle (HAUV) designed by BlueFin

Robotics. The HAUV (shown in Fig. 1.2) was specifically designed for ship hull inspection

and carries its primary perceptual sensors on a tray that can be rotated as the vehicle moves

up and down under the ship such that the sensor payload is always pointing at the surface

of the hull being inspected.

Navigational sensors include an on board inertial measurement unit (IMU), precision

depth sensor, and Doppler velocity log (DVL) used for dead reckoning. The primary navi-

gational sensor is the DVL which uses four transducers to transmit acoustic pings towards

the surface of ship hull. It then uses the measured Doppler shift in the echoed signals to

estimate the velocity of the vehicle with respect to the observed surface. This provides an

estimate of odometry with respect to the surface of the hull. Perceptual sensors include a

periscope camera for use when at the surface, an underwater stereo camera, and a DIDSON

imaging sonar.

After the initial platform development, collaboration between MIT, University of Michi-

gan (UofM), and Carnegie Mellon University (CMU) has led to the development of a variety

of additional capabilities, including feature based navigation (Hover et al., 2012; Kim and

Eustice, 2013), active planning (Chaves et al., 2016; Hollinger et al., 2013), integration of

multi-modality (Li et al., 2016), and multi-session capabilities (Ozog et al., 2016).

The system uses Pose Graph simultaneous localization and mapping (SLAM) (Kaess,

Ranganathan, and Dellaert, 2008; Kim and Eustice, 2013; Ozog et al., 2016) techniques to
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Figure 1.2: BlueFin Hovering Autonomous Underwater Vehicle (HAUV). The HAUV has the
ability to hover in place and has a variety of perceptual and navigational sensors including
a periscope camera, an underwater stereo camera, a Doppler velocity log, an imaging sonar,
an IMU, and a depth sensor. When navigating with respect to the ship hull, the sensor tray
rotates to keep the DVL, camera, and sonar pointing perpendicular to the hull at all times.

(a) Periscope Image (b) Underwater Image (c) Sonar Image

Figure 1.3: Example HAUV Image Data. Perceptual data collected by the periscope camera
(a), underwater stereo camera (b) (only master image shown), and imaging sonar (c).

fuse data collected from both navigational and perceptual sensors in order to estimate both

the trajectory of the robot and a map of the environment. Sample perceptual data and

example maps generated by the system are shown in Fig. 1.3 and Fig. 1.4, respectively.

The majority of recent work at UofM has focused on enabling reliable, multi-agent in-

spection, through funding under ONR award number N00014-16-1-2102. Towards this goal,

we acquired access to a second vehicle and began performing experiments using two agents

instead of one. This project served as the primary motivation for the results presented in
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(a) USS Mercy Trajectory

(b) USCGC Spencer Curvature Map

Figure 1.4: Example HAUV Ship Hull Relative Maps. These maps were generated by fusing
navigational and perceptual data collected by the HAUV platform. (a) shows a portion of
a map created during an inspection of the USS Mercy in San Diego, CA in 2017. (b) shows
a map of the USCGC Spencer colored by the estimated curvature of the ship created from
data collected in Boston, MA, in 2017.

this thesis.

1.4 Localization in A Priori Unknown Environments

Localization is a fundamental task for any mobile robotic system operating in an unstruc-

tured environment. Formally, localization denotes the estimation of a vehicle’s orientation

and location, or pose, in space, as well as its pose in relation to other agents if part of a team

(Thrun, Burgard, and Fox, 2005). This is essential because an accurate understanding of the

robot’s pose in relation to the environment (and potentially other vehicles) is a necessary

prerequisite for safe navigation.

This is made difficult by the fact that all measurements obtained by the robotic system

are imperfect and affected by noise, and as a result, the estimated pose of the robotic vehicle

is also uncertain. Thus, to ensure safe navigation, it is essential to not only estimate the
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(a) Initialization (b) Before Loop-closure (c) After Loop-closure

Figure 1.5: Overview of SLAM. SLAM refers to the problem of simultaneously estimating
the robot trajectory and a map of the surrounding environment. (a) shows a robotic vehicle
(denoted by the blue triangle) and landmarks (represented by gold stars) surrounding it
in the environment. (b) as the robot moves through the environment, it both measures
its odometry (shown by the green line) and makes observations of landmarks within the
environment (shown by the dashed blue lines). The estimated covariance of each robot pose
is shown by the aqua colored ellipses. (c) by re-observing the landmarks previously observed,
error caused by noise in the odometry measurements can be corrected and the associated
covariance estimate of the trajectory restricted. This “re-observation” of something seen in
the past is called a loop-closure.

pose of the robotic agent, but to accurately model how uncertain that estimate is. First

order uncertainty propagation techniques are often used to model this uncertainty. One of

the first papers to describe how this could be done was that of Smith, Self, and Cheeseman,

who represented pose uncertainty by assuming a multivariate Gaussian distribution over a

pose parameter vector such as transformation coordinates and Euler angles (Smith, Self, and

Cheeseman, 1990; Smith and Cheeseman, 1986).

The localization problem can also be complicated by the absence of a prior map. Most

often, localization is framed as determining your location with respect to a map of the

environment that was estimated previously. However, in many cases, a robotic vehicle may

be navigating in an environment that has not been seen before or for which a prior map is

not available. Performing localization in these situations is often resolved by simultaneously

building a map of the environment and maintaining an estimate of your location with respect

to that map. This is referred to as the simultaneous localization and mapping (SLAM)

problem.
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1.4.1 Simultaneous Localization and Mapping

While a variety of general and application specific methods exist both for localizing a robotic

vehicle when given a map or for building a map when given an accurate estimate of the robot’s

trajectory (Paull et al., 2014; Thrun, Burgard, and Fox, 2005; Wolcott and Eustice, 2017),

it is often necessary to simultaneously localize and map an environment without assuming

either is given a priori.

This is done by fusing the robot’s measurements of its own motion (odometry) and its

observations of the environment to find the set of robotic poses that most consistently match

the measurements. While noise in the robot’s pose grows over time when fusing odometry

measurements alone, when a robotic agent re-observes something it has seen previously, it

can use that information to update it’s estimate of its position and decrease the uncertainty

associated with its estimate. Fig. 1.5 shows an illustration of this process.

In many tasks, including inspection, disaster relief, mapping, and scientific data collec-

tion, the goal of the robotic vehicle is often to cover a specified area, collecting data about

the environment as it traverses it. In these tasks, the final desired result is to generate a

map by projecting the observed data into a common reference frame based on the trajectory

estimated by SLAM. In other tasks, online navigation of the robotic vehicle may be the

primary need of the system, in which cases, the trajectory or localization of the robotic

vehicle is the primary output. Whether the primary goal is mapping or localization, SLAM

provides a method for fusing the perceptual and odometric data collected by the robot and

estimating the desired quantities.

In the past two decades, SLAM has been extensively studied and significant progress has

been made. A variety of methods have been proposed for solving it (Cadena et al., 2016;

Dellaert and Kaess, 2006; Kaess, Ranganathan, and Dellaert, 2008; Kümmerle et al., 2011),

and it has been integrated into a significant number of real-world products and systems

including self-driving cars (Levinson et al., 2011), micro-aerial vehicles (Weiss, Scaramuzza,

and Siegwart, 2011), and autonomous underwater vehicles (Hover et al., 2012). Fig. 1.6

shows maps generated using SLAM. The majority of proposed methods can be classified as

either filtering or optimization based approaches. In the next three subsections we review

the prior literature relating to these two approaches and then review their extension to

multi-agent SLAM.

1.4.2 Filtering Based Approaches

Most of the early methods for performing SLAM were based on extensions of the Kalman

filter (Dissanayake et al., 2001; Kalman, 1960; Thrun, 2002) and build on the work of Smith,
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(a) SLAM Derived Map of Downtown Ann Arbor (b) SLAM Derived Map of UM North Campus

Figure 1.6: Example SLAM Maps. SLAM is a fundamental functionality required for au-
tonomous navigation in a wide variety of scenarios. (a) shows a map of downtown Ann
Arbor, MI derived by using Pose Graph SLAM to fuse the data collected by an autonomous
vehicle (Wolcott and Eustice, 2017). (b) shows a similar map of the University of Michi-
gan North Campus created by fusing data collected by a segway robot (Carlevaris-Bianco,
Ushani, and Eustice, 2015).

Self, and Cheeseman (Smith, Self, and Cheeseman, 1990; Smith and Cheeseman, 1986)Many

of these methods employ an extended Kalman filter (EKF) and are termed EKF SLAM

methods (Leonard and Durrant-Whyte, 1991; Moutarlier and Chatila, 1989a,b). The major-

ity of these methods track the current state of the robotic vehicle as well as the xy position

of landmarks in the environment. At each time step, the state of the robot and each of the

landmarks being tracked is updated and the state is augmented for any new landmarks ob-

served. However, EKF SLAM methods suffer from the curse of dimensionality as the number

of landmarks increases. In addition, incorrect or unknown data association often causes the

system to diverge (Durrant-Whyte and Bailey, 2006; Thrun, Burgard, and Fox, 2005).

Several methods were proposed to handle this data association problem (Bailey and

Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006; Montemerlo et al., 2002, 2003; Neira

and Tardós, 2001). Joint compatibility branch and bound (JCBB) (Neira and Tardós, 2001)

uses a branch and bound framework to determine which measurements are jointly compatible

with one another. Arguably the most well known is FastSLAM (Montemerlo et al., 2002,

2003), which uses a Rao-Blackwellized particle filter to represent possible trajectories for

the robot. Data association and landmark localization is then performed based on each

potential trajectory. This creates a map for each trajectory and makes the system more

robust to false data association matches. One of the draw backs of this approach, however,
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is that because of the nature of the particle filter and the high dimensionality of the state

space, as particles are pruned the algorithm quickly forgets its past trajectory. This makes

it difficult to perform loop-closure measurements, which are important as they significantly

constrain error in the graph (Thrun, Burgard, and Fox, 2005).

A variety of researchers have tried to address the scalability problems of EKF SLAM

by leveraging sparsity inherent in the problem. When using the information form param-

eterization, scalability is significantly improved (Eustice, Singh, and Leonard, 2006; Frese,

2006; McLauchlan and Murray, 1995; Thrun et al., 2004). At first it was observed (Frese,

2005; Thrun et al., 2004) that when using the inverse parameterization of covariance, most

of the elements in the matrix were close to zero. A variety of methods tried to approximate

those elements as zero, but the approach led to inconsistency in the uncertainty estimate

(Eustice, Walter, and Leonard, 2005; Walter, Eustice, and Leonard, 2005). Finally, it was

simultaneously observed by several researchers that by not marginalizing out old states and

estimating a time discretized version of the whole trajectory, exact sparsity can be obtained,

resulting in both consistency and efficiency (Dellaert and Kaess, 2006; Eustice, Singh, and

Leonard, 2006).

1.4.3 Factor Graph Based Approaches

Modern approaches to SLAM are formulated as a maximum a posteriori (MAP) estimate

of the discretized trajectory (and possibly landmarks), given measurements observed by

the robot. The measurements are used to derive probabilistic relationships between the

values to be estimated, and then, the values are optimized to minimize deviations from these

relationships.

This is usually done by discretizing the trajectory of the robot in time and representing

the pose (position and orientation) of the robotic vehicle at each time step as an element of

the Lie group SE(2) or SE(3). Then, the MAP estimate of the time discretized trajectory

given all of the measurements of the robot is:

X̂ = argmax
X∈SE(d)n

p(X|Z) (1.1)

where X̂ is an estimate of time descretized trajectory X ∈ SE(d)n = {xi}ni=1 and Z = {zj}mj=1

is the set of measurements observed (Cadena et al., 2016).

If we make the assumption that our measurements zj are independent and follow the

measurement model form zj = hj(X) + ωj, where ωj ∼ N (0,Σj), it is easy to show that
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(a) Full SLAM Factor Graph (b) Pose Graph SLAM

Figure 1.7: Factor Graph SLAM. Factor graphs are probabilistic graphical models that are
often used to visualize specific SLAM problem instances. Here we show the factor graph
representation for the example shown in Fig. 1.5(c). Variable nodes in a factor graph repre-
sent values that we want to estimate, and factor nodes represent constraints or observations
that relate the variables being estimated. Robot pose nodes are represented by the round
grey circles with a blue border. Landmark variables such as landmark position are repre-
sented by the round grey circles with a yellow border. Odometry factors are denoted by the
green square nodes and perceptual based factors are denoted by the blue square nodes. (a)
shows a factor graph representing the full SLAM problem where landmark positions (or the
map) is explicitly estimated. (b) shows a pose graph where only robot poses are estimated
but perceptual information is used to relate those poses. Pose Graph SLAM increases the
sparsity of the problem and is thus often used when real-time computation is required.

(1.1) is equivalent to the following weighted non-linear least squares problem:

X̂ = argmax
X∈SE(d)n

m∑
j=1

||zj − hj(X)||2Σj
, (1.2)

with || · ||Σ signifying the Mahalanobis distance.

We often visualize this cost function by drawing the associated factor graph probabilistic

graphical model. A factor graph is a bipartite graph with variable nodes and factor nodes.

Variable nodes represent the variables, xi, that are to be estimated. Each factor node

corresponds to a single term of the cost function and is connected to each of the variable

nodes it relates. Fig. 1.7 shows an example factor graph (Dellaert and Kaess, 2006; Eustice,

Singh, and Leonard, 2006; Kaess, Ranganathan, and Dellaert, 2008).

One of the earliest works proposing this approach for SLAM was proposed by Lu and

Milios (1997). In the last decade, a variety of algorithms for efficiently estimating the solution

to (1.2) have been proposed and a variety of open source libraries have been released (Dellaert

and Kaess, 2006; Kaess, Ranganathan, and Dellaert, 2008; Kaess et al., 2012; Kümmerle

et al., 2011; Rosen et al., 2016). Each of these algorithms take a factor graph as input and

try to estimate the solution to (1.2). Many of them solve the graph in a batch process
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using algorithms such as Levenburg-Marquardt (Marquardt, 1963), while others have been

designed to enable incremental updates (Kaess, Ranganathan, and Dellaert, 2008; Kaess

et al., 2012).

It is important to note that the optimization problem posed in (1.2) is non-convex (Boyd

and Vandenberghe, 2004). This will be of importance in future sections.

1.4.4 Multi-Agent SLAM

In multi-agent SLAM, each vehicle moves through the environment collecting sensor data

about its own movement and the world around it. Then, either the raw data, a subset of

that data, or a processed version of that data is passed either between the robots or between

the robots and a central processor and the data from the separate robots is fused to generate

a global map that can be used for navigation or other purposes. The way this process occurs

is dependent on the needs of the application and the vehicles in use. Here we enumerate a

subset of the problems that need to be solved in order to facilitate this process.

Methods proposed for multi-agent SLAM problem mostly parallel those for single-agent

SLAM (Saeedi et al., 2016). A variety of potential solutions have been proposed, including

EKF-SLAM based (Williams, Dissanayake, and Durrant-Whyte, 2002; Zhou and Roumelio-

tis, 2006), particle filter based (Carlone et al., 2010; Howard, 2006), information filter based

(Thrun and Liu, 2005; Webster et al., 2013), and factor graph based (Andersson and Ny-

gards, 2008; Cunningham, Paluri, and Dellaert, 2010; Cunningham et al., 2012; Cunningham,

Indelman, and Dellaert, 2013; Kim et al., 2010) solutions.

One important problem in collaborative SLAM is the estimation of the initial transforma-

tion between graphs. Initial work assumed this transformation was either given before hand

or measured directly at the beginning of the experiment (Thrun, 2001). This assumption

was then relaxed. Carlone et al. (2010); Howard (2006); Howard, Matark, and Sukhatme

(2002) and Zhou and Roumeliotis (2006) present methods that do not require an initial

transformation. Instead, they assume that robots “encounter” one another at least once

during the experiment and are able to directly measure their relative pose at the time of the

encounter. They use that initial direct measurement to estimate the relative transformation

and then merge both past and future data into a local estimate of the global map. However,

using a single measurement to estimate relative pose can result in bad results, either because

of measurement noise or false observations. In addition, requiring vehicles to encounter one

another as a method for deriving their relative offset is not always possible.

A variety of other methods have been proposed that use multiple measurements to mini-

mize error in the estimated relative pose. The following methods use factor graphs to enable
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multiple measurements: Andersson and Nygards (2008); Cunningham, Paluri, and Dellaert

(2010); Cunningham et al. (2012); Cunningham, Indelman, and Dellaert (2013); and Kim

et al. (2010). Andersson and Nygards (2008) introduce a method that attempts to merge

maps by incorporating “rendezvous” factors into the graph that represent the measured rel-

ative transformation between robots when they encounter one another. Kim et al. (2010)

introduces anchor nodes that estimate the transformation between local coordinate frames

and the global frame in a way that increases efficiency by minimizing change in linearization

point. This formulation also relaxes the assumption that relative pose be derived by ob-

serving the other agent. The work proposed by Cunningham et al. in Cunningham, Paluri,

and Dellaert (2010); Cunningham et al. (2012) and Cunningham, Indelman, and Dellaert

(2013) uses factor graphs to estimate local maps of landmarks and then combines summa-

rized versions of the local maps to create a global map. The use of landmarks as a map

representation removes the dependence on direct observation, but it also removes knowledge

of individual robot trajectories from the map. Williams, Dissanayake, and Durrant-Whyte

(2002) also proposes a method based on EKF-SLAM that merges local maps of landmarks

and thus removes the need for vehicles to encounter one another.

1.5 Algorithmically Robust and Consistent Navigation

As pointed out in the previous section, a significant amount of work has been done on the

localization and mapping problem in both the single and multi-agent cases. However, the

majority of existing algorithms can be somewhat unreliable and tend to fail under certain

conditions. Some of the most prevalent failure cases include the presence of outlier measure-

ments, bad initialization, and pose parameterizations that lead to inconsistent uncertainty

estimates. In the next three subsections we describe these failure cases in more detail.

1.5.1 Outlier Measurements

Modern state-of-the-art SLAM methods are generally divided into a front-end and a back-

end. The purpose of the front end is to process raw measurement data as it is observed by

sensors on board the robot and transform it into a factor graph instance like the one shown in

Fig. 1.7. The back-end is then tasked with taking the factor graph as input and optimizing

over the poses in the robot’s trajectory to find the solution that best matches the observed

measurements. This is usually done by solving some form of the optimization problem shown

in (1.1). As described in Section 1.4.3, a variety of methods have been proposed to solve this

problem and in general, they work very well as long as the factor graph or problem instance
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(a) Perceptual Aliasing in Ship-Hull Superstructure

(b) Outlier Landmark Match (c) Outlier Loop-closure in Pose Graph

Figure 1.8: Perceptual Aliasing and Outlier Loop-closures. As described in Fig. 1.5, loop-
closures are usually made by matching data seen at different time-steps and extracting an
implied relationship between the robot pose at those two time steps. However, it is relatively
common for multiple locations in a complex environment to look similar to one another. This
is referred to as perceptual aliasing. (a) shows an example shown in data collected using the
HAUV on the USNS Curtiss. When this occurs, it is possible to incorrectly match data
seen at one time-step with data at another time-step that in reality do not refer to the same
location as shown in (b). This in turn results in an incorrect factor in the pose graph (as
shown (c)) that if not handled can drastically distort the final estimated solution.

are well formed. However, because multiple locations in the environment look similar to one

another, it is relatively common for false or outlier loop-closures to be proposed by the front

end. Fig. 1.8 shows an example of how this could happen.

The addition of even one or two outlier loop-closures to a pose graph can have a devas-

tating affect on the resulting trajectory as shown in Fig. 1.9. The significant susceptibility of
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(a) Trajectory with 0 Outliers (b) Trajectory with 2 Outliers

Figure 1.9: Intel Dataset with/without Outlier Loop-closures. We used iSAM (Kaess, Ran-
ganathan, and Dellaert, 2008) to estimate the solution to the Intel Dataset (Howard and
Roy, 2003) with and without outlier measurements. (a) shows the optimal solution with no
outliers. (b) shows the solution with two outlier loop-closures. The addition of even a small
number of outliers can drastically affect the final solution.

the current state-of-the-art SLAM algorithms to outlier measurements has led to a significant

degree of focus within the SLAM community. A variety of methods have been proposed over

the years (Agarwal et al., 2013; Latif, Cadena, and José, 2012; Olson and Agarwal, 2013;

Sünderhauf and Protzel, 2012), with the primary focus being on single robot graphs. The

majority of these methods work by using the residual error of individual factors to determine

if a measurement should be trusted. As a result, they require the optimization system to be

initialized within a basin of attraction to correctly determine the measurement set.

However, things get more complicated when trying to align and merge graphs collected

by multiple robots because a good initial estimate of alignment is not necessarily available.

Recently, work by Dong et al. (2015) and Indelman et al. (2016) attempted to handle false

measurements in multi-vehicle map merging by using expectation-maximization (EM) to

limit the set of trusted measurements to those that are probabilistically likely given an

initial transformation. However, EM is known to be only locally optimal and dependent on

initialization.
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(a) GroundTruth Trajectory and Map (b) Solution Caught in Local Minimum

Figure 1.10: CityTrees10000 Segment Caught in Local Minimum. An example segement of
the CityTrees10000 dataset (Kaess, Ranganathan, and Dellaert, 2008) as solved by Leven-
burg Marquardt (Marquardt, 1963) caught in a local minimum. (a) shows the groundtruth
solution. (b) shows the local minimum solution after being given a bad initialization.

1.5.2 Dependence on Good Initialization

A second common failure case of current SLAM algorithms occurs when the optimization

algorithm tasked with finding a solution to (1.2) is given a bad initialization. Since in general,

the measurement model hj is non-linear, the majority of existing algorithms (Dellaert and

Kaess, 2006; Kaess, Ranganathan, and Dellaert, 2008; Kaess et al., 2012; Kümmerle et al.,

2011) estimate a solution by iteratively alternating between linearizing the problem around a

current estimate and solving the corresponding linear, weighted, least-squares problem until

a local-minimum is reached.

This can cause problems because the underlying problem is generally non-convex and thus

finding a local-minimum does not necessarily guarantee that a global solution corresponding

to the solution of (1.1) has been found (See Fig. 1.10). This is really important from a

reliability perspective because the solution returned by the SLAM algorithm is usually used

for navigation, planning, and coordination with other agents. An incorrect result that is

undetected can cause a collision and damage to the system or environment in addition to

incorrect mapping or localization results. This is of particular significance in the underwater

environment because the robotic system or team needs to be able to operate consistently

with little to no supervision.

Recently, a variety of works have looked at incorporating convex optimization theory into

algorithms for solving factor graphs. Doing so would enable guarantees of global optimality
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and could potentially increase computational efficiency. Rosen, DuHadway, and Leonard

(2015) use convex relaxation to find an initial condition for the SLAM problem that can

then be used to find the global solution. Carlone et al. (2015) uses lagrangian duality to

evaluate the quality of a solution to the SLAM problem and determine if the solution is

globally optimal after the fact. Finally, the seminal paper by Rosen et al. (2016) proposes

SE-Sync, which uses a semidefinite program (SDP) (defined in Appendix B.2.2) relaxation,

and rank restricted Riemannian optimization to efficiently find global solutions in cases where

there is non-adverserial noise. Recent work by Briales and Gonzalez-Jimenez (2017) builds

on SE-Sync to increase efficiency in the optimization process.

However, all of these methods (Briales and Gonzalez-Jimenez, 2017; Carlone et al., 2015;

Rosen et al., 2016; Rosen, DuHadway, and Leonard, 2015) make the restrictive assumption

that all measurements are full degree of freedom relative transformations between pose nodes

and none of them actually formulate the SLAM problem as a truly convex optimization

without relaxation.

1.5.3 Inconsistent Uncertainty Estimates

A final failure case of current navigation and mapping solutions occurs when coordinates-

based parameterizations of robot pose are used to characterize uncertainty. Early methods

(such as those proposed by Smith, Self, and Cheeseman (1990) and Smith and Cheeseman

(1986)), used a vector of Euler angles and translation parameters to represent pose and

then assumed this vector of parameters could be represented as a multi-variate Gaussian

random variable. However, because of the non-linearities involved in representing rotation

via chart coordinates such as Euler angles, a Gaussian distribution cannot accurately model

the uncertainty using this parameterization.

However, it has recently been shown that characterizing pose uncertainty in the Lie

algebra of the Special Euclidean group leads to more accurate results (Barfoot and Furgale,

2014; Chirikjian, 2011; Kim and Kim, 2017). The work of Barfoot and Furgale (2014), in

particular, describes how to characterize the uncertainty of a pose using a mean or nominal

value in the Lie group space and a zero-mean, multi-variate Gaussian perturbation variable

defined in the Lie algebra. The perturbation variable is then used to perturb the mean value

through the use of the exponential function. This enables an accurate characterization of pose

uncertainty while taking into account the non-linearity of rotation. Fig. 1.11 depicts a Monte

Carlo simulation that shows this improvement in uncertainty characterization accuracy.

However, while Barfoot and Furgale (2014) describe how to model uncertain poses in this

manner, they make the assumption that each pose is independent of one another and focus
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Figure 1.11: Lie Algebra vs Coordinate Based Uncertainty Characterization. A Monte
Carlo comparison between the Lie Algebra uncertainty characterization method (proposed
in Barfoot and Furgale (2014) and extended in this dissertation) and a coordinates based
method (such as the one proposed in Smith, Self, and Cheeseman (1990)).

primarily on uncertainty propagation through the pose composition operation. Meanwhile

Smith, Self, and Cheeseman described how to jointly represent correlated poses and described

how to perform the pose inverse and relative pose operations in addition to pose composition.

1.6 Dissertation Outline

This thesis aims to increase the robustnessf of single and multi-agent localization and map-

ping by developing algorithms and methods that address the failure cases described in the

prior section. In doing so, we consider four main problems:

• Multi-agent map merging in the presence of outliers – Given two pose graphs collected

by robotic agents navigating in partially overlapping environments, we want to align

and merge them into a single consistent map, while taking into account the fact that a
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large percentage (greater than 80%) of the measurements relating them to one another

may be outliers.

• Global trajectory alignment with no initial estimate and low-dimensional data – Given

a reference trajectory and a query trajectory (contained within the reference trajectory)

and low-dimensional data collected by the agents at each time step along the trajectory,

find the rigid body transformation that best aligns them without any initial estimate.

• Globally optimal, initialization independent, planar SLAM – Given a planar Pose

Graph SLAM problem, find the globally optimal (and thus true maximum likelihood

estimate (MLE)) without any initial guess.

• Accurate characterization of pose uncertainty – Develop a method for accurately ma-

nipulating sets of jointly correlated, uncertain pose estimates, while accurately ac-

counting for the structure of the Special Euclidean group.

Towards these problems, we have made the following contributions:

1. A novel framework for selecting a pairwise internally consistent set of inter-map loop-

closures for robust multi-agent map merging that does not require an initial estimate of

alignment and a method for transforming the problem into an instance of the maximum

clique problem for increased efficiency.

2. An algorithm for aligning a query trajectory to a reference trajectory based solely

on low-dimensional data observed at each pose visited by the vehicles. By using a

linear approximation of the `2 norm and linear relaxation techniques, we estimate an

approximately rigid body transformation using a linear program, requiring no initial

estimate or data association.

3. A novel formulation for planar Pose Graph SLAM as a polynomial optimization prob-

lem and a proof that guarantees the globally optimal solution can always be found by

solving a sparse SDP.

4. A method for characterizing the uncertainty of jointly correlated poses in the Lie

algebra of the Special Euclidean group and a derivation of first order uncertainty prop-

agation formulas for the pose composition, pose inverse, and relative pose operations

under the proposed framework. Characterizing the uncertainty in the Lie algebra leads

to increased uncertainty estimate consistency than coordinate based methods.
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The work in this thesis has appeared (or will appear) in the following publications:

Joshua G. Mangelson, Derrick Dominic, Ryan M. Eustice, and Ram Vasudevan.

Pairwise Consistent Measurement Set Maximization for Robust Multi-robot Map Merg-

ing. In Proceedings of the IEEE International Conference on Robotics and Automa-

tion, Brisbane, Australia, May 2018. IEEE ICRA Best Paper on Multi-Agent

Systems.

Joshua G. Mangelson, Ram Vasudevan, and Ryan M. Eustice. Communication

Constrained Trajectory Alignment For Multi-Agent Inspection via Linear Programming.

In Proceedings of the IEEE/MTS OCEANS Conference and Exhibition, Charleston,

SC, USA, Oct 2018. 1st Place in IEEE OCEANS Student Poster Competition.

Joshua G. Mangelson, Jinsun Liu, Ryan M. Eustice, and Ram Vasudevan. Guar-

anteed Globally Optimal Planar Pose Graph and Landmark SLAM via Sparse-Bounded

Sum-of-Squares Programming. In Proceedings of the IEEE International Conference

on Robotics and Automation, Montreal, Canada, May 2019.

Joshua G. Mangelson, Maani Ghaffari, Ram Vasudevan, and Ryan M. Eustice.

Characterizing the Uncertainty of Jointly Distributed Poses in the Lie Algebra. Journal

Publication. (In Submission/Under Review).

Other related publications that do not directly include the work presented in this thesis:

Ross Hartley, Joshua G. Mangelson, Lu Gan, Maani Ghaffari Jadidi, Jeffrey M.

Walls, Ryan M. Eustice, and Jessy W. Grizzle. Legged Robot State-Estimation Through

Combined Forward Kinematic and Preintegrated Contact Factors. In Proceedings of

the IEEE International Conference on Robotics and Automation, Brisbane, Australia,

May 2018.

Joshua G. Mangelson, Ryan W. Wolcott, Paul Ozog, Ryan M. Eustice. Robust

Visual Fiducials For Skin-to-Skin Relative Ship Pose Estimation. In Proceedings of

the IEEE/MTS OCEANS Conference and Exhibition, Monterey, CA, USA, Oct 2016.

Open source C++ library implementations are released at the following links:

• Contribution 1 - https://bitbucket.org/jmangelson/pcm

• Contribution 2 - https://bitbucket.org/jmangelson/cte

• Contribution 4 - https://bitbucket.org/jmangelson/lie
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1.7 Dissertation Roadmap

These contributions are discussed in the following chapters:

Chapter 2 We present a method for robust selection of inter-map loop closures in multi-

robot simultaneous localization and mapping (SLAM). Existing robust SLAM methods

assume a good initialization or an “odometry backbone” to classify inlier and outlier

loop closures. In the multi-robot case, these assumptions do not always hold. We

present an algorithm called Pairwise Consistency Maximization (PCM) that estimates

the largest pairwise internally consistent set of measurements. Finding the largest

pairwise internally consistent set can be transformed into an instance of the maximum

clique problem from graph theory, and by leveraging the associated literature it can

be solved in real-time. We evaluate how well PCM approximates the combinatorial

gold standard using simulated data. We also evaluate the performance of PCM on

synthetic and real-world data sets in comparison with DCS, SCGP, and RANSAC,

and show that PCM significantly outperforms these methods.

Chapter 3 We present a system for estimating the alignment between robotic trajectories

based solely on low-dimensional data. We propose a method that takes advantage of

convex relaxation techniques to determine an alignment between robotic trajectories

based on sparse observations of a low-dimensional underlying feature space. We use

a linear approximation of the `2-norm to approximately enforce that the estimated

transformation is an element of SO(2). Because the relaxed optimization problem

is linear, we can take advantage of existing convex optimization libraries, which do

not require an initial estimate of relative pose. In addition, because the proposed

method does not need to perform data association, we can align trajectories using

low-dimensional feature vectors and can thus decrease the amount of data that must

be transferred between agents by several orders of magnitude when compared to image

feature descriptors such as SIFT and SURF. We evaluate the proposed method on

simulated datasets and apply it to real-world data collected during autonomous ship

hull inspection field trials.

Chapter 4 We formulate the planar Pose Graph and Landmark SLAM problems as poly-

nomial optimization problems. We then describe how the sparse bounded degree sum-

of-squares (Sparse-BSOS) hierarchy of SDPs can be used to find its solution. We then

prove that the Pose Graph and Landmark SLAM formulations we propose are sum-

of-squares (SOS) convex meaning their globally optimal solution can always be found

by solving the first SDP in the Sparse-BSOS hierarchy. We evaluate the proposed
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method on two existing SLAM datasets and show that while Levenberg-Marquardt

(Marquardt, 1963) gets caught in a local minimum, our proposed method does not

need an initialization and is able to find the optimal solution.

Chapter 5 We present a framework for modeling the uncertainty of jointly distributed

poses while accurately accounting for the structure of the Special Euclidean group

and describe how to perform the equivalent of the SSC (Smith, Self, and Cheeseman,

1990) pose composition, pose inverse, and relative pose operations while using the Lie

algebra to characterize uncertainty. We evaluate the proposed method and show that it

outperforms SSC and other existing methods. We release an open source C++ library

of the proposed methods.

Chapter 6 We summarize the contributions of this thesis. Additionally, we explore a few

avenues for future work.

Appendix A We briefly define some important concepts from graph theory.

The concepts presented in this appendix is used in Chapter 2.

Appendix B We briefly review convex optimization theory and its benefits. We also define

several common types of convex programs that are used in our derivations.

The work presented in this appendix is used in Chapter 3 and Chapter 4.
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CHAPTER 2

Consistency Set Maximization for Robust

Map Merging

2.1 Introduction

In multi-agent simultaneous localization and mapping (SLAM), multiple robots collect mea-

surements about their own trajectories, the environment, and possibly other robots. To

generate an accurate map of the environment, it is necessary to estimate both the local

trajectories of the robots as well as the relative offsets (translation and orientation) between

the trajectories.

In pose graph SLAM, the map estimation problem is formulated as a factor graph con-

sisting of pose node variables and factor nodes. We often formulate the single robot pose

graph SLAM problem as the maximum likelihood estimate (MLE) of the time discretized

robot trajectory given odometric and loop-closure measurements (Cadena et al., 2016). As-

suming independent measurements and additive Gaussian noise in the measurement and

robot process models, this becomes a non-linear, weighted least squares problem and can be

solved quickly using available solvers (Kaess, Ranganathan, and Dellaert, 2008; Kümmerle

et al., 2011).

However, accurately determining large loop-closure factors is a difficult problem, and

least squares can be susceptible to outliers. A variety of methods have been proposed to

enhance robustness by disabling factors with high residual error (Agarwal et al., 2013; Latif,

Cadena, and José, 2012; Olson and Agarwal, 2013; Sünderhauf and Protzel, 2012), but they

either depend on having an odometry backbone of trusted measurements to judge against or

a good initial estimate of the relative pose of the vehicles (Pfingsthorn and Birk, 2016). In

multi-agent SLAM, this odometry backbone is non-existent, and a prior estimate of relative

pose may not exist.

The use of multiple vehicles enables increased scalability and efficiency in the mapping

process. However, to accurately fuse their maps, the vehicles must estimate their position
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Figure 2.1: Pairwise Consistency Maximization Overview. An illustration of the Pairwise
Consistency Maximization (PCM) algorithm for selecting consistent inter-map loop closures
measurements. (A) Given two independently derived pose graphs (shown in white and black
in step A) and a set of potential loop-closures between them (shown by colored, dotted
lines), our goal is to determine which of these inter-robot loop-closures should be trusted.
(B) Using a consistency metric such as Mahalanobis distance, we calculate the consistency of
each pairwise combination of measurements. (C) We store these pairwise consistency values
in a matrix where each element corresponds to the consistency of a pair of measurements.
(D) We can transform this matrix into the adjacency matrix for a consistency graph by
thresholding the consistency and making it symmetric using the maximum consistency when
associated elements across the diagonal have differing consistency values. Each node in
this graph represents a measurement and edges denote consistency between measurements.
Cliques in this graph are pairwise internally consistent sets. (E) Finding the maximum clique
corresponds to finding the largest pairwise internally consistent set. (F) After determining
the largest consistent set, we can robustly merge the two pose graphs using only the consistent
inter-map loop closures, allowing us to reject false measurements.

with respect to one another. This process, very similar to the loop-closure problem in

single robot SLAM, requires accurately selecting a set of consistent, perception-derived pose
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measurements relating the relative position and orientation of the two vehicles and their

maps. In this paper, we present a tractable and robust way of selecting which measurements

to trust.

Rather than attempt to classify measurements as inliers and outliers, we find the largest

consistent set of inter-robot relative pose measurements. We first formulate this problem

as a combinatorial optimization problem, which turns out to be an instance of the NP-

complete maximum clique problem. We then present a method from graph theory literature

that finds the optimal solution for moderately sized problems (including many multi-robot

map merging scenarios), as well as a heuristic that can be used to approximate it for larger

numbers of measurements.

The contributions of this chapter include the following: i) In Section 2.4, a novel defi-

nition of pairwise internally consistent sets and the formulation of the robust multi-vehicle

map merging problem as a combinatorial problem that seeks to find the maximum cardinal-

ity set of internally consistent measurements. ii) In Section 2.5, a method for transforming

the PCM problem into an instance of the maximal clique problem from consistency graph,

for which several algorithms exist.

The remainder of this chapter is organized as follows. In Section 2.2, we cover related

work. In Section 4.3, we present the general formulation of the multi-robot pose graph SLAM

problem. In Section 2.3, we outline the steps needed to integrate PCM into a map merging

system. In Section 2.7, we evaluate PCM on synthetic and real-world datasets and show

that PCM out-performs the state-of-the-art methods in selecting consistent measurements

and estimating the merged maps. Finally in Section 2.8, we summarize and conclude the

chapter.

2.2 Related Work

Current methods for identifying loop closures often severely limit the number of accepted

measurements by setting high likelihood thresholds in an attempt to filter out false positives

(Ozog et al., 2016). In pose graph SLAM, inconsistent measurements must be filtered or

they may distort the estimated graph.

The detection of outliers is an important problem in both mobile robotics and computer

vision and a variety of methods have been proposed to address it. In computer vision,

the RANSAC algorithm seeks to determine inlier/outlier sets by iteratively fitting models

to samples of the data and counting the number of inliers (Hartley and Zisserman, 2003).

However, RANSAC relies on the fact that a point can be designated as an inlier or outlier

by measuring its likelihood given a proposed model. However, in multi-robot SLAM, there
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is no unique model we can use to determine if a constraint is an inlier. Rather, we need to

know if a measurement is consistent with all the other measurements being considered as

inliers. In addition, RANSAC and many of its derivatives are sensitive to parameter values

that can be difficult to tune.

JCBB is a method that selects measurements by seeking to determine the maximum

jointly compatible set (Neira and Tardós, 2001). In the multi-robot map merging problem,

however, performing JCBB can be difficult because doing so would require solving the graph

for a combinatorial number of measurement combinations to evaluate the likelihood of each

measurement given each combination of the other measurements.

There have been several outlier detection methods derived specifically for pose graph

SLAM. Switchable constraints (Sünderhauf and Protzel, 2012) proposes the use of of switch-

able error factors in the SLAM back-end solver that enable pose constraints with high resid-

ual error to be “turned off” so that they no longer affect the solution. Dynamic Covariance

Scaling (DCS) (Agarwal et al., 2013) builds on the work of Sünderhauf and Protzel (2012)

and uses scaling of measurement covariance to more smoothly turn on and off measurement

links between poses. Olson and Agarwal (2013) propose Max-Mixtures that uses mixtures of

Gaussians to model multiple possible data modes. Realizing, Reversing, Recovering (Latif,

Cadena, and José, 2012) iteratively tries to find a set of relative pose measurements that

are consistent within themselves. However, each of these methods is designed with a single

robot pose graph in mind and fails without a good initialization of relative pose (Agarwal

et al., 2013; Olson and Agarwal, 2013; Sünderhauf and Protzel, 2012) or a trusted odometry

backbone (Latif, Cadena, and José, 2012).

Recently, several papers have been published directly attempting to solve the “perceptual

aliasing” problem of map merging. Perceptual aliasing occurs when multiple locations in the

environment look similar enough that perceptual sensors and methods mistake them for the

same location. The method presented by Dong et al. (2015) and Indelman et al. (2016)

uses expectation maximization to estimate the inliers and outliers in a set of measurements

that constrain the relative poses of multiple robots performing cooperative mapping. Our

proposed method uses many similar concepts to those presented by Dong et al. (2015), but

our solution finds/estimates the maximum cardinality consistent set of inter-robot measure-

ments instead of iteratively refining an initial guess. Generalized graphSLAM (Pfingsthorn

and Birk, 2016) handles multi-hypothesis or outlier factors that could be derived from per-

ceptual aliasing by attempting to find the minimum ambiguity spanning tree for the graph.

However, their method does not attempt to enforce consistency of measurements and, in

the multi-robot case, may select an incorrect measurement if it happens to have the lowest

uncertainty.
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The two most similar methods to ours are (Carlone, Censi, and Dellaert, 2014) and

(Olson, 2009). Our method follows the same approach as Carlone, Censi, and Dellaert

(2014) in that we both attempt to find the maximal set of measurements that are consistent

with one another. However, their work has only been extended to non-linear measurements

in the case of planar SLAM. Single Cluster Graph Partitioning (SCGP) presented in (Olson,

2009; Olson et al., 2005), attempts to determine a single cluster of measurements, given a

similarity matrix, by thresholding the elements of the largest eigen-vector. Olson (2009) uses

a similar consistency metric to ours, but they do not enforce pairwise internal set consistency

as we do.

2.3 Problem Formulation

In our factor graph formulation of SLAM, we denote time discretized versions of the the

robot trajectory by xi ∈ SE(2) or SE(3). The factors in the graph are derived from the

measurements observed by the robot and penalize estimates of the trajectory that make the

observed measurement unlikely. We denote measurements that relate the variables xi and

xj by zij and call them odometric measurements if i and j are consecutive and loop closure

measurements if i and j are non-consecutive in time. The goal of pose graph SLAM is, then,

to estimate the most likely value of each pose variable xi given the factor measurements zij.

We can formulate the single robot pose graph SLAM problem as the MLE

X̂ = argmax
X

P (Z|X). (2.1)

where, X is the set of all pose variables xi, and Z is the set of all relative pose measurements

robot measurements zij.

In multi-robot SLAM, we also need to estimate the relative transformation between the

local coordinate frames of the respective robots. We adopt the method presented by Kim

et al. (2010), which proposes the use of an anchor node for each trajectory that encodes the

pose of the vehicle’s local coordinate frame with respect to some global reference frame. We

denote the homogeneous transformation matrix representing this offset by T ga and represent

measurements relating cross-trajectory poses by zabij , where a and b are robot IDs and i and

j respectively denote which poses on robots a and b are being related. T ga is an element of

SE(2) or SE(3). zabij is also often an element of SE(2) or SE(3) but can be a function of this

transformation in general.
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In the case of two robots, the SLAM estimation problem becomes

X̂, T̂
g

= argmax
X,Tg

P (Za,Zb,Zab|X,Tg), (2.2)

where, X now represents the trajectories of both robots, Zab represents the set of all cross-

trajectory measurements, Zr represents the set of measurements local to robot r, and Tg =

{Tg
a,T

g
b}. This problem can be treated as weighted, non-linear least squares and can be

solved efficiently using an array of specialized optimization libraries.

Existing methods do a good job of handling outlier measurements in the local measure-

ment sets Za and Zb, but not in the inter-robot set Zab since generally, no prior estimate

of the initial transformation between the robot coordinate frames is available. The focus of

this paper is on selecting a subset of the measurements in the inter-robot set Zab that we

can trust. The next section outlines our approach for doing so.

2.4 Pairwise Consistency Maximization

In this section, we first define a novel notion of consistency and then we use that notion

to formulate the selection of inter-robot loop closure measurements as a combinatorial opti-

mization problem that finds the largest consistent set.

2.4.1 Pairwise Consistency

Directly determining if a measurement is an inlier or outlier from the graph itself is unob-

servable (Carlone, Censi, and Dellaert, 2014). Thus, instead of trying to classify inlier versus

outlier, we attempt to determine the maximum subset of measurements that are internally

pairwise consistent:

Definition 2.4.1. A set of measurements Z̃ is pairwise internally consistent with re-

spect to a consistency metric C and the threshold γ if

C(zi, zj) ≤ γ, ∀ zi, zj ∈ Z̃ (2.3)

where, C is a function measuring the consistency of measurements zi and zj, and γ is chosen

a priori.

This definition of consistency requires that every measurement in the set be consistent

with every other measurement in the set with respect to C and γ.
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There are a variety of potential choices of a consistency metric depending on the measure-

ment model and the state being observed. For the remainder of this chapter, however, we

assume that all inter-robot measurements are relative pose measurements with full degrees

of freedom and use the following metric based on (Olson, 2009):

C(zabik , z
ab
jl ) =

∣∣∣∣(	zabik)⊕ x̂aij ⊕ zabjl ⊕ x̂blk
∣∣∣∣

Σ
, ||εikjl||Σikjl

(2.4)

where, we have adopted the notation of (Smith, Self, and Cheeseman, 1990) to denote pose

composition using ⊕ and inversion using 	, || · ||Σ signifies the Mahalanobis distance, and

the variables x̂aij and x̂blk are the current relative pose estimates of the associated poses

corresponding to inter-robot measurements zabik and zabjl .

This choice of metric is useful because it is both easy to compute and follows a chi-squared

distribution, giving us a strategy to select the threshold γ without knowledge of the specific

dataset. The composition inside the norm of (2.4) evaluates the pose transformation around

a loop and should evaluate to the identity transformation in the case of no noise (Olson,

2009). With Gaussian noise, this normalized squared error follows a chi-squared distribution

with degree of freedom equal to the number of degrees of freedom in our state variable. By

setting γ accordingly, we can determine if the measurements zabik and zabjl are consistent with

one another.

It should also be noted that pairwise consistency does not necessarily signify full joint

consistency. It is possible that a set of measurements can be pairwise internally consistent

but not jointly consistent. However, checking full joint consistency is an exponential opera-

tion and requires potentially checking every combination of measurements to evaluate their

consistency. Finding the maximum cardinality pairwise consistent set is also exponential,

but by formulating the problem in this way, we can leverage a body of literature on the

maximum clique problem in graph theory that can find or estimate the solution efficiently.

In addition, in practice, we observed that testing for pairwise consistency was restrictive

enough to filter inconsistent measurements from typical pose graphs with full degree of free-

dom measurements.

2.4.2 The Maximal Cardinality, Pairwise Consistent Set

Having this definition of pairwise internal consistency allows us to restrict our algorithm

to only consider sets of measurements that are pairwise internally consistent; however, due

to perceptual aliasing, we may end up with multiple subsets that are pairwise internally

consistent. We need to find a way to select between these possible subsets.

The underlying assumption of our method is based on the following two initial assump-
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tions:

Assumption 2.4.1. The pose graphs are derived from multiple robots or the same robot in

multiple sessions exploring the same environment.

Assumption 2.4.2. The inter-robot relative pose measurements are derived from observa-

tions of that environment and the system used to derive them is not biased toward selecting

incorrect measurements over correct ones.

These assumptions fit a large number of multi-robot mapping situations and are reason-

able even in perceptually aliased environments whenever a place recognition system does not

systematically select the perceptually aliased measurement over the correct ones.

If the above conditions are met than the following can also be safely assumed:

Assumption 2.4.3. As the number of relative pose measurements increases, the number of

measurements in the correct consistent subset will grow larger than those in the perceptually

aliased consistent subsets.

Our goal is, then, to efficiently find the largest consistent subset of Zab, which we denote

by Z∗.

To formalize this, we introduce a binary switch variable, su, for each constraint in the

set Zab and let su take on the value 1 if the measurement is contained in the chosen subset

and 0 otherwise. Note that there is a single su for each measurement zabij ∈ Zab; however,

for simplicity of notation, we now re-number them with the single index u and denote the

corresponding measurement zabij by zu. Letting S be the vector containing all su, our goal is

to find the solution, S∗, to the following optimization problem:

S∗ = argmax
S∈{0,1}m

‖S‖0

s.t. ||εuv||Σuv
susv ≤ γ,

(2.5)

where, m is the number of measurements in Zab, zu is the measurement corresponding to su,

εuv is the associated error term corresponding to measurements zu and zv, and Σuv is the

covariance matrix associated with the error εuv. We refer to this as the PCM problem.

Once found, we can use S∗ to index into Zab and get Z∗. This consistent subset of the

measurements can then be plugged into any of the existing non-linear least squares based

solvers to merge the individual robot maps into a common reference frame. In the next

section, we show how this problem can be reformulated into an equivalent problem that has

been well studied.
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2.5 Solving PCM via Maximum Clique

In this section, we describe how to solve the PCM problem. The goal of PCM to determine

the largest subset of the measurements Zab that are pairwise internally consistent. This

pairwise consistency is enforced by the n2 constraints listed in (2.5). It is important to

note that the norm on the left-hand side of the constraints does not contain any of the

decision variables si. These distance measures can be calculated in pre-processing, as will

be explained in Section 2.6, and combined into a matrix of consistency measures Q, where

each element [Q]uv = quv = ||εuv||Σuv
, corresponds to the consistency of measurement zu and

zv. This process is depicted in steps B and C in Fig. 2.1.

We’ll now introduce the concept of a consistency graph.

Definition 2.5.1. A consistency graph is a graph G = {V, E} where each vertex v ∈ V
represents a measurement and each edge e ∈ E denotes consistency of the vertices it connects.

We can transform the matrix of consistency measures Q into the adjacency matrix for a

consistency graph if we threshold it by γ and make it symmetric by requiring that both quv

and qvu be less than or equal to γ to insert an edge into the graph. An example adjacency

matrix and consistency graph are shown in step D of Fig. 2.1.

A clique in graph theory is defined as a subset of vertices in which every pair of vertices

has an edge between them and the maximum clique is the largest such subset of nodes in

the graph. A clique of the consistency graph corresponds to a pairwise internally consistent

set of measurements because every measurement is pairwise consistent with every other

measurement in the set. Thus, the solution to the problem defined in (2.5) is the maximum

clique of the consistency graph (see step E of Fig. 2.1).

In graph theory, the problem of finding the maximum clique for a given graph is called the

maximum clique problem and is an NP-hard problem (Wu and Hao, 2015). The maximum

clique problem is also hard to approximate (Feige et al., 1991; Zuckerman, 2006), meaning

that finding a solution arbitrarily close to the true solution is also NP-hard. Dozens of

potential solutions have been proposed, each of which can be classified as either an exact

or a heuristic algorithm. All of the exact algorithms are exponential in complexity and are

usually based on branch and bound, while the heuristic algorithms often try to exploit some

type of structure in the problem, making them faster, but without guaranteeing the optimal

solution (Wu and Hao, 2015).

In 2015, Pattabiraman et al. (2015) proposed a method that aggressively prunes the

search tree and is able to find maximum clique solutions for large sparse graphs relatively

quickly. They present both an exact algorithm as well as a heuristic version that can be

used when the exact algorithm becomes intractable. Though our method could theoretically
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use any one of the proposed maximum clique algorithms, we selected the one proposed

in (Pattabiraman et al., 2015) because of its simplicity, parallelizability, and open source

implementation.

2.6 Robust Multi-Robot Map Merging

Integrating PCM into a map merging system consists of four steps: i) Individual map

generation ii) Consistency calculation iii) Pairwise consistency maximization iv) Constraint

insertion and full map generation

The individual map generation step consists of solving for an estimate of the individual

pose graphs. This can be carried out by any pose graph SLAM-based method as long as it

is possible to estimate the marginal and cross-covariances of nodes and sets of nodes after a

solution has been found. This is important for estimating the Mahalanobis distance matrix.

Using the consistency metric we have selected, the first step in estimating the Maha-

lanobis distance matrix is to extract the necessary marginal covariances. As explained in

Section 2.4.1, we take each pair of potential, inter-robot measurements and trace a loop

using the transformations from the underlying graph. To trace this loop, we extract the co-

variance for every pair of nodes on a given local map that are associated with an inter-robot

constraint. Then, using the methods described in (Smith, Self, and Cheeseman, 1990), we

calculate the “tail-to-tail” between these nodes allowing us to estimate x̂aij and x̂blk and their

associated covariances. Finally, we use (2.4) to estimate the distances ||εijkl||Σijkl
needed

in (2.5). Σijkl = JΣJ>, where J is equal to the Jacobian of εijkl with respect to the two

measurements and the two estimated local trajectory components evaluated at their means.

Σ is equal to the associated block diagonal covariance matrix built up of the covariances of

the measurements and pose estimates.

In practice, this calculation is the bottleneck in processing for our algorithm; however,

by using analytical Jacobians, parallelization, and incremental updates, we can significantly

reduce this calculation time. For more information on calculating the Mahalanobis distance

see (Smith, Self, and Cheeseman, 1990).

Once the matrix has been calculated, we convert it to an adjacency matrix and solve the

maximum clique problem as explained in Section 2.5 to determine the set of constraints that

should be enabled. Finally, we re-solve the graph using only those inter-robot constraints. In

practice, when optimizing over SE(3), it helped to incrementally re-build the graph running

a batch optimization every few hundred nodes, while for SE(2) it was sufficient to add the

inter-robot factors directly to the already existing graph and run a batch optimization.
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2.7 Evaluation

In this section, we evaluate the performance of pairwise consistency maximization (PCM)

on a variety of synthetic and real-world data-sets. For comparison, we implemented SCGP

(Olson et al., 2005), DCS (Agarwal et al., 2013), and random sample consensus (RANSAC)

(Hartley and Zisserman, 2003).

We implemented SCGP as described in Olson et al. (2005), with the exception of using

an off the shelf eigen-factorization library as opposed to the power method for simplicity.

We implemented DCS as described in the original paper, Agarwal et al. (2013), with φ = 5.

We implemented RANSAC by iteratively selecting a single, random inter-map measure-

ment and evaluating the likelihood of the other measurements given the model estimated

from the sampled measurement. Because the processing time for this evaluation is so low

(given that the Mahalanobis distance evaluations were performed in pre-processing), we ex-

haustively iterate through all the measurements and evaluate the likelihood of the other

measurements with respect to it in turn. We then return the set of measurements that

are likely given the sampled point with the largest support. As explained in Section 2.7.2,

RANSAC is especially sensitive to the likelihood threshold and does not check pairwise

consistency.

For PCM, we present results using the exact maximum clique algorithm (PCM-Exact),

as well as the heuristic algorithm (PCM-HeuPatt) as explained in Section 2.5.

2.7.1 Simulated 1D World

First, we simulated a one dimensional world where the robot has a single state variable, x,

and receives measurements that are direct observations of that state. We simulate inlier

measurements by drawing multiple samples from a Gaussian with a fixed variance and mean

x. We simulate both random and perceptually aliased outliers by drawing multiple samples

from a single Gaussian with fixed mean and variance and several others from individual

Gaussians with random means and variances. We assume the variances are known and are

used when computing Mahalanobis distance.

2.7.1.1 Comparison with Combinatorial

For this first experiment, we compare how well PCM-Exact and PCM-HeuPatt approximated

the combinatorial gold standard in (2.5). We generated 100 000 sample worlds. On each of

these samples, we estimated the pairwise consistent set using the combinatorial solution as

well as PCM-Exact, PCM-HeuPatt, SCGP (Olson et al., 2005), and RANSAC (Hartley and
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Figure 2.2: Monte-Carlo Approximation Evaluation. Histograms that evaluate how well
PCM, SCGP (Olson et al., 2005), and RANSAC (Hartley and Zisserman, 2003) approximate
the combinatorial maximum pairwise consistent set in (2.5). The first row of histogram plots
shows the size of the measurement set as compared to the maximum consistent set size. The
second row of histograms shows the number of inconsistent pairs returned with respect to
the set γ threshold on Mahalanobis distance.

Zisserman, 2003).

Fig. 2.2 shows a comparison between these four methods with respect to the combinatorial

solution. Both PCM methods enforce consistency of the returned measurements. PCM-

Exact returns the same number of points as the combinatorial solution 100 percent of the

time, while PCM-HeuPatt returns the same number of points 98.97 percent of the time.

SCGP varies significantly in both the number of points returned and the consistency of those

measurements. RANSAC also sometimes returns more or less points than the combinatorial

solution and also fails to enforce measurement consistency.

Interestingly, RANSAC is especially dependent on threshold value. The threshold value

for RANSAC is centered around a single point and thus is not the same as the threshold value

for PCM. If the value is set too high, the number of inconsistent measurements increases.

If it is set too low, the total number of returned measurements decreases below the optimal.

In Fig. 2.2, RANSAC’s threshold is set arbitrarily to show a single snapshot.
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Figure 2.3: PCM Timing Comparison. A plot of the evaluation times of the different meth-
ods versus the number of measurements being tested. The combinatorial solution takes
exponential time and PCM-Exact takes exponential time in the worst case, while the other
methods are polynomial in the number of measurements. (This excludes the time to estimate
the distance matrix Q, which is required for all methods.)

2.7.1.2 Timing Comparison

We also used this 1D World to evaluate the timing characteristics of the different algorithms.

To test this, we generated 500 sample worlds each, for an increasing number of measurement

points. The results are shown in Fig. 2.3. Note, these timing results can be significantly

improved through parallelization.

2.7.2 Synthetic 2D Comparison

To test our method’s accuracy and consistency on a full SLAM dataset, we took a portion

of the City10000 dataset released with incremental smoothing and mapping (iSAM) (Kaess,

Ranganathan, and Dellaert, 2008) and split it to form two separate robot trajectories. After

removing all factors connecting the two graphs, we generated 81 different versions of this

dataset by randomly selecting a subset of the true loop closures between the two graphs to

be used as inliers, as well as randomly adding outlier loop closures to the graph. As before,

some of the outliers are internally consistent to simulate perceptual aliasing and some are

generated randomly with random mean and covariance. In this experiment, the number of

inlier loop closures was 15, there were two groups of 5 perceptually aliased outliers, and the
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Figure 2.4: City Dataset TPR, FPR, Consistency versus Threshold. Plots of the true positive
rate (TPR = TP / (TP + FN)), false positive rate (FPR = FP / (FP + TN)), and average
normalized chi-squared value (Chi2) of PCM-Exact, PCM-Heu, and RANSAC versus the
threshold value γ. The TPR and FPR can be thought of as the probability of getting a true
positive or a false positive. The Chi2 value should be close to zero if the measurements in
the graph are consistent.

number of random outliers was 90.

2.7.2.1 Parameter Sweep

Because RANSAC is significantly dependent on the threshold value set, we ran a parameter

sweep for the likelihood threshold over all 81 datasets. Fig. 2.4 summarizes this experiment.

The true positive rate (TPR) and false positive rate (FPR) of PCM is relatively unaffected by

the choice of the threshold parameter as long as it is less than about 85 percent. RANSAC,

on the other hand, has a different FPR for each threshold selected and never has an FPR of

zero. This is because PCM conservatively evaluates the consistency of each measurement and

determines the consistency of a group of measurements as a whole, while RANSAC selects
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Table 2.1: Simulated City Dataset Comparison Results. Summary of results from using
DCS (Agarwal et al., 2013), SCGP (Olson et al., 2005), RANSAC (Hartley and Zisserman,
2003)(with two different thresholds), and PCM to robustly merge maps generated from
a synthetic city dataset. These results are a summary of runs on 81 different generated
datasets. We evaluated the mean squared error (MSE) of the two graphs with respect to the
non outlier case (NO-OUT). The worst results for each metric are shown in red, the best are
shown in blue, and the second best shown in BOLD.

Trans. MSE (m2) Rot. MSE Residual Inliers Chi2 Value Eval Time (sec)
Avg Std Avg Std Avg Std TPR FPR Avg Std Avg

NO-OUT 0.0 0.0 0.0 0.0 32.320 0.117 1.0 0.0 N/A N/A N/A

DCS 183077.917 1194931.105 4.169 3.285 31.687 0.507 0.0 0.0 0.013 < 0.001 N/A
SCGP 623.278 1278.493 0.648 1.535 237385.743 894303.187 0.668 0.051 96.734 364.427 0.006
RANSAC-1% 5.688 21.976 0.009 0.040 185.190 587.590 0.998 0.006 0.076 0.239 < 0.001
RANSAC-3.5% 183.150 636.441 0.236 0.791 3807.570 18478.340 0.974 0.019 1.552 7.530 < 0.001
PCM-Exact-11% 0.276 1.537 < 0.001 0.003 45.057 105.385 0.997 0.001 0.018 0.043 < 0.001
PCM-HeuPatt-11% 0.276 1.537 < 0.001 0.003 45.057 105.385 0.997 0.001 0.018 0.043 < 0.001

the largest set of measurements that are likely given a single randomly selected measurement.

The last plot shows the average normalized chi-squared value of the residual for the entire

graph after solving with the selected factors. This value should be close to zero if the graph

is consistent.

The results show that PCM does significantly better at restricting the set of measurements

to those that are consistent with one another, decreasing the likelihood of getting a false

measurement. This is essential because of the extreme susceptibility of SLAM to false loop

closures. PCM-HeuPatt is also almost indistinguishable from PCM-Exact.

2.7.2.2 Accuracy Analysis

To evaluate the accuracy of PCM, we compared its performance on all 81 datasets to SCGP,

RANSAC (using the two second to lowest thresholds from Fig. 2.4), and DCS (Agarwal

et al., 2013). γ for both PCM-Exact and PCM-HeuPatt was set so that it corresponded to

the equivalent of 11% likelihood.

Table 2.1 gives an overall summary of the results. We used the Mean Squared Error

(MSE) of the trajectory of the two graphs (with respect to the no-outlier case), the residual,

and the normalized chi squared value of the non-linear least squares solver as metrics to

evaluate the solution accuracy. The rotation mean-squared error (MSE) was calculated via

εrot = 1
n

∑
i

∣∣∣∣log(R>i trueRi est)
∣∣∣∣
F

over each pose i and the translation MSE was calculated

in the normal manner. For this experiment, all MSE values were calculated with respect to

the absolute trajectory value.

38



−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

Ground Truth

−80 −60 −40 −20 0 20 40 60 80

x (meters)

−80

−60

−40

−20

0

20

40

60

80

y
 (

m
e
te

rs
)

SCGP

−500 −400 −300 −200 −100 0 100

x (meters)

−300

−200

−100

0

100

200

y
 (

m
e
te

rs
)

DCS

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

RANSAC - 1%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

RANSAC - 3.5%

−60 −40 −20 0 20 40 60

x (meters)

−40

−20

0

20

40

60

80

y
 (

m
e
te

rs
)

RANSAC - 11%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

PCM-Exact - 3.5%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

PCM-Exact - 11%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60
y
 (

m
e
te

rs
)

PCM-Exact - 89%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

PCM-HeuPatt - 3.5%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

PCM-HeuPatt - 11%

−60 −40 −20 0 20 40 60

x (meters)

−60

−40

−20

0

20

40

60

y
 (

m
e
te

rs
)

PCM-HeuPatt - 89%

Figure 2.5: Example Plots on Simulated City Datasets. Example plots of the maps estimated
by PCM-Exact, PCM-HeuPatt, RANSAC, DCS, and SCGP for one of the generated city
datasets. Correctly labeled inlier factors are shown in bold dark blue with correctly disabled
outliers shown as dotted gray. Accepted outliers are shown in bold red with disabled inliers
shown in pink. PCM significantly outperforms the other methods. When PCM does accept
measurements not generated from the true distribution, thay are still consistent with the
uncertainty of the local graphs.
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Table 2.2: NCLT Comparison Results. Results from using DCS (Agarwal et al., 2013),
SCGP (Olson et al., 2005), RANSAC (Hartley and Zisserman, 2003)(with two different
thresholds), and PCM to robustly merge segments extracted from two sessions of the NCLT
dataset (Carlevaris-Bianco, Ushani, and Eustice, 2015). NO-OUT corresponds to a version
with none of the measurements labeled as outliers. We evaluated the MSE of the two graphs
with respect to the groundtruth. The worst results for each metric are shown in red and the
best are shown in blue.

Rel. Pose MSE Traj. MSE Residual Inliers Chi2 Evaluation
Trans. (m2) Rot. Trans. (m2) Rot. Error TP FP Value Time (sec)

NO-OUT 455.4763 0.0308 0.0501 0.0005 765.072 10 0 0.3428 N/A

DCS 206782.2303 0.7154 0.0502 0.0005 724.061 0 0 0.2568 N/A
SCGP 522.2352 0.0162 0.0502 0.0005 748.351 3 0 0.3417 0.0021
RANSAC - 1% 1244.3818 0.0697 0.1036 0.0015 4228.21 10 6 1.8643 < 0.0001
RANSAC - 3.5% 13507.7032 17.4156 0.1146 0.0040 7457.54 10 7 3.2795 0.0001
PCM-HeuPatt 386.6876 0.0245 0.0501 0.0005 817.803 10 3 0.3635 0.0001

PCM has the lowest trajectory MSE, and DCS has the lowest residual. Note that DCS

also has the highest trajectory MSE, which is as expected. DCS seeks to minimize the least

squares residual error and depends on a good initialization to determine what measurements

are consistent enough to not be turned off. Without this initialization, DCS has no reason

to believe that the inter-map factors are not outliers and thus turns off all the inter-map

factors in the graph.

RANSAC and both PCM methods take about the same amount of time to find the

consistency set once given the matrix Q. The average time to estimate the Mahalanobis

distances without the use of analytical Jacobians, parallelization, and incremental updates

was 70.8 seconds.

Fig. 2.5 shows example plots of the estimated maps. Both SCGP and RANSAC have

trouble disabling all inconsistent measurements. PCM-Heu well approximates PCM-Exact,

and both PCM methods do well at disabling inconsistent measurements. When PCM does

accept measurements not generated from the true distibution, they are still consistent with

the uncertainty of the local graphs.

2.7.3 Real-World Pose-Graph SLAM

We evaluate PCM on the 3D NCLT dataset (Carlevaris-Bianco, Ushani, and Eustice, 2015).

The NCLT dataset was collected using a Seqway robot equipped with a LiDAR, Ladybug3

Camera, Microstrain IMU, and GPS. There are 27 sessions in all with an average length of

5.5 km per session.

For our experiment, we took two sessions collected about two weeks apart, removed the

first third of one and the last third of the other, and then generated potential loop-closure
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Figure 2.6: PCM and RANSAC Threshold versus Consistency - NCLT. The normalized
chi-squared value (Chi2) of the resulting NCLT graph versus the threshold value γ for PCM-
HeuPatt and RANSAC. The Chi2 value for RANSAC is never below 1.0 signifying that the
selected factors are probabalistically inconsistent, while the Chi2 value for PCM is relatively
constant and below 1.0 regardless of threshold.

measurements between the two graphs by aligning every fourth scan on each graph using

generalized iterative closest point (GICP) (Segal, Haehnel, and Thrun, 2009) and selecting

the match with the lowest cost function. We then labeled these registrations as “inliers” and

“outliers” by thresholding the translation and rotation mean squared error of the estimated

pose transformations with respect to the ground-truth poses for the dataset derived by

performing pose-graph optimization on all 27 sessions. Finally, to increase the difficulty of

the dataset, we removed all but one sixteenth of the measurements labeled as “inliers” from

the graph, resulting in a graph with 10 “inliers” and 98 “outliers.” The GPS measurements

and images were ignored.

In this experiment, we compare PCM-HeuPatt with DCS, SCGP, and RANSAC. Fig. 2.6

shows the normalized chi-squared value of the resulting graphs for RANSAC and PCM versus

threshold. Table 2.2 provides a comparison of results, and Fig. 2.7 shows the estimated

maps. The MSE was calculated using the same method as in the prior section, however in

this test we calculated trajectory and map relative pose error separately. The trajectory MSE

calculates the error in the estimated relative pose between consecutive nodes allowing us to

evaluate graph correctness, while the relative map pose MSE evaluates the offset between

the maps.

PCM results in the graph with the best trajectory MSE and the best translational MSE

for the relative pose of the two graphs and results in a consistent graph regardless of threshold.

It also detects all of the “inlier” measurements as well as three of the measurements labeled

as “outliers”. DCS once again disables all measurements. SCGP results in a good graph but
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Figure 2.7: Example Plots on NCLT Dataset. Plots of the trajectories of two partial sessions
of the NCLT dataset as estimated by PCM-HeuPatt, RANSAC, DCS, and SCGP.

only enables three of the “inlier” measurements, and finally RANSAC (for both of the lowest

thresholds tried) enables all “inliers” and several “outliers” and results in an inconsistent

graph regardless of the threshold selected.

Note that while in this experiment PCM admits more false positives than in the last

experiment, the measurements it accepts are consistent with the “inlier” measurements even

though they were labeled as “outliers” (Fig. 2.6). In fact, notice that PCM has a better

MSE for the relative map pose then the no outlier (NO-OUT) version of the graph. This

suggests that by maximizing the consistent set, PCM is selecting measurements that are

actually inliers but were mis-labeled as outliers when compared to the ground-truth. After

verification this turned out to be the case.

It is also important to note that although SCGP results in a good graph for this dataset,
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(a) RANSAC with Threshold Close to 1%

(b) RANSAC Threshold versus Consistency

Figure 2.8: Additional Evaluation of RANSAC Threshold. Testing for RANSAC with a
different sampling of the inlier loop closure measurements. In this case, as the threshold is
decreased, the chi squared value of the graph fluctuates as opposed to directly decreasing
and even with a low threshold results in an inconsistent graph.

as shown in the earlier experiment, this does not occur in all cases. In addition, it fails to

select the maximum consistent set of measurements, this can be catastrophic in the case of

perceptual aliasing.

While it may seem that RANSAC will always do well if a low threshold is selected, there

is a tradeoff between setting the threshold too low and not getting enough measurements and

setting it high and getting outliers. The optimal value for RANSAC’s threshold is dependent

on the individual measurements observed and varies from dataset to dataset. The threshold γ

for PCM has an intuitive probabalistic meaning and can be set a priori. As another example

of RANSAC failing regardless of threshold, Fig. 2.8 shows results for running RANSAC on

the NCLT dataset if a different sample of inliers is selected.
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2.8 Conclusion

In summary, we have developed an algorithm that enables the selection of consistent factors

for map merging. The proposed algorithm does not need an initial estimate of relative

pose and also is not heavily dependent on threshold parameter values. We’ve shown that a

version of the method restricted to full degree of freedom factors outperforms state of the

art methods.

The completed work was published in:

J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan. Pairwise consistent mea-

surement set maximization for robust multi-robot map merging. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 1–8, Brisbane,

Australia, May 2018

A C++ implementation is released at: https://bitbucket.org/jmangelson/pcm.
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CHAPTER 3

Initialization Agnostic Trajectory Alignment

without Data Association

3.1 Introduction

Multi-agent underwater inspection and mapping tasks depend on the ability to determine

an alignment between multiple robot maps or trajectories. This is challenging in underwater

environments where global positioning systems are unavailable and where acoustic position-

ing systems require extensive setup and calibration (Hover et al., 2012). Moreover, in fully

submersed scenarios, communication is limited to a few bits per second making data transfer

a significant system constraint (Walls, Cunningham, and Eustice, 2015).

Existing methods for estimating this alignment rely on either direct measurement of rel-

ative pose or the matching of discrete feature points observed by multiple robotic vehicles

(Indelman et al., 2016). However, direct relative pose measurement is not always possible

(for example in the presence of occlusion) and performing data association requires that

feature points transferred between agents be uniquely identifiable. This is usually accom-

plished through the transfer of high dimensional feature descriptions that often surpass the

throughput available in the underwater environment.

This paper proposes a method that efficiently estimates the rigid body transformation

between reference and query robot trajectories based on a sparsely sampled underlying fea-

ture space. Because we formulate the problem as a convex optimization problem, our method

avoids performing data association and decreases the amount of data that needs to be trans-

ferred between robotic vehicles by several orders of magnitude. In addition, because our

formulation is convex, our proposed method is not dependent on initialization and does not

require a prior estimate of the relative transformation between trajectories. Finally, our

method is parallelizable and takes advantage of existing commercial optimization libraries

to increase the efficiency of the optimization process.
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Figure 3.1: Overview of Initialization Agnostic Trajectory Alignment. Given sparse observa-
tions of an underlying feature space, we formulate a linear optimization problem that seeks
to align a query trajectory with a reference trajectory. We do this by iterativelly alternat-
ing between creating a linear cost that minimizes feature distance and optimizing over the
transformation to minimize that linear cost.
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The contributions of this chapter include the following:

1. The development of a system for alignment and localization of robot trajectories that:

i) Relies only on low-dimensional feature observations.

ii) Avoids performing data association.

iii) Does not require an initial alignment estimate.

2. A novel linear approximation based method for approximate optimization over SO(2).

3. A parallelized implementation of the proposed method.

The remainder of this chapter is organized as follows: In Section 3.2, we provide an

overview of related areas of work. In Section 3.3, we formalize the trajectory alignment

problem. In Section 3.4, we present a method that takes advantage of convex relaxation

techniques to generate a linear cost function that is minimized when query feature points

are placed near reference feature points with similar value. In Section 3.5, we present a novel

method that uses linear programming to approximately optimize over SO(2). In Section 3.6,

we provide an outline of the full system and our released implementation. We evaluate the

proposed algorithm on simulated datasets in Section 3.7 and apply it to multi-agent ship

hull inspection in Section 3.8. Finally, we conclude in Section 3.9.

3.2 Related Work

Multi-agent collaborative mapping has been heavily researched and a variety of methods

have been developed for estimating the relative transformation between robot coordinate

frames. Early methods assumed that vehicles were able to observe one another directly

(Carlone et al., 2010; Howard, Matark, and Sukhatme, 2002; Zhou and Roumeliotis, 2006).

These methods relied on a single direct observation to determine the relative pose (position

and orientation) of the two agents. Later, maximum likelihood based simultaneous localiza-

tion and mapping (SLAM) methods enabled the use of multiple observations by estimating

the most likely alignment and map given all the observed measurements (Andersson and

Nygards, 2008; Cunningham et al., 2012; Dellaert and Kaess, 2006; Eustice, Singh, and

Leonard, 2006; Kim et al., 2010). These methods often relax the assumption that vehicles

must be able to observe one another directly. Instead, features present in the environment

observed by both vehicles are co-registered and used to relate the pose of the two vehicles.

More recent methods for determining multi-agent alignment are based on co-registering data

in this way (Bonanni, Della Corte, and Grisetti, 2017; Dong et al., 2015; Indelman et al.,

2016; Mangelson et al., 2018). While co-registering observed data works well in many cases,
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it is dependent on the ability to transmit large amounts of data between vehicles. This work

focuses on developing methods that minimize the amount of data that must be transmitted

between agents.

Our work is also related to research in terrain based navigation (Carreno et al., 2010;

Melo and Matos, 2017; Reis et al., 2017). In the underwater environment, these methods

involve the use of a known bathymetric map of the seafloor to improve navigation estimates.

These methods, however, are more focused on improving the estimate of a single robot’s

trajectory than on determining the alignment between multiple trajectories. In addition,

these methods require an a prioi map of the environment, while our ultimate goal is to

directly align the trajectories of two robotic vehicles that are simultaneously performing an

inspection/mapping task in a potentially unknown environment, but unable to directly pass

position information between one another.

There has also been significant recent interest in the SLAM and computer vision com-

munities in developing estimation algorithms that leverage convex optimization techniques

to avoid the need for an initial guess (Carlone, Censi, and Dellaert, 2014; Li et al., 2014;

Mangelson et al., 2018; Rosen, DuHadway, and Leonard, 2015; Saunderson, Parrilo, and

Willsky, 2014). This is especially useful in the underwater environment where global posi-

tioning system (GPS) is not available and global measurements of position can be hard to

come by. In 2014, Li et al. (2014) proposed a method that uses the convex hull of a set of

dissimilarity points to estimate the affine transformation that must have occurred in order

to transform a set of points observed in one image to a similar set of points observed in

another. Their proposed method results in a linear (convex) cost function that can be solved

by taking advantage of existing optimization libraries and does not require an initialization.

However, to apply their method to the trajectory alignment problem, we need to ensure that

the estimated trajectory is rigid as opposed to affine.

Optimization over the group of rigid body transformations is generally non-convex making

it hard to guarantee the true optimum. Recent works have investigated convex relaxation

based methods for performing optimization over the group of rigid body transformations (the

special euclidean group SE(d)) (Rosen, DuHadway, and Leonard, 2015; Saunderson, Parrilo,

and Willsky, 2014). Specifically, these methods relax optimization over the set of valid

rotation matrices SO(d) to an optimization over the convex hull of SO(d). These methods

work well in many cases. However, they fail to enforce that the estimated transformation be

a valid rigid body transformation. The optimization problem used in our method also takes

advantage of convex relaxation techniques, however, we use a linear approximation of the

`2-norm to add an additional set of constraints to the optimization that collectively enforce

that the estimated transformation be approximately rigid. This results in more accurate

48



transformation estimates than optimization over the convex hull of SO(d).

3.3 Problem Formulation

In this section, we outline the need for communication constrained trajectory alignment in

underwater inspection and then formalize the trajectory alignment problem.

3.3.1 Trajectory Alignment w/o Data Association

In multi-agent inspection tasks, multiple vehicles navigate through the environment collect-

ing information and estimating a map of the structure or scene they are inspecting. Some

form of these local maps are then transmitted between vehicles allowing the agents to use

the data collected by other vehicles for navigation, path planning, or global map generation.

However, before an agent can use the data collected by another agent, it must first determine

an alignment between its own local trajectory/map and the trajectory/map received from

the other agent. Traditionally, this alignment is determined by matching locations in the

environment that are observed by both agents (Carlone et al., 2010; Howard, Matark, and

Sukhatme, 2002; Zhou and Roumeliotis, 2006).

However, communicating large amounts of data such as point clouds or high-dimensional

image feature vectors between vehicles is often not practical in the underwater domain. While

one approach is to limit data transfer by prioritizing data that is most likely to be useful,

our approach is to cut out the transfer of this high-dimensional data completely. Instead, we

take a discretized version of the robot trajectory and summarize information observed near

each individual robot position using a small low-dimensional feature vector. We then align

the robot trajectories by trying to find a rigid body transformation that places poses with

similar descriptions near one another, without trying to match individual features. Taking

this approach allows us to limit the data that must be transferred between vehicles to the

discretized set of positions and the associated set of low-dimensional feature vectors.

3.3.2 Convex Trajectory Alignment

Formally, our goal is to align a query trajectory with a reference trajectory based only on

low dimensional feature vectors describing the environment at each position visited by the

two trajectories.

We denote the positions visited by the reference trajectory by {pa1, · · · ,pana
} and the

associated feature vectors by {ηa1 , · · · , ηana
}, indexed by i. Similarly, the query trajectory

positions and feature vectors are denoted by {pb1, · · · ,pbnb
} and {ηb1, · · · , ηbnb

}, respectively,

49



indexed by j. We then frame the trajectory alignment problem as an optimization that

seeks to find a transformation that transforms positions in the coordinate frame of the query

trajectory into the coordinate frame of the reference trajectory such that when the points

{pb1, · · · ,pbnb
} are transformed, they lie nearby points in {pa1, · · · ,pana

} with similar feature

values. Thus, the feature vectors η only need to describe the local environment as opposed

to uniquely identifying a specific point and, as a result, can have a much lower dimension.

Using a formulation similar to (Li et al., 2014), we define a transformation function

T abj (Θ) : Rn 7→ Rd that maps the j-th query point, pbj, to a position represented with

respect to the reference trajectory coordinate frame. Specifically, we define T abj (Θ) as

T abj (Θ) = Rabpbj + tab, (3.1)

where Θ = (Rab, tab) are the parameters of the function. Together, Rab ∈ SO(d) and tab ∈ Rd

parameterize a global rigid body transformation relating the local coordinate frames of the

two vehicles. The points pbj are fixed in the function T abj and we thus define nb transformation

functions, one for each feature in the query trajectory.

We also define a function cj : Rd 7→ R that takes a position represented in the reference

trajectory coordinate frame, pa ∈ Rd, and calculates the feature dissimilarity between ηbj

and the given position. As before, because there are nb query feature points, we define nb

different dissimilarity functions cj, j = 1, · · · , nb. Section 3.4 provides more detail on how

these functions are defined.

With these definitions, we can formulate the final overall objective function as follows:

minimize
Rab∈SO(d)

tab∈Rd

nb∑
j=1

cj(T
ab
j (Θ)) (3.2)

where cj(T
ab
j (Θ)) is the dissimilarity between the feature vector ηbj and its new transformed

position in the reference trajectory coordinate frame. Solving this optimization problem

would allow us to find the transformation that minimizes the dissimilarity between query

feature points and their associated positions in the reference trajectory coordinate frame.

Note, that while our formulation is based on that of (Li et al., 2014), their method

assumes the transformation is affine, while we restrict it to be an isometric (or rigid body

(Hartley and Zisserman, 2003)) transformation. This assumption on their part, results in the

associated terms of their cost function being affine and the resulting optimization problem

being convex. However, when dealing with physical transformations between coordinate

frames, an affine transformation does not represent reality and a rigid body transformation

must be used. This makes our resulting optimization problem non-convex and more difficult
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to solve. In Section 3.5, we explain a novel method to approximately optimize over SO(2).

3.4 Convex Transformation Estimation

via the Lower Convex Hull

In this section, we discuss the formulation of the dissimilarity functions cj, j = 1, · · · , nb
that measure the feature dissimilarity of the feature vector ηbj and a position in the refer-

ence trajectory coordinate frame. We then compose the dissimilarity functions cj with the

transformation function (3.1) so that we can optimize over the transformation parameters

as opposed to individual pose positions. There are two cases that we cover:

1. The 2D case where both maps lie in a 2D world(d = 2)

2. The known depth case where both maps lie in the 3D world(d = 3), but one coordinate

is known.

We first cover the 2D case which follows directly from (Li et al., 2014). We then generalize

this to the case with known depth.

3.4.1 Convex Dissimilarity Function Definition in 2D

Following, Li et al. (2014), we denote the feature dissimilarity between ηai and ηbj by Cab
ij . If we

use every possibly pairing there are na×nb of these values and they can be calculated before

performing registration via an arbitrary dissimilarity function. However, because we want to

find a transformation as opposed to a discrete matching, we create nb continuous and convex

feature dissimilarity functions cj, j = 1, · · · , nb. Each cj takes a position represented with

respect to the reference trajectory coordinate frame and returns a predicted lower bound

on the dissimilarity of that position with respect to the feature vector ηbj . We derive this

function by taking the lower convex hull of the following point cloud:
xa1 ya1 Cab

1j

xa2 ya2 Cab
2j

...
...

...

xana
yana

Cab
naj

 . (3.3)

For a given feature vector ηbj with d = 2, the point cloud (3.3) defines discrete points in a

space that relates 2D positions in the reference trajectory coordinate frame to their associ-

ated dissimilarity value with respect to ηbj . Because this space is 3D, we can calculate the
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convex hull of these points using an algorithm like the one proposed by Barber, Dobkin, and

Huhdanpaa (1996). The lower convex hull with respect to the dissimilarity value dimension

is made up of a set of planes (facets) that represent lower bounds on the discrete dissimilarity

values Cab
ij for a given fixed j. These planes can be found by selecting the planes that have

normal vectors with a negative component in the dimension corresponding to dissimilarity.

Assuming there are Mj planes in the lower convex hull for feature ηbj , we can define these

planes using the equations amx + bmy + cmCm + dm = 0, for m = 1, · · · ,Mj, where x and

y correspond to the position dimensions and Cm corresponds to the dissimilarity dimension

in the point cloud (3.3). We then rearrange these equations to arrive at the plane functions

Cm = rmx + smy + tm, for m = 1, · · · ,Mj that calculate the predicted dissimilarity given a

specified feature position. Finally, we can now define the feature dissimilarity function cj as

cj([x, y]>) = max
m

(rmx+ smy + tm), m = 1, · · · ,Mj. (3.4)

This function is both continuous and convex and its minimization can be transformed

into an equivalent linear program (Boyd and Vandenberghe, 2004):

minimize
uj ,x,y

uj

subject to rmx+ smy + tm ≤ uj,

m = 1, · · · ,Mj.

(3.5)

Using the dissimilarity function (3.4) and the linear program (3.5) enables us to efficiently

solve for an arbitrary 2D position [x, y]> ∈ R2 that minimizes the dissimilarity with respect

to ηbj for a given value of j. The next section describes how to compose cj( · ) with the

transformation T abj (Θ) which enables us to optimize over the parameters Θ = (Rab, tab).

3.4.2 Composition with the Transformation Function

Our goal is to estimate the rigid body transformation between respective trajectories. As

such, rather than estimate the individual locations of points, we estimate the parameters

of the transformation, Θ, or more specifically the parameters Rab and tab. We do this by

minimizing cj(T
ab
j (Θ)) for all j = 1, · · · , nb, as opposed to cj([x, y]>) directly.

Remembering that T abj (Θ) ∈ Rd represents the transformed coordinates of pbj, we rep-

resent the function that calculates the first coordinate of T abj (Θ) by fj(Θ) and the second

coordinate by gj(Θ). Specifically, define

fj(Θ) = Rab(1)pbj + tab(1) (3.6)
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and

gj(Θ) = Rab(2)pbj + tab(2), (3.7)

where the notation (i) denotes the i-th row of the given matrix or vector and, again, pbj is

fixed for both fj and gj.

Using this, we can rewrite (3.5) to be a minimization of cj(T
ab
j (Θ)) over Θ as

minimize
uj∈R

Rab∈SO(2)

tab∈R2

uj

subject to rmfj(Θ) + smgj(Θ) + tm − uj ≤ 0,

m = 1, · · · ,Mj.

(3.8)

If the elements of the matrix Rab are treated as individual elements in Θ, then both

fj(Θ) and gj(Θ) are affine functions of Θ, and rmfj(Θ) + smgj(Θ) + tm−uj is also an affine

function of Θ and uj. This was noted in (Li et al., 2014). However, in our case, the resulting

problem (3.8) is non-convex because of the implicit constraint that Rab ∈ SO(2). Section 3.5

proposes a solution to this problem.

The next section explains how this can be generalized to three dimensions when depth is

known.

3.4.3 The Known Depth Case

The prior section is defined with a planar world in mind. However, the real world exists in

three dimensions. Although the prior section can be generalized to three dimensions, in the

underwater domain we can take advantage of the fact that we can accurately measure depth

and just estimate translation in the xy-plane and rotation about the z (vertical) axis. Under

these assumptions, we can restrict T abj to the following:

T abj (Θ) =

[
Rab
z 0

0 1

]
pbj +

[
tabz

0

]
, (3.9)

with Rab
z ∈ SO(2), tabz ∈ R2, and pbj ∈ R3. This restriction simplifies the problem and enables

us to work on SO(2) as opposed to SO(3) when relaxing the optimization problem.

In addition, if the feature value varies with depth, then we can limit the reference trajec-

tory feature points that need to be paired with each query feature ηbj to those with a depth

within a threshold γ of the estimated depth of pbj. This allows us to decrease the size of the

point cloud (3.3) and tighten the lower bounds defined by the planes in the lower convex
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hull.

3.5 Ensuring the Transformation is Rigid

The ultimate optimization problem we want to solve, (3.2), is non-convex because of the

implicit constraint that Rab (or equivalently Rab
z ) ∈ SO(d). This makes it difficult to ensure

that the solution obtained is globally optimal without a good initialization. However, this

constraint is essential because it ensures that the estimated transformation is rigid as opposed

to affine. A general affine transformation allows scaling and distortions of the object in

addition to rotation and translation. Physical rigid body transformations on the other hand

preserve distance between points and thus do not allow scaling or distortions (Hartley and

Zisserman, 2003).

3.5.1 Definition of SO(2) and conv SO(2)

Formally, SO(d) is defined as follows:

SO(d) =
{
R ∈ Rd×d : R>R = RR> = I, det R = 1

}
. (3.10)

In the two dimensional case, an alternative definition for (3.10) is:

SO(2) =

{
R =

[
c −s
s c

]
∈ R2×2 : c2 + s2 = 1

}
. (3.11)

A variety of recent papers have investigated the use of the convex hull of SO(d) (Rosen,

DuHadway, and Leonard, 2015; Saunderson, Parrilo, and Willsky, 2014):

conv SO(2) =
{

R̃ =
[
c−s
s c

]
∈ R2×2 :

[
1+c s
s 1−c

]
≤ 0

}
. (3.12)

These methods relax optimization over SO(d) to optimization over the smallest convex set

of matrices containing it. In this case the set of valid rigid body transformations lies on

the border of the convex hull. However, if the minimum of the cost function lies within

that convex hull as opposed to outside it or on its border, then these methods still return

a transformation that scales and/or distorts the transformed trajectory. While rounding to

the nearest rigid body transformation is possible, if the estimated transformation is no where

near valid then the rounded solution tends to be inaccurate.

Instead of using the convex hull of SO(2), we break the problem up into linear sub-

problems, within which we can use a linear approximation of the `2 norm (Barni et al.,
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Figure 3.2: Linear Approximation of `2. The planes in these plots represent a piece-wise
linear approximation of the `2-norm of x = [x1, x2]> (3.16). The pink circle represents where
the `2-norm is one, ||x||2 = x2

1 + x2
2 = 1.

2000) to enforce that c2 + s2 ≈ 1 and thus that the transformation be approximately rigid.

3.5.2 Linear Approximation of `2

Celebi, Celiker, and Kingravi (2011) evaluate several potential linear approximations of

the `2-norm. According to their evaluation, the approximation presented by Barni et al.

(2000) has the lowest maximum error. This approximation states that given a vector x =

[x1, x2, · · · , xn]> ∈ Rn,

||x||2 ≈ δ∗
n∑
i=1

α∗ix(i), (3.13)

where (x(1), x(2), · · · , x(n)) is a permutation of (|x1|, |x2|, · · · , |xn|) such that x(1) ≥ x(2) ≥
· · · ≥ x(n), and δ, αi are parameters optimally given by (See (20) and (21) in (Barni et al.,

2000)):

α∗i =
√
i−
√
i− 1, δ∗ =

2

1 +
√∑n

i=1 α
∗2
i

. (3.14)

In the two dimensional case, α∗1 = 1, α∗2 =
√

2 − 1, and δ∗ = 2

1+
√

1+(
√

2−1)2
≈ 0.96044.

In addition, in the two dimensional case, the sorting of (|x1|, |x2|) can be implemented via a
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maximization term, and (3.13) can be rewritten as

||x||2 ≈ δα1 max(|x1|, |x2|) + (3.15)

δα2(|x1|+ |x2| −max(|x1|, |x2|).

Implementing max and absolute value in convex optimization problems is not always

possible. Instead of actually evaluating the max and absolute values, we can enumerate the

possible values and rewrite (3.15) as:

||x||2 ≈ max(δ(α1x1 + α2x2),

δ(α1(−x1) + α2x2),

δ(α1(−x1) + α2(−x2)),

δ(α1x1 + α2(−x2)),

δ(α1x2 + α2x1), (3.16)

δ(α1(−x2) + α2x1),

δ(α1(−x2) + α2(−x1)),

δ(α1x2 + α2(−x1)))

This function is shown plotted in Fig. 3.2.

3.5.3 Breaking the Optimization into Linear Sub-Problems

Using (3.16) to enforce unit norm is still difficult because enforcing the max operation re-

quires simultaneous minimization and maximization; instead, we split the problem into eight

sub-problems in a way that enables us to ignore the max operation. Each of the eight terms

in (3.16) correspond to a single plane in Fig. 3.2. Additionally, each term is maximal only

when the signs and relative values of x1 and x2 meet certain conditions. These conditions cor-

respond to sections of the unit circle (Fig. 3.3(b)) and can be enforced with linear constraints

on x1 and x2.

Specifically, we can enforce that x lie within any given section by adding the corresponding

choice of the following constraints to the optimization problem:

x1 ≤ x2 or x2 ≤ x1

x1 ≤ 0 or x1 ≥ 0 (3.17)

x2 ≤ 0 or x2 ≥ 0.
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(a) Division into Sections (b) Unit Circle

Figure 3.3: Problem Division into Eight Sub-problems. By dividing the optimization into
eight sub-problems, we no longer need to execute the max operation in (3.16) and each
sub-problem then becomes convex. The red lines in (a) demonstrate where this division
takes place. These divisions correspond to the unit circle (b) and the enumerated sign/max
combinations in (3.16).

Within a given section, only a single plane is maximal and the approximation of `2

becomes linear (Fig. 3.3(a)). Thus, we can enforce that our solution be close to unit norm

by adding the following linear constraint to the problem:

δ(α1xp + α2xq) = 1 (3.18)

where xp and xq represent the appropriately selected elements of {x1,−x1, x2,−x2}, such that

they match the respective maximal term in (3.16). The maximum error of this approximation

(3.18) is related to, but likely to be slightly higher than εmax as defined in (4) and Table 3

of (Celebi, Celiker, and Kingravi, 2011).

Formulating the problem in this way makes each sub-problem a linear program, and so

we can take advantage of existing efficient optimization libraries to solve each sub-problem

to a global minimum (ApS, 2018). In addition, because the sub-problems divide the space

and optimize over the same linear cost function, the solution to the sub-problem with lowest

optimal value is identical to what the solution would be if we were able to constrain (3.16)

to be equal to 1. Finally, the sub-problems are independent and thus can be parallelized.
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3.6 The Full System

We are now able to create a general system for aligning robot trajectories.

3.6.1 The Final Optimization Problem

We can rewrite the optimization problem (3.2), by combining (3.8), (3.17), and (3.18).

minimize
uj∈R
c,s∈R
tab∈R2

nb∑
j=1

uj

subject to rmj
fj(Θ) + smj

gj(Θ) + tmj
− uj ≤ 0,

mj = 1, · · · ,Mj, j = 1, · · · , nb

Rab =

[
c −s
s c

]
c ≤ s or s ≤ c

c ≤ 0 or c ≥ 0

s ≤ 0 or s ≥ 0

δ(α1xp + α2xq) = 1,

(3.19)

where the inequality constraints and xp and xq are chosen according to the specific sub-

problem.

Enumerating the possible combinations of these constraints results in eight sub-problems.

Solving all eight sub-problems and then selecting the solution with lowest cost enables us

to estimate a transformation to align the two trajectories without an initial estimate of

alignment. In addition, this method enables us to avoid performing data association and

thus perform alignment based on relatively indistinct, low-dimensional, feature observations.

We then iterate over this process with consecutively smaller regions of interest, as explained

in Section 4 of (Li et al., 2014), to decrease the number of reference trajectory points used

to create the cost function and thus increase accuracy.

3.6.2 Parallel and Feature Agnostic Implementation

We implemented the proposed system in c++. The released implementation uses MOSEK

(ApS, 2018) and multiple threads to efficiently solve the linear sub-problems in parallel. The

released code can be found at the following link: https://bitbucket.org/jmangelson/cte.
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Table 3.1: Summary Statistics for Simulated Alignment Experiment. Comparison of the
proposed alignment algorithm with other convex algorithms that use the same alignment
framework but enforce structure differently: SOConvHull (Saunderson, Parrilo, and Willsky,
2014), Symmetric (Li et al., 2014), Affine (Li et al., 2014). Standard deviation shown is after
removing outliers outside 1.5*IQR, IQR=Inter-Quartile-Range.

Proposed SOConvHull Symmetric Affine
Rotation Median SE 0.011 0.039 0.042 0.338
Rotation Stddev SE 0.017 0.096 0.095 0.498
Trans. Median SE (m2) 4.796 10.974 11.601 32.582
Trans. Stddev SE (m2) 6.770 18.219 20.318 57.370
% Approx. Valid Rotations 100.0 37.0 25.5 1.0
Avg Runtime (s) 41.444 29.527 25.416 23.926

Our implementation and method are agnostic to the underlying feature space. When

specifying a problem to be solved, the user provides feature point positions and a function

that calculates the feature dissimilarity of a given pair of points. As such, the specifics of

the feature space being used and the dissimilarity function are free to be chosen by the user.

In addition to our own proposed method for approximate optimization over SO(2), we

also implemented functionality for estimating affine and symmetric transformations (Li et al.,

2014), as well as rigid body transformations via conv SO(2) (Saunderson, Parrilo, and Will-

sky, 2014) for comparison.

3.7 Evaluating our Approximation of SE(2)

To provide quantitative results, we generated 200 synthetic worlds with smoothly varying

feature spaces. We then simulated both a reference and a query lawn-mower trajectory

within that space and randomly rotated and translated the query trajectory. Finally, we

compared the alignment results from a variety of convex alignment methods formulated as in

Section 3.4 but with different types of transformation constraints. Specifically, we compared

our proposed linear programming-based approach to methods based on (Li et al., 2014)

that allowed either affine or symmetric transformations as well as a method that enforced

that the estimated transformation lie within the convex hull of SO(2) (Saunderson, Parrilo,

and Willsky, 2014). Fig. 3.4 shows a sample simulated trajectory and associated alignment

results. The nominal trackline width for this dataset was two meters and the feature vector

dimension was three.

Table 3.1 provides a summary of the comparison results. Our proposed method outper-

forms other methods in all metrics except for runtime. Note that the median translation

squared error for the proposed method is 4.796 meters squared while the resolution of the
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(d) Aligned Query Trajectory

Figure 3.4: Example Simulated Trajectory Alignment. The feature space for a sample
simulated trial is shown in (a). The reference and query trajectories are then generated
as shown in (b) and (c). To simulate the fact that the relative transformation between
trajectories is unknown, we then randomly rotate and translate the query trajectory and use
the proposed and evaluated methods to estimate the inverse of the random transformation.
The resulting trajectories are shown in (d).

tracklines simulated was two meters, meaning that the median error is only slightly higher

than the resolution of the input data.

The current implementation uses four threads that independently solve two linear pro-

grams each via the optimization library Mosek (ApS, 2018). However, the speed of the

algorithm can be additionally improved by increasing the number of cores or by using a

faster convex optimization library.
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(a) Trajectory 1 Colored by Curvature

(b) Trajectory 2 Colored by Curvature

(c) Alignment Based on Hull Curvature Alone

(d) Ground Truth

Figure 3.5: Ship Hull Trajectories Aligned Based on Curvature. Two trajectories colored
by estimated curvature are shown in (a) and (b). The estimated alignment of these two
trajectories is shown in (c). The groundtruth alignment is shown in (d). This data was
collected during field trials inspecting the hull of the USCGC Spencer in Boston, MA.

3.8 Application to Multi-Agent Autonomous

Ship Hull Inspection

We also tested this method on real-world field data collected using a Hovering Autonomous

Underwater Vehicle (HAUV) performing autonomous ship hull inspection. We used the

sparse range returns of the Doppler velocity log (DVL) to estimate the curvature of the hull.

Then, by treating the local curvature of the ship hull as a feature vector, we are able to

re-localize to an earlier trajectory using only the DVL. Fig. 3.5 shows an alignment using
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this method.

Using the proposed alignment method limits the information that needs to be passed

between vehicles to six fixed or floating-point values for each position visited by the agent

(including three position coordinates and three curvature feature values), while the through-

put needed to transfer image features between agents would be on the order of 1000-10000

fixed or floating-point values per position. Thus, the proposed method results in a decrease

in required throughput of approximately 3-4 orders of magnitude.

The final accuracy of the alignment is dependent on the distinctiveness of the features

being observed as well as the sampling resolution inherited from the reference trajectory.

However, as formulated, the proposed method is independent of the specific feature and thus

can be applied to whatever feature set is most distinctive in a given environment, subject

to the communication bandwidth available. In addition, alignment can be further refined if

desired using higher dimensional data such as imagery once an initial estimate of alignment

has been obtained, thus minimizing the amount of image data that must be transferred

between agents.

3.9 Conclusion

In this chapter, we propose a method for aligning robot trajectories that is linear and thus

does not require initialization. In addition, the proposed method aligns trajectories without

performing data association which decreases the amount of information that must be trans-

ferred between agents. We compared the existing method to similar convex methods that

fail to enforce that the estimated transformation be rigid. We also applied the proposed

algorithm to localization in the context of multi-agent autonomous ship hull inspection.

Future work would include: extending the proposed ideas to three dimensions and re-

laxing the assumption that the query trajectory be contained within the convex hull of the

reference trajectory.

The completed work was published in:

J. G. Mangelson, R. Vasudevan, and R. M. Eustice. Communication constrained trajectory

alignment for multi-agent inspection via linear programming. In Proceedings of the

IEEE/MTS OCEANS Conference and Exhibition, pages 1–7, Charleston, SC, USA,

October 2018

A C++ implementation is released at: https://bitbucket.org/jmangelson/cte.
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CHAPTER 4

Guaranteed Globally Optimal Planar Pose

Graph and Landmark SLAM

4.1 Introduction

An accurate map of the environment is essential for safe autonomous navigation in the real-

world (Cadena et al., 2016). An error in the map has the potential to cause loss of life

in self-driving car applications or the loss of millions of dollars of assets when performing

underwater or space exploration tasks. Despite the importance of accurate mapping, the

majority of algorithms used for simultaneous localization and mapping (SLAM) are prone

to local minima and are sensitive to initialization. Troublingly, verification of these maps is

either performed by visual inspection or not at all.

There has been significant recent interest in developing optimization and estimation algo-

rithms that provide mathematical guarantees on whether a computed solution is or is close

to the global optimum and is therefore a true maximum a posteriori (MAP) estimate of the

map (Carlone et al., 2015, 2016; Hu, Khosoussi, and Huang, 2013; Liu et al., 2012; Rosen

et al., 2016; Rosen, DuHadway, and Leonard, 2015). These algorithms either use a relax-

ation or the dual of the original problem to find a solution. As a result, these methods either

return an approximate solution, are only able to certify the optimally of a solution after it

has been computed, or are only able to return the global solution if the graph meets certain

requirements related to limits on measurement noise. In addition, with the exception of Hu,

Khosoussi, and Huang (2013), these methods are focused on pose-graph optimization and

are unable to handle landmark position measurements or are unable to estimate landmark

positions.

As depicted in Figure 4.1(d), the contributions of this paper are the following:

1. We formulate the pose graph and landmark planar SLAM as polynomial optimization

programs.
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(d) Global Optimal - SBSOS-SLAM

Figure 4.1: SBSOS-SLAM vs LM on CityTrees10000 430 Node Segment. Estimated Land-
mark SLAM solution for the first 430 nodes (40 landmarks) of the CityTrees10000 dataset
(Kaess, Ranganathan, and Dellaert, 2008). (a) shows the groundtruth pose and landmark
positions before noise is added. Levenberg-Marquardt was randomly initialized and becomes
trapped in a local minimum. (b) shows the random initialization and (c) shows the LM
solution. (d) shows the globally optimal solution found by SBSOS-SLAM. Our algorithm
formulates the Pose Graph and Landmark SLAM problems as SOS-convex optimization
problems and is guaranteed to find the globally optimal solution without any initialization.

2. We describe how the sparse bounded degree sum-of-squares (Sparse-BSOS) hierarchy

of semidefinite programs (SDP) can be used to find its solution (Lasserre, Toh, and

Yang, 2017; Weisser, Lasserre, and Toh, 2018).
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3. We show that both the pose-graph and landmark SLAM problems are SOS convex

meaning that they have a single globally optimal solution that can be found exactly

by solving the first step of the Sparse-BSOS hierarchy.

4.2 Related Work

SLAM refers to the problem of estimating the trajectory of a robotic vehicle over time

while simultaneously estimating a model of the surrounding environment (Cadena et al.,

2016). Initial algorithms used extended Kalman filter and particle filter based methods to

simultaneously estimate the position of the robot and the position of observed landmarks in

the environment (Bailey and Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006; Thrun,

Burgard, and Fox, 2005), which we refer to as the Landmark SLAM problem. Since these

methods had challenges scaling to larger datasets, researchers began applying information

filter and maximum likelihood estimate (MLE) based methods which could exploit sparsity to

solve larger instances of the SLAM problem. To improve the sparsity of the problem, research

shifted to solving the Pose Graph SLAM problem wherein the landmarks are marginalized

out and only the pose of the robot is optimized over at each time step. The majority of

modern SLAM algorithms seek to find the MLE of the robot trajectory through the use

of nonlinear estimation based techniques (Dellaert and Kaess, 2006; Eustice, Walter, and

Leonard, 2005; Kaess, Ranganathan, and Dellaert, 2008; Lu and Milios, 1997). However, the

non-linear optimization algorithms used in these methods are dependent on initialization.

Several algorithms leverage theory from the field of convex optimization to overcome

this dependence on initialization (Boyd and Vandenberghe, 2004). Optimization over the

special euclidean group (SE(d)) has generally been considered a non-convex problem and

thus the majority of algorithms rely on some form of convex relaxation to estimate an

approximate and sometimes exact solution to the problem. For instance, the Pose Graph and

Landmark SLAM problems have been formulated as a non-convex quadratically constrained

quadratic program, which was then relaxed into an SDP (Hu, Khosoussi, and Huang, 2013;

Liu et al., 2012). Rosen, DuHadway, and Leonard (2015) relaxes optimization over the special

orthogonal group (SO(d)) to the convex hull of SO(d) which can be represented using convex

semidefinite constraints. Since each of these methods only provide an approximate solution

to the SLAM problem, they are usually only used as an initial stage and their output is

then used to initialize a non-linear optimization method (Dellaert and Kaess, 2006; Kaess,

Ranganathan, and Dellaert, 2008).

A number of methods take advantage of Lagrangian Duality to convert the Pose Graph

SLAM problem into a convex optimization problem that is equivalent to the original opti-
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mization problem if the duality gap is zero (Boyd and Vandenberghe, 2004, Section 5.3.2).

Carlone et al. (2015) uses Lagrangian Duality to develop a pair of methods to verify if a com-

puted solution is globally optimal. Carlone et al. (2016) applies a similar technique to the

planar Pose Graph SLAM problem. SE-Sync, proposed by Rosen et al. (2016), extends this

prior work and dramatically increases the scalability of the algorithm by taking advantage of

a technique called the Riemannian staircase (Boumal, 2015) enabling efficient optimization

over semidefinite matrices if the solution has low-rank. These methods are only guaranteed

to find the globally optimal solution if the measurement noise in the problem lies below

a critical threshold and are restricted to the case of Pose Graph SLAM where factors are

relative pose measurements in SE(d).

This paper shows that the Landmark and Pose Graph SLAM problems can be formulated

as SOS convex polynomial optimization problems which can be optimized to the global

minimum (without initialization) through the use of Sparse-BSOS optimization.

The convexity of this formulation also allows us to relax the requirement of limited

measurement noise and extend the formulation to a broader class of SLAM problems.

4.3 Polynomial Optimization SLAM Formulation

This section formulates the Pose Graph and Landmark SLAM problems as polynomial op-

timization programs.

4.3.1 Polynomial Optimization

A polynomial optimization program is an optimization problem of the following form (Lasserre,

Toh, and Yang, 2017, Section 2.2):

f ∗ = min
x
{f(x) : x ∈ K} (4.1)

where f ∈ R[x], R[x] is the ring of all possible polynomials in the variable x = (x1, . . . , xN),

and K ⊂ RN is the semi-algebraic set

K = {x ∈ RN : 0 ≤ gj(x) ≤ 1, j = 1, . . . ,M}, (4.2)

for polynomials gj ∈ R[x], j = 1, . . . ,M .
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4.3.2 Pose Graph SLAM

In planar Pose Graph SLAM, one estimates the pose of the robot, (Ri, ti) ∈ SE(2), with

respect to a static global reference frame at each time steps i ∈ {1, . . . , n}, by minimizing the

error in a set of mRel relative pose measurements (R̄ij, t̄ij) ∈ SE(2). The set of available mea-

surements can be represented by the set of edges, E = {ik, jk}mRel
k=1 ⊂ {1, . . . , n}×{1, . . . , n},

in the corresponding factor graph. We denote the pose of the robot at time step i by the ma-

trix Hi = [Ri|ti] and the relative pose measurement that relates the pose of the robot at time

steps i and j by H̄ij = [R̄ij|t̄ij]. We assume that each R̄ij and t̄ij are conditionally indepen-

dent given the true state, that R̄ij ∼ Langevin(Rij, ω
2
Rij

), and that t̄ij ∼ N (tij,Ω
−1
tij

), where

(Rij, tij) is the true relative pose, ω2
Rij

is the concentration parameter of the Langevin Distri-

bution, and Ωtij = blkdiag(ω2
xij
, ω2

yij
) is the information matrix of t̄ij. Note blkdiag(ω2

xij
, ω2

yij
)

denotes a block diagonal matrix whose diagonal elements are equal to ω2
xij

and ω2
yij

.

Under these assumptions, the MLE solution to the planar pose graph SLAM problem is

equivalent to:

argmin
H1,...,Hn∈SE(2)

∑
(i,j)∈E

ω2
Rij

∣∣∣∣Rj −RiR̄ij

∣∣∣∣2
F

+ (4.3)

||tj − ti −Rit̄ij||2Ωtij

where || · ||F is the Frobenius norm and ||x||2Ω = x>Ωx for x ∈ R2 (Briales and Gonzalez-

Jimenez, 2017; Rosen et al., 2016).

Note that Ri ∈ SO(2) for each i ∈ {1, . . . , n}. SO(2) can be defined as follows:

SO(2) =

{
R =

[
c −s
s c

]
∈ R2×2

∣∣ c2 + s2 = 1

}
. (4.4)

This definition allows us to parameterize Hi and Hij using (ci, si, xi, yi) and (cij, sij, xij, yij)

respectively,

Hi =

[
ci −si xi

si ci yi

]
,Hij =

[
cij −sij xij

sij cij yij

]
, (4.5)

as long as we enforce that c2
i + s2

i = 1. To simplify this notation, we define the sets c =

{c1, . . . , cn}, s = {s1, . . . , sn}, x = {x1, . . . , xn}, and y = {y1, . . . , yn}.
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If we evaluate the norms in (4.3) under this parameterization, then (4.3) is equivalent to

argmin
c,s,x,y

∑
(i,j)∈E

fH
ij (ci, si, xi, yi, cj, sj, xj, yj) (4.6)

s.t. c2
i + s2

i = 1, ∀i ∈ {1, . . . , n},

with,

fH
ij (ci,si, xi, yi, cj, sj, xj, yj) = fRotij (ci, si, cj, sj)+ (4.7)

+ fTranij (ci, si, xi, yi, xj, yj),

where

fRotij (ci, si, cj, sj) = ω2
Rij

(cj − cicij + sisij)
2+ (4.8)

+ ω2
Rij

(−sj + cisij + sicij)
2 + ω2

Rij
(sj − sicij+ (4.9)

− cisij)2 + ω2
Rij

(cj + sisij − cicij)2,

and

fTranij (ci,si, xi, yi, xj, yj) = ω2
xij

(xj − cixij+ (4.10)

+ siyij − xi)2 + ω2
yij

(yj − sixij − ciyij − yi)2.

Note that the cost is a polynomial in the space R[c, s,x,y] and that each individual term

fH
ij ∈ R[ci, si, xi, yi, cj, sj, xj, yj]. We can also rewrite c2

i + s2
i = 1 as 0 ≤ 1 − c2

i − s2
i ≤ 1

and 0 ≤ 2− c2
i − s2

i ≤ 1 for each i ∈ {1, . . . , n}. This parameterization allows us to rewrite

(4.6) as a polynomial optimization problem in the form described in (4.1) and (4.2), where

M = 2n:

argmin
c,s,x,y

∑
(i,j)∈E

fH
ij (ci, si, xi, yi, cj, sj, xj, yj) (4.11)

s.t. 0 ≤ 1− c2
i − s2

i ≤ 1, ∀i ∈ {1, . . . , n},

0 ≤ 2− c2
i − s2

i ≤ 1, ∀i ∈ {1, . . . , n}.

4.3.3 Landmark SLAM

In Landmark SLAM, one estimates both the pose of the robotic vehicle at each time step,

(Ri, ti) ∈ SE(2), as well as the position of observed landmarks, l` = [lx` , l
y
` ]
> ∈ R2, for each
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` ∈ {1, . . . , w}, given both relative pose measurements (R̄ij, t̄ij) ∈ SE(2), and landmark

position observations, l̄i` = [xi`, yi`]
> ∈ R2, which measure the position of landmark with

respect to the local coordinate frame of the robot at the time step that it was observed. Let

L = {ik, `k}m`
k=1 ⊂ {1, . . . , n}×{1, . . . , w} identify the set of landmark position measurements

where m` is the number of landmark measurements and let lx = {lx1 , . . . , lxw} and ly =

{ly1 , . . . , lyw}. We assume that the relative pose measurements are distributed according to

the structure defined in the previous section and that l̄i` ∼ N (lii`,Ω
−1
li`

) where lii` is the true

position of the landmark ` with respect to the true pose Hi and Ωli` = blkdiag(ω2
xi`
, ω2

yi`
) is

the information matrix of l̄i`.

Under these assumptions, the MLE solution to the Landmark SLAM problem can be

written as follows:

argmin
c,s,x,y,lx,ly

∑
(i,j)∈E

fH
ij (ci, si, xi, yi, cj, sj, xj, yj) + (4.12)

+
∑

(i,`)∈L

fLandi` (ci, si, xi, yi, l
x
` , l

y
` )

s.t. 0 ≤ 1− c2
i − s2

i ≤ 1, ∀i ∈ {1, . . . , n},

0 ≤ 2− c2
i − s2

i ≤ 1, ∀i ∈ {1, . . . , n}.

with,

fLandi` (ci,si, xi, yi, l
x
` , l

y
` ) = ω2

xi`
(lx` − cixi`+ (4.13)

+ siyi` − xi)2 + ω2
yi`

(ly` − sixi` − ciyi` − yi)
2.

Note that the cost of the optimization problem in (4.12) is a polynomial in the space

R[c, s,x,y, lx, ly] while fLandi` ∈ R[ci, si, xi, yi, lx, ly]. Also note that the constraints are the

same as in (4.11) and thus, (4.12) is a polynomial optimization problem of the form defined

in (4.1) and (4.2).

4.4 Sparse Bounded Sum-of-Squares Programming

Polynomial optimization problems in general are non-convex, however, they can be ap-

proximated and sometimes solved exactly by solving a hierarchy of convex relaxations of

the problem (Lasserre, 2009). A variety of such convex relaxations hierarchies exist. This

section covers a pair of such hierarchies. The first is called the bounded degree sum-of-

squares (BSOS) hierarchy and consists of a sequence of SDP relaxations that can be used

69



to find the globally optimal solution to small polynomial optimization problems that meet

certain conditions (Lasserre, Toh, and Yang, 2017). The second is called Sparse-BSOS and

enables us to leverage the sparsity inherent in SLAM problems to solve larger problem sizes

than is possible using BSOS (Weisser, Lasserre, and Toh, 2018). We conclude the section by

describing the conditions that the cost and constraints that a polynomial optimization must

satisfy for the first step of either hierarchy to converge exactly to the global optimum.

4.4.1 Bounded Sum-of-Squares

SOS programming is concerned with finding solutions to polynomial optimization problems

as in (4.1). If x did not have to lie within the semi-algebraic set K, solving the following

problem would be equivalent to solving (4.1):

t∗ = sup
t∈R
{t | f(x)− t ≥ 0,∀ x}. (4.14)

If instead one had constraints gj that bound the feasible space of the variable x to K, then

one would need to enforce that f(x) − t ≥ 0, ∀ x ∈ K. At the same time, one would

have to enforce it in a way that enabled f − t to get as close to zero as possible at the

optimal solution. Suppose we could optimize over a function h and also strictly enforce that

it be non-negative on K. Then, by enforcing that f(x) − t − h(x) ≥ 0, for all x, we would

equivalently enforce that f(x)− t ≥ h(x) ≥ 0 on K, and we would be able to optimize over

h to minimize the gap between f and t on K.

To apply this approach using numerical optimization, one would first need to know

whether it was computationally tractable to enforce positivity of h on K. Assuming that

0 ≤ gj(x) ≤ 1 for all x ∈ K and K is compact, one can prove that if a polynomial h is

strictly positive on K, then h can be represented as

h(x,λ) =
∑

α,β∈NM

λαβ
∏
j

(
gj(x)αj(1− gj(x))βj

)
, (4.15)

for some (finitely many) nonnegative scalars λ = (λαβ) (Lasserre, Toh, and Yang, 2017,

Theorem 1)1. Conversely, any polynomial that can be written in the form defined in (4.15)

is also positive on K. This leads to a hierarchy of relaxations in which each relaxation

bounds the number of monomial terms used to represent h (Lasserre, Toh, and Yang, 2017,

Theorem 2).

1Note that the theorem as presented requires the set {1, g1, . . . , gM} to generate K, but since K is
compact, one can always add a redundant linear constraint to the set to satisfy this requirement.
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Let N2M
d = {(α, β)|α, β ∈ NM , |α| + |β| ≤ d} where the absolute value denotes the sum

and

hd(x,λ) :=
∑

(α,β)∈N2M
d

λαβ

M∏
j=1

gj(x)αj(1− gj(x))βj , (4.16)

where λ = (λαβ), (α, β) ∈ N2M
d . By choosing d, one can bound the number of monomial

terms that are used to represent hd and by optimizing over λ, one can optimize over the

specific polynomial. By constraining λ to be non-negative, one can enforce that hd be

strictly positive on K.

Now one can solve the following optimization problem:

t∗ = sup
t,λ
{t|f(x)− t− hd(x) ≥ 0,∀ x,λ ≥ 0}. (4.17)

However, optimizing over the space of all positive polynomials is computationally intractable.

Instead, one can relax the problem again and optimize over the space of SOS polynomials up

to a fixed degree since SOS polynomials are guaranteed to be positive and can be represented

using a positive semidefinite matrix (Lasserre, 2009, Chapter 2). Let Σ[x] ⊂ R[x] represent

the space of SOS polynomials and let Σ[x]k ⊂ R[x]2k represent the space of SOS polynomials

of degree at most 2k. By fixing k ∈ N, one arrives at the following BSOS family of convex

relaxations: indexed by d ∈ N:

qkd = sup
t,λ
{t|f(x)− t− hd(x) ∈ Σ[x]k,λ ≥ 0}. (4.18)

Each of these optimization programs can be implemented as an SDP and provides a lower

bound on the solution to (4.17). Additionally, it can be shown that under certain assumptions

as d → ∞, qkd → f ∗ (Lasserre, Toh, and Yang, 2017, Theorem 2). While this is useful for

small problems, as the number of variables increases or for larger values of d and k, the

runtime and memory usage of the optimization makes the use of this method infeasible

(Lasserre, Toh, and Yang, 2017, Section 3). To address this challenge, we take advantage of

sparsity in the optimization problem to dramatically scale problem size.

4.4.2 Sparse Bounded Sum-of-Squares

The Sparse-BSOS hierarchy takes advantage of the fact that for many optimization problems,

the variables and constraints exhibit structured sparsity. It does this by splitting the variables

in the problem into p blocks of variables and the cost into p associated terms, such that the
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number of variables and constraints relevant to each block is small (Weisser, Lasserre, and

Toh, 2018).

Given I ⊂ {1, . . . , N}, let R[x; I] denote the ring of polynomials in the variables {xi :

i ∈ I}. Specifically Sparse-BSOS assumes that the cost and constraints satisfy the following

assumption:

Assumption 4.4.1 (Running Intersection Property (RIP)). There exists p ∈ N and I` ⊆
{1, . . . , N} and J` ⊆ {1, . . . ,M} for all ` ∈ {1, . . . , p} such that:

• f =
∑p

`=1 f
`, for some f 1, . . . , f p, such that

f ` ∈ R[x, I`] for each ` ∈ {1, . . . , p},

• gj ∈ R[x, I`] for each j ∈ J` and ` ∈ {1, . . . , p},

• ∪p`=1I` = {1, . . . , N},

• ∪p`=1J` = {1, . . . ,M},

• for all ` = 1, . . . , p− 1, there is an s ≤ ` such that (I`+1 ∩ ∪`r=1Ir) ⊆ Is.

In particular, I` denotes the variables that are relevant to `-th block and J` denotes the

associated relevant constraints. Intuitively, these blocks allow one to enforce positivity over

a smaller set of variables which can reduce the computational burden while trying to solve

this optimization problem.

We can use these definitions to define the Sparse-BSOS hierarchy that builds on the

hierarchy defined in the previous section. Let N ` := {(α, β) : α, β ∈ N0, supp(α)∪supp(β) ⊆
J`}, where N0 is the set of natural numbers including 0 and supp(α) := {j ∈ {1, . . . ,M} :

αj 6= 0}. Now let N `
d := {(α, β) ∈ N ` :

∑
j(αj + βj) ≤ d}, with d ∈ N and let

h`d(x,λ
`) :=

∑
(α,β)∈N`

d

λ`αβ

M∏
j=1

gj(x)αj(1− gj(x))βj , (4.19)

where λ` ∈ R|N`
d| is the vector of scalar coefficients λ`αβ. h`d is again positive on K as long as

the elements of λ are positive. If we again fix k ∈ N, we can define a family of optimization

problems indexed by d ∈ N as shown in (4.20), where dmax is defined on page 7 of (Weisser,

Lasserre, and Toh, 2018).

This hierarchy of relaxations is called the Sparse-BSOS hierarchy and each level of the

hierarchy can be implemented as an SDP. In addition, if RIP is satisfied, 0 ≤ gj(x) ≤ 1 for

all x ∈ K and K is compact, then as d→∞, the sequence of optimization problems defined

in (4.20) also converges to f ∗(Weisser, Lasserre, and Toh, 2018, Theorem 2). In addition a
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qkd = sup
t,λ1,...,λp,
f1,...,fp

{
t|f `(x)− h`d(x,λ`) ∈ Σ[x; I`]k, ` = 1, . . . , p, (4.20)

f(x)− t =

p∑
`=1

f `(x),λ` ∈ R|N`
d| ≥ 0, t ∈ R, f ` ∈ R[x; I`]dmax

}
.

rank condition can be used to detect finite convergence (Weisser, Lasserre, and Toh, 2018,

Lemma 4). Importantly in particular cases, one can show that this optimization problem

can be solved exactly when d = 1.

4.4.3 Sum-of-Squares Convexity

A polynomial f ∈ R[x] is said to be SOS-convex when the Hessian matrix x 7→ ∇2f(x) is

an SOS matrix polynomial, that is, there exists an a ∈ N such that ∇2f = LL> for some

real matrix polynomial L ∈ R[x]n×a for some a. A polynomial optimization problem of the

form shown in (4.1) and (4.2) is said to be SOS-convex if the polynomials f ` and −gj are

SOS-convex for every ` ∈ {1, . . . , p} and j ∈ {1, . . . ,M}. Importantly, when k ∈ N is fixed,

the polynomials f ` and gj are at most degree 2k for each ` ∈ {1, . . . , p} and j ∈ {1, . . . ,M},
and the optimization program is SOS-convex, then the Sparse-BSOS hierarchy defined in

(4.20) converges at d = 1 (Weisser, Lasserre, and Toh, 2018, Theorem 3).

4.5 SBSOS-SLAM

We take advantage of the Sparse-BSOS relaxation hierarchy to solve the Pose Graph and

Landmark SLAM problems. In this section, we prove that both these problems are SOS-

convex as formulated in (4.11) and (4.12). Then, we talk about how we can enforce the RIP.

Finally, we end with a discussion of implementation.

4.5.1 SOS-Convexity of Pose Graph and Landmark SLAM

To prove SOS-Convexity of the Pose Graph and Landmark SLAM problems, we use the

following result:

Lemma 4.5.1. (Ahmadi and Parrilo, 2009, Lemma 2.2) A polynomial f ∈ R[x] is SOS-

convex if and only if the polynomial zᵀ∇2fz is a sum of squares in R[x; z].

Using this result, one can show the following by noting the linearity of the Hessian:
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Lemma 4.5.2. If f, g ∈ R[x] are SOS-convex, then f + g is SOS-convex.

We use these results to prove the following:

Theorem 4.5.3. The Pose Graph SLAM problem defined in (4.11) can be solved exactly

using the Sparse-BSOS optimization problem defined in (4.20) when k = 1 and d = 1.

Proof. To prove this result, we show that the Pose Graph SLAM problem is SOS-convex

and use (Weisser, Lasserre, and Toh, 2018, Theorem 3). Note that −gi(ci, si) can either be

c2
i + s2

i − 1 or c2
i + s2

i − 2, which both produce the following Hessian:

∇2(−gi) =

[
2 0

0 2

]
=

[√
2 0

0
√

2

][√
2 0

0
√

2

]ᵀ
(4.21)

Therefore −gi is SOS-convex for all i. To show the cost function is SOS-convex based on

Lemma 4.5.2, it suffices to show fH
ij (ci, si, xi, yi, cj, sj, xj, yj) is SOS-convex, as can be seen

by looking at each of its elements.

• Let γ1(ci, si, cj) = ω2
Rij

(cj − cicij + sisij)
2:

∇2γ1 =


√

2ωRij
cij

−
√

2ωRij
sij

−
√

2ωRij



√

2ωRij
cij

−
√

2ωRij
sij

−
√

2ωRij


ᵀ

(4.22)

• Let γ2(ci, si, sj) = ω2
Rij

(−sj + cisij + sicij)
2:

∇2γ2 =


√

2ωRij
sij√

2ωRij
cij

−
√

2ωRij



√

2ωRij
sij√

2ωRij
cij

−
√

2ωRij


ᵀ

(4.23)

• Let γ3(ci, si, sj) = ω2
Rij

(sj − sicij − cisij)2 and γ4(ci, si, cj) = ω2
Rij

(cj + sisij − cicij)2.

Notice that γ3 = γ2 and γ4 = γ1, thus both γ3 and γ4 are also SOS-convex.

• Let γ5(ci, si, xi, xj) = ω2
xij

(xj − cixij + siyij − xi)2:

∇2γ5 =


√

2ωxijxij

−
√

2ωxijyij√
2ωxij

−
√

2ωxij



√

2ωxijxij

−
√

2ωxijyij√
2ωxij

−
√

2ωxij


ᵀ

(4.24)
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Figure 4.2: SBSOS-SLAM vs LM on CityTrees10000 100 Node Segment. Sample estimated
Landmark SLAM solution for 100 nodes of CityTrees10000 dataset (Kaess, Ranganathan,
and Dellaert, 2008).

• Let γ6(ci, si, yi, yj) = ω2
yij

(yj − sixij − ciyij − yi)2:

∇2γ6 =


√

2ωyijyij√
2ωyijxij√

2ωyij
−
√

2ωyij



√

2ωyijyij√
2ωyijxij√

2ωyij
−
√

2ωyij


ᵀ

(4.25)

Since we can enlarge the domains of all γi’s into [ci; si; cj; sj;xi;xj; yi; yj] and fH
ij =

∑6
i=1 γi,

we then conclude by Lemma 4.5.2 that fH
ij is SOS-convex.
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By using a proof similar to Theorem 4.5.3, one can then show:

Theorem 4.5.4. The Landmark SLAM problem defined in (4.12) can be solved exactly using

the Sparse-BSOS optimization problem defined in (4.20) when k = 1 and d = 1.

4.5.2 Satisfying the Running Intersection Property

The nature of the SLAM problem exhibits a large amount of sparsity (Dellaert and Kaess,

2006; Eustice, Walter, and Leonard, 2005; Kaess, Ranganathan, and Dellaert, 2008). How-

ever, to take advantage of the guarantees incumbent to the Sparse-BSOS hierarchy, we need

to satisfy the RIP. An odometry chain forming the backbone of a SLAM graph inherently

satisfies this property; however, incorporating loop-closures can make satisfying this assump-

tion challenging. A better grouping increases the sparsity of the optimization problem and

leads to faster solutions but finding the optimal selection of blocks I` is NP-hard. We used

the heuristic algorithm proposed by Smail (2017) to generate a sequence of variable groupings

for the current implementation.

4.5.3 Implementation and Computational Scaling

For the experiments and development presented in this paper, we modified the code base

released with (Weisser, Lasserre, and Toh, 2018) to formulate the problem as defined earlier

on in the chapter. In addition, we modified the code to convert the problem to a format

where we could use the SDP solver within the optimization library Mosek (ApS, 2015).

SOS programming optimizes over polynomials which can become ill-conditioned when

optimization occurs over a large domain (Weisser, Lasserre, and Toh, 2018, Section 4). Data

can be scaled to address this problem; however, if the optimization problem still remains

poorly scaled then the optimization solver will warn the user that the problem cannot be

satisfactorily solved.

4.6 Experimental Proof of Concept

We evaluated the proposed convex SLAM algorithm on the CityTrees10000 (Kaess, Ran-

ganathan, and Dellaert, 2008) and Manhattan3500 (Olson, Leonard, and Teller, 2006) datasets

by breaking the problem into sequences of 100 nodes and solving those graphs for which

Mosek (ApS, 2015) did not run into numerical instabilities. For each sequence (taken in-

dividually), we used the proposed SBSOS-SLAM methodology to find the globally optimal
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Figure 4.3: Pose Error Comparison on CityTrees10000. Translational and rotational error
verses groundtruth for the CityTrees10000 dataset.
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Figure 4.4: Pose Error Comparison on Manhattan3500. Translational and rotational error
verses groundtruth for the Manhattan3500 dataset.

solution to the respective MLE problem defined in (4.11) and (4.12). For comparison, we

also initialized Levenberg-Marquardt with a random initialization.

The median solve time for SBSOS-SLAM was 20.5507 seconds for the Manhattan3500

dataset and 161.8387 sec for the CityTree10000 dataset compared to less than a second on

average for Levenberg-Marquardt. However, since our current implementation is based in

Matlab and we are not attempting to satisfy the running intersection property optimally in

these initial experiments, we believe there are a variety of extensions that can be made to

improve scalability.
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Figure 4.5: SBSOS-SLAM vs LM on Manhattan3500 100 Node Segment. Sample estimated
Pose Graph SLAM solution for 100 nodes of Manhattan3500 dataset (Olson, Leonard, and
Teller, 2006).

We show several example plots where Levenberg-Marquardt gets stuck in a local minima

while SBSOS-SLAM is guaranteed to find the global minimum and does not require initial-

ization (Fig. 4.2, Fig. 4.5). Fig. 4.3 and Fig. 4.4 show that our proposed algorithm results

in significantly less error than Levenberg-Marquardt.

4.7 Conclusion

In this chapter, we proposed an algorithm called SBSOS-SLAM that formulates the planar

Pose Graph and Landmark SLAM problems as polynomial optimization programs that are
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sum-of-squares convex. As such, we are able to guarantee optimality of the solution without

any need for initialization.

In addition, because we formulate the SLAM problem as a polynomial optimization

program, there is potential to extend this work by generalizing the formulation to three-

dimensional environments and arbitrary measurement models such as range-only measure-

ments, while still providing guarantees of optimality.

The completed work has been accepted and will be published in:

J. G. Mangelson, J. Liu, R. M. Eustice, and R. Vasudevan. Guaranteed globally optimal pla-

nar pose graph and landmark slam via sparse-bounded sum-of-squares programming.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 1–8, Montreal, Canada, May 2019
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CHAPTER 5

Characterizing the Uncertainty of Jointly

Distributed Poses via Lie Theory

5.1 Introduction

An accurate characterization of robot pose (location and orientation) uncertainty is essential

to robust long-term autonomy because planning and safety decisions are often predicated

on their value (Thrun, Burgard, and Fox, 2005). For example, an over-confident position

estimate could potentially result in a self-driving car crossing out of its lane or an underwater

vehicle colliding with a submerged structure. On the other hand, under-confidence can lead

to slow or sluggish behavior.

One of the first papers to characterize pose uncertainty of coordinate frame relationships

represents the relative pose of objects using a multivariate Gaussian parameter vector and

associated covariance matrix (Smith and Cheeseman, 1986). This paper was later extended

by Smith, Self, and Cheeseman (1990) by representing multiple uncertain spatial relation-

ships as a stochastic map which could be used to evaluate the uncertainty of any given

pose with respect to any other. They also proposed several operations (such as the relative

pose operation shown in Fig. 5.1) that enable the extraction of additional information not

directly estimated, along with first order coordinate-based methods for propagating uncer-

tainty through these operations. For brevity, the operations proposed in (Smith, Self, and

Cheeseman, 1990) are often referred to by the initials of the paper’s authors (SSC).

Although it is well-understood that the rigid body transformation (or the motion group

of R3) is described by the three dimensional (3D) Special Euclidean group, SE(3), (Murray,

Li, and Shankar Sastry, 1994; Spong, Hutchinson, and Vidyasagar, 2005), the uncertainty of

these transformations is often modeled in local coordinates leading to inconsistencies in the

estimation problem (Huang and Dissanayake, 2007) or the loss of monotonicity in uncertainty

propagation (Rodŕıguez-Arévalo, Neira, and Castellanos, 2018). Wang and Chirikjian (2008)
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and Long et al. (2012) were able to overcome these problems by representing each pose using

exponential coordinates located in the Lie algebra of the SE(d).

Barfoot and Furgale (2014) were then able to show that propagation computations could

be simplified by modeling the uncertainty directly in the Lie algebra and then using the

exponential map to induce a distribution in the group space. Since the Lie algebra is a

vector space, a small perturbation term can be modeled as zero-mean Gaussian noise in R6

and then used to perturb a mean (or nominal) pose in the group space. Barfoot and Furgale

(2014) then build on this by deriving first and second order uncertainty propagation for the

pose composition operation when the associated poses are independent. Our approach for

modeling the uncertainty of a set of poses is similar; however, we drop the independence

assumption, since the poses estimated by SLAM are rarely independent, and additionally

describe the additional operations of pose inversion and relative pose extraction (See Fig. 5.1

and Fig. 5.3).

The main contributions of this chapter are as follows:

1. we present a framework that describes how to represent jointly correlated poses while

using the Lie algebra to characterize uncertainty;

2. we derive the equivalent of the SSC operations under the proposed framework;

3. we describe how to convert from alternative uncertainty characterization parameteri-

zations to the proposed framework (including Lie algebra covariance extraction from

a MLE solution); and,

4. we release an accompanying C++ library implementation along with examples also

presented here.

The remainder of this chapter is organized as follows: Section 5.2 provides a brief intro-

duction to the Special Euclidean group and some necessary concepts from Lie group Theory.

Section 5.3 provides a summary of the SSC uncertainty representation framework and its

associated operations. Section 5.4 describes how to use the Lie algebra to characterize un-

certainty for jointly distributed poses. Sections 5.5, Section 5.6, and Section 5.7 describe the

derivation of the pose composition, pose inversion, and relative pose operations, respectively,

while characterizing uncertainty on the Lie algebra. Section 5.8 describes how to convert

from a coordinate based representation of uncertainty to the Lie algebra based representation

as well as how to extract an estimate of pose uncertainty from a MLE solution. Section 5.9

describes an experimental evaluation of the proposed methods. Section 5.10 describes the

implementation of the released library. Finally, Section 5.11 concludes the chapter.
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Figure 5.1: Joint vs Independent Lie Algebra Uncertainty Propogation. State-of-the-art
Pose-Graph SLAM algorithms estimate the pose (depicted as i and j in the top illustration)
of a robotic vehicle at each time step with respect to a fixed coordinate frame, g, which is
denoted by Tgi and Tgj, respectively. After solving SLAM, it is often necessary to extract
additional information by performing a variety of operations such as pose composition, pose
inversion, and relative pose estimation, while accurately propagating uncertainty. An exam-
ple of the relative pose operation Tij is shown at the top of this figure. Recent work has
shown that characterizing uncertainty as Gaussian random variables (ξgi, ξgj) in the Lie alge-
bra of the Special Euclidean group (shown in the middle section of the above figure) leads to
increased consistency (Barfoot and Furgale, 2014); however, this approach focuses primarily
on pose composition while assuming that the underlying poses are independent. Typically,
the poses estimated from SLAM are heavily correlated (Dissanayake et al., 2001). This paper
proposes a framework for jointly characterizing the uncertainty of a set of correlated poses
in the Lie algebra space (shown in the bottom section of the above figure). It then describes
how to perform the pose composition, pose inverse, and relative pose operations within this
framework.
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5.2 The Special Euclidean Group and Lie Theory

Estimation of the relative pose (position and orientation) between objects or coordinate

frames in space is a common problem in robotic navigation, perception, and manipulation.

Formally, we represent 3D relative pose transformations as elements of the Special Euclidean

group. This section provides a brief introduction to the Special Euclidean group and rele-

vant aspects of Lie group theory that are important during the subsequent derivation and

discussion.

5.2.1 The Special Euclidean group

The Special Euclidean group, or SE(d), represents the space of homogeneous transformation

matrices or the space of matrices that apply a rigid body rotation and translation to points

in Rd (represented in homogeneous form). Formally, in three dimensions, SE(3) is defined

as follows:

SE(3) :=

{
T =

[
R t

0> 1

]
∈ R4×4

∣∣∣∣∣R ∈ SO(3), t ∈ R3

}
, (5.1)

where SO(3) is the Special Orthogonal group is the space of valid rotation matrices:

SO(3) :=
{
R ∈ R3×3|RR> = I3, det R = 1

}
, (5.2)

and Id is the identity matrix of dimension d. A variety of methods have been developed for

parameterizing these objects such as Euler angles or quaternions (Spong, Hutchinson, and

Vidyasagar, 2005).

Both SE(3) and SO(3) are matrix Lie groups, meaning they are smooth manifolds that

also satisfy the formal definition of a mathematical group (Baker, 2012; Tapp, 2016) with

the standard matrix multiplication operation. Intuitively, this means that while the general

group is non-linear, each of these groups can be locally approximated using a Euclidean

vector space. Additionally, for any given point on the manifold, consider the set of all paths

on the manifold that pass through that point. The set of all velocities (both in terms of

direction and speed) of those paths at the given point form a vector space called the tangent

space. The tangent space centered at the identity is called the Lie algebra. This relationship

is depicted in Fig. 5.2.

The Lie algebra of SO(3) is denoted so(3) and is the space of skew-symmetric 3 × 3

matrices (Chirikjian, 2011; Tapp, 2016):

so(3) :=
{
ω ∈ R3×3 | ω> = −ω} (5.3)

83



This space is isomorphic to R3 since skew-symmetric matrices have zeros on the diago-

nal entries and the lower entries are completely identified by three upper entries (hence

dim so(3) = 3). Therefore, it is very convenient to work with R3 instead. Note, we can use

the ∧ operator to take an element of R3 and transform it to an element of so(3):

φ∧ :=

 φ1

φ2

φ3


∧

=

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 ∈ so(3), (5.4)

where φ ∈ R3. The ∨ operator denotes the inverse of ∧.

Similarly, the Lie algebra of SE(3), or se(3), is defined as follows:

se(3) :=

{[
ω ρ

0> 0

] ∣∣∣∣∣ ω ∈ so(3),ρ ∈ R3

}
. (5.5)

This space of matrices is isomorphic to R6, and we overload the ∧ operator to convert

between the Euclidean vector and matrix forms:

ξ∧ :=

[
ρ

φ

]∧
=

[
φ∧ ρ

0> 0

]
∈ se(3), (5.6)

where ξ ∈ R6 and ρ,φ ∈ R3.

Understanding the relationship between the group and algebra spaces can enable one to

leverage the fact that the algebra is a vector space. The next few subsections cover some

important concepts from Lie group Theory that we need in the rest of the chapter. In doing

so, we use G to represent a given Lie group and g to represent its associated Lie algebra.

5.2.2 The Exponential Map

The Lie algebra, g, represents the tangent space of the manifold at the identity. However,

given a specific tangent vector, we may want to convert it to its associated transformation

in the group space G. The exponential map, exp : g → G, (which can be defined in closed

form for SE(3)), enables us to perform this conversion,

exp(ξ∧) =
∞∑
k=0

(ξ∧)k

k!
= I4 + ξ∧ +

(ξ∧)2

2
+ · · · . (5.7)

The logarithm map, log : G → g, on the other hand, enables us to go the other direction

from an action/transformation in the group space to the velocity that would have induced
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Figure 5.2: The Relationship Between the Lie Group and Algebra. The Lie algebra, g, is
the tangent space to the Lie group, G, centered at the identity element. The Lie algebra
represents the space of all possible velocities a particle at a given point on the group could
take. The exponential map maps velocities in the Lie algebra, ξ∧ ∈ g, to their associated
action in the Lie group, T ∈ G, and the logarithm map performs the inverse operation.

it,

log(T) =
∞∑
k=1

(−1)k+1 (T− I4)k

k
. (5.8)

This relationship is visualized in Fig. 5.2.

5.2.3 The Adjoint Action

Assuming T ∈ G and ξ ∈ g, the adjoint action of T on ξ, or AdT(ξ) is defined as follows:

AdT(ξ) := AdT ξ = log(T exp(ξ)T−1). (5.9)
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The adjoint action describes the effect that transforming to the group space then applying a

transformation on the left and its inverse on the right has on an element of the Lie algebra.

This gives rise to the following property, which we use later on:

T exp(ξ) = exp(AdT ξ)T (5.10)

5.2.4 The Baker-Campbell-Hausdorff (BCH) Formula

Finally, we also want to characterize the effect that multiplication in the group space has

on the Lie algebra. More specifically, suppose we want to compute the Lie algebra element,

ξac ∈ g, that is generated by taking the logarithm of the product of the exponential of two

Lie algebra elements, ξab, ξbc ∈ g. The Baker-Campbell-Hausdorff (BCH) formula describes

this relationship purely in the Lie algebra space without requiring the application of the

exponential or the logarithm:

ξac = log(exp(ξab) exp(ξbc)) (5.11)

= ξab + ξbc +
1

2
[ξab, ξbc]+

+
1

12
([ξab, [ξab, ξbc]] + [ξbc, [ξbc, ξab]]) + · · · ,

where [ · , · ] is the Lie bracket of g (Barfoot, 2017, (7.18)). For brevity, in the special case

where we consider elements in SE(3), we adopt the notation of (Barfoot and Furgale, 2014):

ξfi :=

[
ρi

φi

]f
=

[
φ∧i ρ∧i

0 φ∧i

]
, (5.12)

which allows us to write the BCH formula as:

ξac = ξab + ξbc +
1

2
ξfabξbc +

1

12
ξfabξ

f
abξbc +

1

12
ξfbcξ

f
bcξab

− 1

24
ξfbcξ

f
abξ

f
abξbc + . . . . (5.13)

5.2.5 Defining Random Variables over Poses

Finally, as discussed in (Barfoot and Furgale, 2014), one can define random variables for

SE(3) according to

T` := exp(ξ∧` )T̄` (5.14)
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where T̄` ∈ SE(3) is a ‘large’ noise free value and ξ` ∈ R6 is a ‘small’ noisy perturbation

(using the nomenclature of Barfoot and Furgale (2014)). Two examples of this noisy pertur-

bation are depicted in the middle row of Fig. 5.1. By defining ξ` to be a zero-mean Gaussian

random variable ξ` ∼ N (0,Σ`) in the Lie algebra, we induce a probability distribution func-

tion over SE(3) that is parameterized with a mean T̄` ∈ SE(3) and a covariance Σ` defined

in the Lie algebra (Barfoot and Furgale, 2014).

We use these properties in Sections 5.4, 5.5, 5.6, and 5.7 to propose a framework for

modeling jointly correlated poses and to derive uncertainty propagation formulas for the

operations in Fig. 5.3. However, we first review the SSC coordinate based method.

5.3 Review of SSC

The stochastic map, proposed by Smith, Self, and Cheeseman (1990), consists of multiple

uncertain spatial relationships that are treated as jointly Gaussian, multivariate random

variables and parameterized using a mean vector of positions and Euler angles and an asso-

ciated covariance matrix. Smith, Self, and Cheeseman (1990) also proposes three operations

that can extract information from this map that may not have been directly estimated.

These three operations are pose composition (head-to-tail in (Smith, Self, and Cheeseman,

1990)), pose inverse, and relative pose estimation (tail-to-tail in (Smith, Self, and Cheese-

man, 1990)), as shown in Fig. 5.3. This section reviews the pose representation and SSC

operations formulated in (Smith, Self, and Cheeseman, 1990).

5.3.1 Pose Representation and the Stochastic Map

Under SSC notation, the relative transformation between the coordinate frame i and j, or

the pose of coordinate frame j with respect to frame i, is denoted by

xij = [xij, yij, zij, φij, θij, ψij]
>, (5.15)

where xij, yij, and zij are position coordinates and φij, θij, and ψij are Euler angles that

encode the position and orientation of the coordinate frame j with respect to the frame

i. However, because each relative transformation is derived from noisy measurements, our

estimate is uncertain and we do not know the true value of xij. Instead, we track a nominal

mean value of its parameters and an associated 6 × 6 covariance matrix, x̂ij and Σxij
,

respectively.
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Figure 5.3: Summary of Lie Algebra/SSC Uncertainty Propogation Operations. Summary of the pose
composition, pose inverse, and relative pose operations and their corresponding uncertainty propagation
methods as proposed by Smith, Self, and Cheeseman (1990), Barfoot and Furgale (2014), and in this chapter.
The indices i, j, and k correspond to specific coordinate frames of the robotic vehicle at different time steps
or locations. SSC (Smith, Self, and Cheeseman, 1990) parameterizes the pose of frame b with respect to
frame a using a vector of Euler angle and translation parameters xab. They then model this vector of
parameters as being drawn from a multivariate Guassian distribution with mean x̂ and covariance Σ. Under
this model, they derive first order uncertainty propagation formulas for the pose composition, pose inverse,
and relative pose operations. However, this coordinate based parameterization is unable to accurately model
pose uncertainty because the parameter vector xab is not truly Gaussian. Barfoot and Furgale (2014) instead
parameterize the pose of frame b with respect to frame a, using a mean element of the Special Euclidean
group, T̄ab, and an uncertain perturbation or noise parameter ξ∧ab defined in the Lie algebra se(3). This
enables them to model ξab using a Gaussian distribution and accurately take into account the non-linear
structure of the group. However, (Barfoot and Furgale, 2014) assumes the poses are independent and focuses
primarily on the pose composition operation. The primary contribution of this chapter is the extension
of the method presented by Barfoot and Furgale (2014) to jointly correlated poses as well as the derivation
of the pose inverse and relative pose operations while taking advantage of the Lie algebra to characterize
uncertainty.
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The stochastic map, proposed in (Smith, Self, and Cheeseman, 1990), treats all of the un-

certain transformations as jointly Gaussian multivariate random variables by stacking them

into a single state vector x and tracking the mean and covariance of that state. Assuming

we have n relative transformations we want to track, if we index them from a = 1, . . . , n,

then x and its associated mean and covariance are:

x =


x1

...

xn

 , x̂ =


x̂1

...

x̂n

 , Σ̂ =


Σx1 . . . Σx1xn

...
. . .

...

Σxnx1 . . . Σxn

 (5.16)

where x is a vector of length 6n, Σxa is the 6 × 6 covariance matrix of the relative trans-

formation xa and the off diagonal blocks of the form Σxaxb
are the respective 6 × 6 cross

covariance matrices.

5.3.2 Pose Composition (Head-to-Tail)

Suppose we are given a noisy observation of a robot’s relative pose between time steps i

and j (xij) and another observation of its relative pose between time steps j and k (xjk),

we may want to calculate the relative pose between time steps i and k (xik) by composing

the observations xij and xjk (see Fig. 5.3). The SSC head-to-tail operation is a nonlinear

function f⊕ : R6 × R6 → R6 that takes the parameter vectors xij and xjk as input and

outputs the parameter vector xik that results from composing the respective homogeneous

transformation matrices. The ⊕ operator denotes this operation:

xik , xij ⊕ xjk = f⊕(xij,xjk). (5.17)

The mean and covariance of the resulting pose are estimated up-to first order as

x̂ik = x̂ij ⊕ x̂jk (5.18)

and

Σxik
≈ J⊕(x̂ij, x̂jk) Σ̂ J⊕(x̂ij, x̂jk)

> (5.19)

where J⊕(x̂ij, x̂jk) is the Jacobian of f⊕ at x̂ij and x̂jk, and

Σ̂ =

[
Σxij

Σxijxjk

Σ>xijxjk
Σxjk

]
. (5.20)
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5.3.3 Pose Inverse

Suppose we are given a robotic vehicle that is tasked with navigating through an a priori

unknown environment after which it must return to the origin location. While it is common

to represent the robotic vehicle’s current location with respect to the origin using estimation

theory, it may be useful to instead characterize the pose of the origin with respect to the

local robot coordinate frame. Formally, given an uncertain estimate of the pose of coordinate

frame j with respect to frame i (xij), we want to determine the pose of frame i with respect

to frame j (xji). This amounts to finding the vector x̂ji that corresponds to the inverse of x̂ij

(in terms of homogeneous transformation matrices) and representing the uncertainty with

respect to this new frame of reference.

The SSC pose inverse operation is a nonlinear function f	 : R6 → R6 that takes a pose

and computes the inverse of the pose as a homogeneous transformation matrix:

xji , 	xij = f	(xij). (5.21)

The mean and covariance of the resulting pose are estimated up-to first order as

x̂ji = 	x̂ij (5.22)

and

Σxji
≈ J	(x̂ij) Σxij

J	(x̂ij)
> (5.23)

where J	(x̂ij) is the Jacobian of f	 at x̂ij.

5.3.4 Relative Pose (Tail-to-Tail)

Finally, the SSC tail-to-tail operation takes uncertain estimates of two coordinate frames

with respect to a single origin frame and evaluates the relative pose between them. More

succinctly, given xij and xik, find xjk. This operation is useful when using a method such as

pose graph simultaneous localization and mapping (SLAM) for navigation since the robot

pose at multiple time steps is often estimated with respect to a single fixed coordinate frame.

The SSC relative pose operation is a nonlinear function f	⊕ : R6 × R6 → R6 that is

defined by first applying the inverse and then the head-to-tail operation:

xjk , (	xij)⊕ xik = f	⊕(xij,xik). (5.24)
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The mean and covariance of the resulting pose up-to first order are estimated as

x̂jk = (	x̂ij)⊕ x̂ik (5.25)

and

Σxjk
≈ J	⊕(x̂ij, x̂ik) Σ̂ J	⊕(x̂ij, x̂ik)

> (5.26)

where J	⊕(x̂ij, x̂ik) is the Jacobian of f	⊕ at x̂ij and x̂ik, and

Σ̂ =

[
Σxij

Σxijxik

Σ>xijxik
Σxik

]
. (5.27)

5.4 Jointly Characterizing Uncertainty in the Algebra

While the SSC operations proposed in (Smith, Self, and Cheeseman, 1990) have been used

widely since they were introduced, over the past decade Lie algebra based methods have been

shown to provide a more accurate characterization of uncertainty (Barfoot and Furgale,

2014; Kim and Kim, 2017). However, while recent years have seen an increase in use of

Lie algebra based methods for uncertainty propagation (Forster et al., 2017; Hartley et al.,

2018; Wheeler et al., 2018), existing methods assume that individual measurements are

independent (Barfoot and Furgale, 2014), which may not be the case when the underlying

pose estimates are derived from a SLAM solution. We now describe how this assumption

can be dropped and poses can be modeled as jointly correlated within the Lie algebra space.

Assume that we have n uncertain poses {T1, . . . ,Tn}, each of which is defined according

to (5.14). If we assume that the poses are statistically independent, then we can param-

eterize this distribution of poses with the set of associated mean and covariance matrices

{T̄1,Σ1, . . . , T̄n,Σn}. However, if the uncertainty associated with the set of poses is corre-

lated, then this can be modeled by concatenating the set of perturbation vectors {ξ1, . . . , ξn}
into a single vector ξ1:n ∈ R6n and representing the uncertainty of the distribution using a

single covariance matrix:

ξ1:n =


ξ1
...

ξn

 , Σ1:n =


Σ1 . . . , Σ1,n

...
. . .

...

Σ>1,n . . . Σn

 , (5.28)

where ξ1:n ∼ N (0,Σ1:n). Thus, we can parameterize the distribution of n poses using the

set of each of their means

T̄1:n = {T̄1, . . . , T̄n} (5.29)
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and the covariance matrix Σ1:n. Note that this only extends because we define the uncer-

tainty in the Lie algebra. The next three sections describe how to apply the composition,

inverse, and relative pose operations on uncertain poses represented in this manner.

5.5 Jointly Distributed Pose Composition

This section describes how to compose two uncertain poses whose associated perturbation

vectors are jointly Gaussian in the Lie algebra as described in the last section. This is the

Lie group-based or coordinate free equivalent to the SSC head-to-tail operation described in

Section 5.3.2.

5.5.1 Pose Composition Operation Derivation

Suppose we have two uncertain poses Tij and Tjk with perturbations ξij and ξjk that are

jointly Gaussian in the Lie algebra with covariance matrix

Σ =

[
Σij Σij,jk

Σ>ij,jk Σjk

]
.

Our goal is to find the mean and covariance of Tik, {T̄ik,Σik}. Under the standard group

multiplication operation:

Tik = TijTjk. (5.30)

Following the random variable definition in (5.14) and using the property described in (5.10),

exp(ξ∧ik)T̄ik = exp(ξ∧ij)T̄ij exp(ξ∧jk)T̄jk

= exp(ξ∧ij) exp((AdT̄ij
ξjk)

∧)T̄ijT̄jk (5.31)

where AdT̄ij
is the matrix form of the adjoint action of T̄ij on se(3). Letting

T̄ik , T̄ijT̄jk, (5.32)

gives us

exp(ξ∧ik) = exp(ξ∧ij) exp((AdT̄ij
ξjk)

∧). (5.33)
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We can now use the BCH formula (5.13) to show that

ξik = ξij + ξ′jk +
1

2
ξfijξ

′
jk +

1

12
ξfijξ

f
ijξ
′
jk +

1

12
ξ′fjkξ

′f
jkξij+

− 1

24
ξ′fjkξ

f
ijξ

f
ijξ
′
jk + . . . (5.34)

where ξ′jk = AdT̄ij
ξjk. Computing the covariance Σ amounts to evaluating E[ξikξ

>
ik]. Mul-

tiplying out up-to fourth order, we get:

E[ξikξ
>
ik] ≈ E

 ξijξ
>
ij + ξ′jkξ

′>
jk︸ ︷︷ ︸

2nd Order Diag. Terms

+ ξijξ
′>
jk + ξ′jkξ

>
ij︸ ︷︷ ︸

2nd Order Cross Terms

+ (5.35)

+
1

12
((ξfijξ

f
ij)(ξ

′
jkξ
′>
jk) + (ξ′jkξ

′>
jk)(ξfijξ

f
ij)
>+

+ (ξ′fjkξ
′f
jk)(ξijξ

>
ij) + (ξijξ

>
ij)(ξ

′f
jkξ
′f
jk)
>)+ (5.36)

+
1

4
ξfij(ξ

′
jkξ
′>
jk)ξf>ij +︸ ︷︷ ︸

4th Order Diagonal Terms

+
1

12
((ξijξ

′>
jk)(ξf>ij ξ

f>
ij ) + (ξ′jkξ

>
ij)(ξ

′f>
jk ξ

′f>
jk )+ (5.37)

+ (ξfijξ
f
ij)(ξ

′
jkξ
>
ij) + (ξ′fjkξ

′f
jk)(ξijξ

′>
jk))︸ ︷︷ ︸

4th Order Cross Terms

 .
This derivation is identical to the one proposed in (Barfoot and Furgale, 2014) until the

last step. Since (Barfoot and Furgale, 2014) assumes the individual poses are independent,

the cross terms in (5.35) and (5.37) are zero and the evaluation of the 4th order terms

in (5.36) is simplified. If this assumption is true and ξij and ξ′jk are independent of one

another, as is the case when Tij and Tjk are independent measurements of consecutive

robot motion, then the cross terms in (5.36) and the covariance Σ can be calculated up to

4th order as described in (Barfoot and Furgale, 2014). However, if the poses Tij and Tjk

are correlated, as is often the case when they are derived from the solution of a maximum

likelihood estimate (MLE) problem such as Pose Graph SLAM or in the case of wheel slip,

the cross terms must be included and evaluation of the fourth order terms in (5.36) and

(5.37) becomes more difficult1. If the correlation is not taken into account, then the result

of the pose composition operation under-approximates the true distribution and consistency

is lost, as shown in Fig. 5.4.

1If increased accuracy is needed, then Isserlis Theorem can be applied to evaluate the fourth order terms
in (5.36) and (5.37).
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A first order estimate of covariance (second order in the perturbation variables) can be

obtained be evaluating

E[ξikξ
>
ik] ≈E[ξijξ

>
ij] + E[ξ′jkξ

′>
jk ] + (5.38)

+ E[ξijξ
′>
jk ] + E[ξ′jkξ

>
ij],

resulting in

Σik ≈Σij + AdT̄ij
ΣjkAd>T̄ij

+ (5.39)

+ Σij,jkAd>T̄ij
+ AdT̄ij

Σ>ij,jk.

Thus, first order pose composition on the Lie algebra can be performed for correlated poses

using (5.32) for mean propagation and (5.39) for covariance propagation. As noted previ-

ously, this is equivalent to the first order method presented in (Barfoot and Furgale, 2014)

with the exception of the two additional cross terms in (5.39) needed to model cross corre-

lation.

5.5.2 Accurately Modeling Group Structure

While both the SSC operations presented in (Smith, Self, and Cheeseman, 1990) and the

Lie algebra based methods presented in this chapter (and Σ2nd in (Barfoot and Furgale,

2014, (55))) are first order approximation methods (in terms of covariance), characterizing

rotation uncertainty in the Lie algebra space results in a more accurate characterization

of pose uncertainty. This is because Euler angle parameterization is a chart and does not

cover the entire manifold whereas the Lie algebra inherently captures the group structure

and can model any arbitrary group element. In addition, since the Lie algebra is a vector

space (Tapp, 2016), modeling the uncertainty as a Gaussian distribution is convenient and

well-defined.

To demonstrate this, we performed an experiment similar to the one proposed in (Barfoot

and Furgale, 2014). We generated a sequence of N noisy pose transformations of the form

Tab = exp(ξ∧ab)T̄ab, with

ξab ∼ N (0,Σab), (5.40)

Σab = diag([0.001σt, 1e
−5σt, 1e

−5, 1e−5, 1e−5, 0.003σr]), (5.41)
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Figure 5.4: Example Pose Composition Comparison. Plots of 10000 sample trajectories each
made up of 10 noisy pose transformations. The 95% likely uncertainty ellipse predicted by
first order uncertainty propagation through the SSC head-to-tail operation is shown in red,
while a representation of the flattened 95% likely uncertainty position ellipsoids predicted by
the Lie algebra pose composition methods when correlation is and is not taken into account
are shown in green and cyan, respectively.

and

T̄ab =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 , (5.42)

where σt and σr are scaling parameters for the translation and rotation noise respectively. In

addition, each consecutive perturbation variable ξab was drawn such that it was correlated

with the perturbation variable before it with correlation coefficient ρ.

We then composed these transformations end-to-end and repeated the process to generate

95



10000 sample trajectories. These Monte-Carlo simulation results were then used to evaluate

the uncertainty predicted by the SSC head-to-tail operation as well as the Lie-algebra based

pose composition method derived in this section, both with and without correlation being

taken into account. A top down view of one such experiment with N = 10, σt = 5, σr = 5,

and ρ = 0.4 is shown in Fig. 5.4.

As expected, the Lie algebra based method significantly outperforms SSC head-to-tail

because it takes into account the structure of the SE(3) group. In addition, it is easily

seen that dropping the cross covariance terms results in an under-approximation of the true

covariance, if positive correlation is indeed present. A more thorough investigation of this

experiment is described in Section 5.9.1.

In the next two sections, we provide a derivation of the inverse and relative pose opera-

tions on the Lie algebra, which as far as we know has not been previously published.

5.6 The Pose Inverse Operation

The pose inverse operation corresponds to a change in reference frame. Given an uncertain

pose distribution Tij that represents the pose of coordinate frame j with respect to frame i,

we want to find the inverse Tji that represents the pose of coordinate frame i with respect

to frame j. The distribution of an inverse pose can be derived as follows (Eade, 2017):

Tji = T−1
ij

= T̄−1
ij exp(−ξ∧ij) (5.43)

= exp((−AdT̄−1
ij
ξij)

∧)T̄−1
ij

= exp(ξ′ij)T̄
−1
ij

where ξ′ij is the original perturbation ξij transformed by the negative adjoint of T̄−1
ij . Due

to the linearity of the adjoint operation, we can represent the inverse distribution Tji with

mean and covariance

T̄ji = T̄−1
ij (5.44)

and

Σji = AdT̄−1
ij

ΣijAd>
T̄−1

ij
. (5.45)
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Figure 5.5: Example Relative Pose Operation Comparison. Example results from performing
the relative pose operation while taking into account/ignoring correlation. Dropping the
correlation terms in (5.51) can lead to over-estimation of uncertainty. In this example, we
used our proposed method to estimate the relative pose T12 between two correlated poses
Tg1 and Tg2. A flattened view of the predicted 95% likely uncertainty ellipsoids that result
when correlation is ignored ((5.51) without the cross terms) and taken into account ((5.51)
with all terms) are shown in cyan and green respectively. For this plot, α = 1.

5.7 The Relative Pose Operation

This section combines the derivations from the previous two sections to formulate a first order

method for characterizing the uncertainty of the relative pose operation or the coordinate-free

equivalent to the SSC tail-to-tail operation described in Section 5.3.4.
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Figure 5.6: Covariance Error Comparison for Relative Pose. Covariance error comparison
showing the importance of not ignoring correlation when propagating uncertainty.

5.7.1 Relative Pose Operation Derivation

Given uncertain estimates of two coordinate frames with respect to a common base frame,

our aim is estimate the relative transformation between the two poses. For example, given

possibly correlated uncertain transformations Tij and Tik representing the poses of coordi-

nate frames j and k with respect to frame i, we want to find the mean T̄jk and covariance

Σjk that parameterize the pose uncertainty of frame k with respect to frame j.

We start by assuming that the T̄ij and T̄ik are known and that the associated perturba-

tions ξij and ξik are jointly correlated in the Lie algebra with known covariance

Σ =

[
Σij Σij,ik

Σ>ij,ik Σik

]
.
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Under the standard group inverse and multiplication actions, the following must hold:

Tjk = T−1
ij Tik. (5.46)

Expanding (5.46) using the random variable definition in (5.14) and the derivation in (5.43)

results in

exp(ξ∧jk)T̄jk = T̄−1
ij exp(−ξ∧ij) exp(ξ∧ik)T̄ik (5.47)

= exp((−AdT̄−1
ij
ξij)

∧)T̄−1
ij exp(ξ∧ik)T̄ik

= exp(ξ′∧ij ) exp(ξ′∧ik)T̄−1
ij T̄ik,

where ξ′ij = −AdT̄−1
ij
ξij and ξ′ik = AdT̄−1

ij
ξik. Letting

T̄jk , T̄−1
ij T̄ik, (5.48)

gives us

exp(ξ∧jk) = exp(ξ′∧ij ) exp(ξ′∧ik). (5.49)

Expanding the BCH formula in a similar manner to (5.34) and taking the expectation as in

(5.35) results in the following up to first order:

E[ξjkξ
>
jk] ≈E[ξ′ijξ

′>
ij ] + E[ξ′ikξ

′>
ik ] + (5.50)

+ E[ξ′ijξ
′>
ik ] + E[ξ′ikξ

′>
ij ].

Evaluating the expectations in (5.50) results in

Σjk ≈AdT̄−1
ij

ΣijAd>
T̄−1

ij
+ AdT̄−1

ij
ΣikAd>

T̄−1
ij
− (5.51)

+ AdT̄−1
ij

Σij,ikAd>
T̄−1

ij
− AdT̄−1

ij
Σ>ij,ikAd>

T̄−1
ij
.

Thus, uncertainty can be propagated through the relative pose function via (5.48) and

(5.51). A summary of the uncertainty propagation methods derived in the last three sections

is provided in Fig. 5.3.

5.7.2 Ignoring Correlation Leads to Inconsistency

Ignoring correlation of the associated perturbation variables leads to under/over-estimation

of uncertainty, depending on if the correlation is positive or negative and if the operation

being performed is pose composition or relative pose estimation. Fig. 5.5 and Fig. 5.6 show
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an example of this for the case of relative pose with positive correlation.

To create these plots, we generated M = 10000 sets of two uncertain poses Tm
g1 =

exp(ξm∧g1 )T̄g1 and Tg2 = exp(ξm∧g2 )T̄g2, with mean values

T̄g1 =


0.707107 −0.707107 0 3

0.707107 0.707107 0 3

−0 0 1 0

0 0 0 1

 (5.52)

and

T̄g2 =


0.707107 −0.707107 0 4.5

0.707107 0.707107 0 4.5

−0 0 1 0

0 0 0 1

 , (5.53)

under the assumption that the perturbation variables (ξmg1) and (ξmg2) are jointly correlated

in the Lie algebra with marginal covariance matrices

Σg1 = Σg2 (5.54)

= α · diag([0.005, 0.005, 1e− 5, 1e− 5, 1e− 5, 0.006]),

and cross covariance

Σg1,g2 = α · diag([0.0005, 0.0005, 0, 0, 0, 0.005]), (5.55)

where α is a scaling parameter. We then used the relative pose operation presented in this

section to estimate T12 both with and without taking uncertainty into account.

In Fig. 5.6, we evaluate the estimated covariance error for increasing values of α with

respect to the Monte-Carlo simulation under the following metric

ε ,
√

tr ((Σ−Σmc)>(Σ−Σmc)), (5.56)

where

Σmc =
1

M

M∑
m=1

ξmξ
>
m, (5.57)

with

Tm = (exp(ξm∧g1 )T̄g1)−1 exp(ξm∧g2 )T̄g2 (5.58)
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and

ξm = log(TmT̄−1
12 )∨. (5.59)

Fig. 5.4, Fig. 5.5, and Fig. 5.6 show that ignoring correlation leads to inconsistent estimates

of uncertainty.

5.8 Converting to a Lie algebra Based Representation

Although uncertainty characterization in the Lie algebra is more accurate than coordinate

based methods, in some cases an existing estimation algorithm may output pose estimates

in an alternative parameterization. This section describes how to convert from an existing

parameterization such as the SSC multi-variate Gaussian representation (defined in (5.15)

and (5.16)) to the proposed representation, as well as how to extract the mean and covariance

of a jointly correlated set of poses from a MLE solution such as iSAM (Kaess, Ranganathan,

and Dellaert, 2008) or g2o (Kümmerle et al., 2011) directly.

5.8.1 Converting from a Coordinate Based Representation

Assuming we are given a mean parameter vector x̂ and associated covariance Σ̂ as defined

in (5.16), to apply our proposed propagation methods, we must first transform x̂ and Σ̂

into our proposed representation such that the means of the associated transformations are

represented in the group space via T̄1:n and the perturbations are represented as multivariate

Guassian random variables, ξ1:n, with covariance Σ1:n in the associated Lie algebra as defined

in (5.28) and (5.29). Converting from a coordinates based method for uncertainty character-

ization to the Lie algebra representation is a non-linear operation. As such, the Unscented

Transform (UT) (Julier, 2002) is a better choice for converting between representations than

a first order linearization method.

The UT, first proposed by Julier and Uhlmann (1997), takes an input Gaussian distribu-

tion defined in one space and a non-linear function that maps the input space to an output

space and finds a Gaussian approximation for the transformed distribution. This is done by

using the input mean and covariance to create a deterministic set X1:K of K = 2m+ 1 sigma

points, where m is the dimension of the input space. These sigma points are then passed

through the non-linear function and a weighted mean and sample covariance is used to find

a Gaussian approximation to the output distribution.

Assuming we have a function f : Rd 7→ G that maps from a parameter vector, xi, to an

element of the Lie group, G, we can define a function `i that takes a perturbed parameter
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Figure 5.7: Example Conversion from SSC Using the Unscented Transfrom. The Unscented
Transform (UT) (Julier, 2002) can be used to transform from an existing, coordinates based
representation such as the one used in SSC (5.15) (shown in red) to the Lie algebra based
representation (shown in green). However, the use of the SSC representation in the first
place results in a loss of information and the resulting representation (shown in green) over
approximates the true underlying distribution (shown in pink). All uncertainty bounds
shown are 95% likely ellipsoids.

vector x̃i, centers it on the identity, and transforms it to the Lie algebra space as follows:

`i(x̃i) = log(f(x̃i) · f(x̂i)
−1), (5.60)

where x̂i is the mean parameter vector associated with x̃i.

We can then use the standard UT (Julier and Uhlmann, 1997, (12)) to generate a set

X1:K of 2nd + 1 sigma points from x̂ and Σ̂, where n is the number of modeled Lie group

elements. After which, the predicted Lie group representation for the jointly correlated poses
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can be obtained as follows:

T̄i = f(x̂i) (5.61)

Σ1:n =
K∑
k=1

Wk`(Xk)`(Xk)>, (5.62)

where ` is a vectorized version of `i andWk is the standard weight from (Julier and Uhlmann,

1997, (12)). Fig. 5.7 shows a result of this process.

While, in many cases the use of the UT may be the better than any other transformation,

the use of the coordinates based representation (even as an intermediate representation)

does lead to some loss of information. This loss of information can be avoided if we can

directly represent the uncertainty in the proposed framework when extracting it from the

prior estimation solution.

5.8.2 Extracting Pose Uncertainty from a MLE Solution

State-of-the-Art Pose Graph SLAM solvers find a solution by estimating the set of robot

poses that maximizes the likelihood of the observed measurements (Dellaert and Kaess,

2006; Kaess, Ranganathan, and Dellaert, 2008; Kaess et al., 2012; Mangelson et al., 2019;

Rosen et al., 2016). Traditional, iterative non-linear solvers (Dellaert and Kaess, 2006;

Kaess, Ranganathan, and Dellaert, 2008; Kaess et al., 2012; Kümmerle et al., 2011) do this

by building up a measurement Jacobian, A, with columns that correspond to elements of

the parameter vector x and with block rows that correspond to weighted, measurement

residual error functions that minimize the error between predicted measurements and what

was actually measured. At each iteration, this measurement Jacobian is used to form a linear

least squares problem of the following form:

x̂ = argmin
x
‖Ax− b‖2, (5.63)

where b is the measurement vector not needed for the following derivation. The algorithm

alternates between solving this linear least squares optimization problem and relinearizing

A around x̂ until convergence (Dellaert and Kaess, 2006; Kaess, Ranganathan, and Dellaert,

2008). Algorithms such as those described in (Rosen et al., 2016) and (Mangelson et al.,

2019) that provide a guarantee of global optimality formulate the problem slightly differently,

but once a solution has been obtained, a matrix A can still be formed by linearizing the cost

around the current solution.

After a solution has been reached, an estimate of the uncertainty of that solution can

be found by using A to form the information matrix I = A>A and using the non-zero
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Table 5.1: Covariance Error Statistics for Manhattan3500 Dataset - Modeling Correlation.
Summary of covariance error statistics for proposed Lie algebra relative pose estimation when
correlation is taken into account and ignored for a total of 44425 pose pairs extracted from a
solution to the Manhattan3500 dataset (Olson, Leonard, and Teller, 2006), with pose offsets
ranging from 5 to 500 nodes.

Method Covariance Error Mean Covariance Error Std. Dev.

Proposed Lie algebra Rel. Pose 0.00675104 0.0461455
Proposed (Ignoring Correlation) 2.05667 2.12371

elements of its Cholesky factorization I = R>R to calculate the necessary elements of the

marginal covariance Σ̂ as detailed in (Kaess and Dellaert, 2009). The trick to extracting this

covariance with respect to ξ1:n as opposed to x̂ is to make sure that the Jacobian A used to

form I is evaluated with respect to ξ1:n as opposed to x̂. This can be done by numerically

evaluating the Jacobian and by perturbing ξ1:n around 0 and propagating that perturbation

to the linearization point by means of the exponential function as opposed to perturbing

the parameters of x̂ directly. Doing this enables the direct extraction of Σ1:n and results

in increased accuracy, because the distribution we are approximating, in this case, can be

accurately represented as a Gaussian distribution.

5.9 Evaluation

This section evaluates the proposed uncertainty characterization method by performing two

experiments. The first, performs a parameter sweep over the experiment introduced in

Section 5.5.2. The second, extracts covariance information from the result of a Pose Graph

SLAM algorithm and compares the predicted relative pose covariance with the sample co-

variance obtained from Monte Carlo.

5.9.1 Compounding Correlated Odometry

The exact accuracy of our proposed uncertainty characterization method is dependent on a

variety of parameters including the number of poses compounded end-to-end and the rotation

and translation noise. We explore this dependence by performing a parameter sweep across

each of these parameters based on the experiment introduced in Section 5.5.2.

We began by varying the number of poses in the trajectory (N) and held both noise scale

parameters fixed at σt = σr = 3. The results are shown in Fig. 5.8. As the number of steps

increases, the accuracy of the final estimate drops off, this is because each of the methods
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Figure 5.8: Consistency of Pose Composition vs. Trajectory Length. The percentage of final
samples that fell within the 99.9% likely covariance ellipsoid as a function of the number of
poses in the trajectory sequence. All methods drop off as the number of poses is increased,
however our proposed method is consistently most accurate.

are only characterizing uncertainty up-to first order and the lost higher order information

builds up as the number of poses increases.

For the noise parameter experiments, we varied the noise scale parameters σr and σt

in turn, while keeping the number of poses fixed at N = 10 and the non-varying noise

parameter fixed at 3. The results are shown in Fig. 5.9. Rotation noise has a much more

significant effect, again this is because of the lost higher-order information (either in terms of

the higher order terms of the BCH formula or through linearization for SSC). Both Lie group

methods consistently outperform SSC except when rotation noise is very low and translation

noise is very high. This is because when rotation error is very low, the non-linearity of

the transformation becomes almost negligible and the increased translation error causes the

covariance ellipsoid to increase to the point where it includes the final robot position. In
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Figure 5.9: Consistency of Pose Composition vs. Noise Level. The percentage of final
samples that fell within the 99.9% likely covariance ellipsoid as a function of the rotation
and translation noise. For the rotation noise sweep, translation noise was held constant at
σt = 3 and for the translation noise sweep, rotation noise was held constant at σr = 3. Note
that increases in rotation noise have the largest negative effect.

addition, the joint composition method in the Lie algebra is consistently more accurate than

when correlation is ignored. For all three parameter sweeps, the induced correlation was

held fixed at ρ = 0.4.

5.9.2 Extracting Relative Pose From a SLAM Solution

To evaluate relative pose extraction, we used iSAM (Kaess, Ranganathan, and Dellaert,

2008) to find a solution to the Manhattan 3500 dataset (Olson, Leonard, and Teller, 2006).

We then extracted joint mean and covariance as described in Section 5.8.2 for pairs of poses

at offsets varying from 5 to 50 in increments of 5 as well as for offsets of 100, 200, and 500

nodes. A visualization of the extracted pose pairs and the correlation between them for
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(a) Pose Pair Correlation - X (b) Pose Pair Correlation - Y (c) Pose Pair Correlation - Θ

(d) Proposed - Cov. Error (e) Proposed - Cov. Error (Ignoring Correlation)

(f) Proposed - Normalized Cov. Error (g) SSC - Normalized Cov. Error

Figure 5.10: Correlation and Covariance Error for Manhattan3500 - Relative Pose Offset
50. A visualization of the correlation and covariance error for 3450 pose pairs with an offset
of 50 nodes extracted from a solution of the Manhattan3500 dataset (Olson, Leonard, and
Teller, 2006). (a), (b), and (c) show the relative poses colored by the correlation coefficient
of the x, y, and θ dimensions respectively. White corresponds to a correlation coefficient of
0 and black to a coefficient of 1. (d) and (e) show the covariance error with respect to Monte
Carlo for relative pose estimation in the Lie algebra when correlation is and is not taken
into account. Dark red corresponds to a covariance error of at least 2 standard deviations
above the mean (with respect to when correlation is ignored), while white corresponds to a
covariance error of 0. (f) and (g) show the normalized covariance error with respect to Monte
Carlo for the proposed method and SSC (Smith, Self, and Cheeseman, 1990). In this case,
dark orange corresponds to a covariance error of at least 2 standard deviations above the
mean (with respect to SSC relative pose extraction), while white corresponds to a covariance
error of 0.
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Table 5.2: Covariance Error Statistics for Manhattan3500 Dataset - Proposed vs SSC. Sum-
mary of normalized covariance error statistics for proposed and SSC (Smith, Self, and Cheese-
man, 1990) relative pose estimation for a total of 44425 pose pairs extracted from a solution
to the Manhattan3500 dataset (Olson, Leonard, and Teller, 2006), with pose offsets ranging
from 5 to 500 nodes.

Method Normalized Cov. Error Mean Normalized Cov. Error Std. Dev.

Proposed Rel. Pose 0.0493121 0.0353072
SSC Tail-to-Tail 0.28778 0.411625

offsets of 50 are shown in Fig. 5.10 (a-c). Equivalent visualizations for offsets of 10, 100, 200,

and 500 are shown in Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14.

To investigate the importance of taking into account correlation when estimating relative

pose, we performed a Monte Carlo simulation to estimate the true relative pose covariance

as described in (5.57) - (5.59), where ξmg1 and ξmg2 are the perturbation variables sampled

from the extracted joint covariance and T̄g1 and T̄g2 are the mean values extracted from the

iSAM solution. We then used the metric defined in (5.56) to evaluate the covariance error of

our method proposed in (5.51) when taking into account correlation (using all four terms in

(5.51)) or ignoring correlation (using only the first two terms in (5.51)). Summary statistics

are shown in Table 5.1 and visualizations of the error for offsets of 50, 10, 100, 200, and 500

are shown in (d-e) of Fig. 5.10, Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14.

The results in Table 5.1 show that ignoring correlation can lead to a covariance error

more than 3 orders of magnitude higher than if correlation is taken into account.

To compare our proposed method to SSC (Smith, Self, and Cheeseman, 1990), we per-

formed a similar experiment except that the Monte Carlo ”groundtruth” covariance for SSC

was derived by taking the sample relative poses from the previous experiment and converting

them to the parameter vector format described in (5.15) and taking the sample covariance.

To fairly compare our proposed method and SSC, the covariance matrices were normalized

by the Frobenius norm of the Monte Carlo covariance matrix before evaluating the covari-

ance error as defined in (5.56). Summary statistics of the experiment are shown in Table 5.2

and visualizations of the error for offsets of 50, 10, 100, 200, and 500 are shown in (f-g) of

Fig. 5.10, Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14.

It should be noted that this is not a perfect comparison because the Monte Carlo covari-

ance to which SSC is being compared is a multivariate Gaussian fit to a set of parameter

vectors that cannot be accurately modeled as a Gaussian. However, the results do show that

even when modeling the true error in the format assumed by the SSC representation, our

proposed Lie algebra based method results in an order of magnitude lower covariance error
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(a) Pose Pair Correlation - X (b) Pose Pair Correlation - Y (c) Pose Pair Correlation - Θ

(d) Proposed - Cov. Error (e) Proposed - Cov. Error (Ignoring Correlation)

(f) Proposed - Normalized Cov. Error (g) SSC - Normalized Cov. Error

Figure 5.11: Correlation and Covariance Error for Manhattan3500 - Relative Pose Offset
10. A visualization of the correlation and covariance error for 3490 pose pairs with an offset
of 10 nodes extracted from a solution of the Manhattan3500 dataset (Olson, Leonard, and
Teller, 2006). The color schemes match those of Fig. 5.10.

than SSC (see Table 5.2).

5.10 Library Implementation

We have released an open source C++ library implementation of our method. It can be

downloaded at: https://bitbucket.org/jmangelson/lie. It is designed to be simple,

intuitive, and easily extendable.
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(a) Pose Pair Correlation - X (b) Pose Pair Correlation - Y (c) Pose Pair Correlation - Θ

(d) Proposed - Cov. Error (e) Proposed - Cov. Error (Ignoring Correlation)

(f) Proposed - Normalized Cov. Error (g) SSC - Normalized Cov. Error

Figure 5.12: Correlation and Covariance Error for Manhattan3500 - Relative Pose Offset
100. A visualization of the correlation and covariance error for 3400 pose pairs with an offset
of 100 nodes extracted from a solution of the Manhattan3500 dataset (Olson, Leonard, and
Teller, 2006). The color schemes match those of Fig. 5.10.

5.10.1 Creating Known and Uncertain SE(3) Objects

Creating both known and uncertain SE(3) objects can be done as follows. After importing

the library a variety of constructors can be used to create known SE(3) transformations:

#include <lie/se3.hpp>

// Via rotation and translation

Eigen::MatrixXd R(3,3); // 3x3 matrix
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(a) Pose Pair Correlation - X (b) Pose Pair Correlation - Y (c) Pose Pair Correlation - Θ

(d) Proposed - Cov. Error (e) Proposed - Cov. Error (Ignoring Correlation)

(f) Proposed - Normalized Cov. Error (g) SSC - Normalized Cov. Error

Figure 5.13: Correlation and Covariance Error for Manhattan3500 - Relative Pose Offset
200. A visualization of the correlation and covariance error for 3300 pose pairs with an offset
of 200 nodes extracted from a solution of the Manhattan3500 dataset (Olson, Leonard, and
Teller, 2006). The color schemes match those of Fig. 5.10.

Eigen::VectorXd t(3); // 3x1 vector

Lie::SE3 T_12(R, t);

// Via translation and Euler angle params

Lie::SE3 T_23(x, y, z, theta, phi, psi);

Independent and jointly distributed sets of unknown poses can also be created by passing

in a mean value or a tuple of mean values and a covariance matrix.
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(a) Pose Pair Correlation - X (b) Pose Pair Correlation - Y (c) Pose Pair Correlation - Θ

(d) Proposed - Cov. Error (e) Proposed - Cov. Error (Ignoring Correlation)

(f) Proposed - Normalized Cov. Error (g) SSC - Normalized Cov. Error

Figure 5.14: Correlation and Covariance Error for Manhattan3500 - Relative Pose Offset
500. A visualization of the correlation and covariance error for 3000 pose pairs with an offset
of 500 nodes extracted from a solution of the Manhattan3500 dataset (Olson, Leonard, and
Teller, 2006). The color schemes match those of Fig. 5.10.

Lie::SE3 T_ab_mu(R_ab, t_ab);

Eigen::MatrixXd Sigma_ab(6,6);

auto T_ab_uncertain =

Lie::make_uncertain_state(

T_ab_mu, Sigma_ab);

Lie::SE3 T_ac_mu(R_ac, t_ac);

Eigen::MatrixXd Sigma_Joint(12,12);
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auto refs =

Lie::make_uncertain_state(

std::make_tuple(T_ab_mu, T_ac_mu),

Sigma_Joint);

auto T_ab_uncertain = std::get<0>(refs);

auto T_ac_uncertain = std::get<1>(refs);

The Lie::make uncertain state function returns either a single SE(3) reference object

or a tuple of such objects that can then be used to perform operations.

5.10.2 Performing Operations

The pose composition, inverse, and relative pose operations can be applied interchange-

ably regardless of whether or not individual SE(3) objects are known or uncertain via the

Lie::compose, inverse, and Lie::between functions respectively. The compiler automat-

ically determines whether or not the individual objects are known/unknown or indepen-

dent/jointly distributed and applies the appropriate formulation.

// Composing known poses

auto T_13 = Lie::compose(T_12, T_23);

// Invert both known and uncertain poses

auto T_21 = T_12.inverse();

auto T_ba_uncertain =

T_ab_uncertain.inverse();

// Calculating relative pose

auto T_bc_uncertain = Lie::between(

T_ab_uncertain, T_ac_uncertain);

auto T_bc_uncertain2 = Lie::between(

T_ab_known, T_ac_uncertain);

Each function returns a new (from then on assumed independent) SE(3) reference object

that can be used for additional operations as necessary.

5.10.3 Converting from Alternative Representations

We have also implemented the methods proposed in Section 5.8. The uncented transform

method described in Section 5.8.1 is contained in ‘‘lie/coord change.hpp’’ and released
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in the library.

5.10.4 Additional Lie groups

In addition, because the uncertainty propagation method we present simply uses the proper-

ties of Lie groups, it can easily be applied to other Lie group types. We have also implemented

the Lie::SO3, Lie::SE2, and Lie::SO2 classes for the SO(3), SE(2), and SO(2) Lie groups

and plan to extend it to other Lie group types as needed.

5.11 Conclusion

Recent interest has shown that pose uncertainty characterization through the use of the

Lie algebra leads to more accurate uncertainty propagation. However, recent work assumes

that individual poses are independent from one another and have primarily focused on pose

composition, ignoring the equally important inverse and relative pose operations.

This paper describes how to represent multiple jointly correlated poses while using the

Lie algebra to characterize uncertainty. We also derive the equivalent of the Smith, Self, and

Cheeseman (1990) pose composition, pose inverse, and relative pose operations when using

the proposed framework and show that they outperform existing methods. Finally, we have

released an open source C++ library implementation of our method.

The completed work is in the process of submission and review.

The C++ library is released at: https://bitbucket.org/jmangelson/lie.
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CHAPTER 6

Conclusion

Teams of autonomous systems have the potential to make a dramatic impact in our society.

However, if they are to be widely adopted, reliability needs to be significantly improved.

This dissertation presents four novel algorithms/methods that seek to address several of

the failure cases impeding robust localization and mapping. Although these methods can

be applied regardless of domain, our primary motivation is the development of multi-agent

teams of autonomous underwater vehicles.

6.1 Contributions

The contributions of this thesis include:

• In Chapter 2, we proposed a method for selecting a set of consistent measurements

that can be used to merge two pose graphs into a single consistent map. Unlike other

work in this area, we formulated the problem as a combinatorial problem that does

not require an initial estimate and guarantees the selected set of measurements are

pairwise consistent with one another. We then showed how existing algorithms for the

maximum clique problem can be applied to find a solution efficiently. We evaluate on

both simulated and real-world data and show that we significantly outperform existing

state-of-the-art algorithms.

• In Chapter 3, we proposed an algorithm for localizing a query trajectory to a reference

trajectory without any initial estimate of alignment and without performing data as-

sociation. We used an approximation of the `2 norm and linear relaxation techniques

to derive a method for approximate optimization over SE(2) via linear programing.

Our method outperforms existing convex optimization methods because they fail to

enforce that the estimated transformation be approximately rigid.
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• In Chapter 4, we formulated the planar Pose Graph simultaneous localization and

mapping (SLAM) and Landmark SLAM problems as polynomial optimization pro-

grams and showed that they can be solved via the sparse bounded degree sum-of-

squares (Sparse-BSOS) hierarchy of semidefinite program (SDP)s. We then proved

that the globally optimal solution is always reached on the first step of the hierarchy,

signifying that the planar Pose Graph and Landmark SLAM algorithms can be framed

as convex optimization problems.

• In Chapter 5, we proposed a framework for modeling the uncertainty of jointly corre-

lated poses in the Lie algebra of the Special Euclidean group. We then derived first

order uncertainty propagation formulas for the pose composition, pose inverse, and rel-

ative pose operations. We evaluated our methods and showed that our method results

in significantly increased uncertainty estimate consistency when compared to existing

methods that either do not model correlation or use coordinates based representations.

We released a C++ library implementation of our proposed framework and method.

6.2 Future Work

While this thesis has made several contributions towards robust localization and mapping,

there are still significant problems that need to be resolved to enable the regular reliable

operation of autonomous systems in unstructured environments. In this section, we describe

some of those additional areas for future work.

6.2.1 Generalization to Low-Rank Measurement Types

Chapter 2 proposed an algorithm called pairwise consistency maximization (PCM) that can

be used for selecting a consistent set of measurements for reliably merging maps generated by

multiple vehicles. In addition, Chapter 4 proposed a method called sparse bounded degree

sum-of-squares SLAM (SBSOS-SLAM) that can be used to find a globally optimal solution

to the planar SLAM problem regardless of initialization. However, as currently formulated,

the SBSOS-SLAM algorithm is restricted to full degree of freedom (DOF) relative pose

constraints, and the pairwise consistency check used in PCM is most effective when the

measurements are full-rank.

However, many of the sensors available to underwater vehicles are only partial-rank, such

as five DOF monocular camera constraints or single DOF range only constraints. General-

ization of the SBSOS-SLAM algorithm to arbitrary measurement types would dramatically
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increase its usefulness and the generalization of PCM to group-k consistency maximiza-

tion (GkCM) would increase its accuracy.

6.2.2 Scalability and Real-time Operation

An additional avenue for future work would be the development of methods to improve the

scalability and efficiency of the SBSOS-SLAM framework. To increase the reliability of real-

time navigation in a priori unknown environments, the algorithm will need to run efficiently

on board a mobile platform.

There is potential for this to be done by further exploiting the sparsity inherent to the

SLAM problem itself. It may be possible to exploit the structure of the problem to extract a

more optimal variable ordering and grouping to decrease the solve time of the SDP steps in

the Sparse-BSOS hierarchy. Doing so could enable both increased efficiency and scalability.

6.2.3 Robust Planning

The work presented in this thesis has focused on increasing the robustness of the localization

and mapping task; however, this is only one of many sub-tasks that an autonomous system

must perform to operate in a real-world environment. Similar or alternative techniques

need to be developed to quantify and increase the robustness of the various planning tasks

performed by autonomous agents. Many of these tasks can also be framed as convex or

polynomial optimization problems. These problems also present interesting directions for

future research.

6.2.4 Other Elements of Reliable Autonomy

Finally, as described in Section 1.2, there are additional elements of reliable autonomy outside

of algorithmic robustness that need to be solved to enable truly reliable autonomous systems.

The problems of constraint management, system cognizance, and system interoperability all

present important avenues for future work.
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APPENDIX A

Useful Definitions from Graph Theory

This section presents some useful definitions from graph theory that are used in Chapter 2

(Bollobás, 1965; Diestel, 2000).

Definition A.1. A graph is a pair G = {V, E}, where E is a collection of 2-element subsets

of V . We refer to an element of V as a vertex (vertices plural) and an element of E as

an edge (edges).

Definition A.2. A graph is called complete if there is an edge connecting every pair of

vertices.

Definition A.3. We call a graph G′ = {V ′ ⊆ V, E ′ ⊆ E} a subgraph of G and denote it by

G′ ⊆ G.

Definition A.4. A complete subgraph is called a clique.
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APPENDIX B

A Review of Convex Optimization

Convex optimization is important because it defines a set of optimization problems where

every local minimum is a global minimum. This property enables you to guarantee that the

solution you have found is the true optimum as opposed to only a locally optimal result.

In addition, because convex optimization problems have been well studied, a variety of

specialized algorithms and libraries have been developed to solve these problems. Thus,

formulating a problem as a convex optimization problem enables us to take advantage of a

large body of work focused on solving those problems efficiently (Boyd and Vandenberghe,

2004).

In the following section, we will run through some important definitions that are use-

ful in understanding convex optimization. We will then present some examples of convex

optimization problems that are used in Chapter 3 and Chapter 4.

B.1 The Definitions

These definitions were primarily taken from the book Convex Optimization by Stephen Boyd

Boyd and Vandenberghe (2004).

B.1.1 Convex Sets and Functions

Definition B.1.1. A set C is a convex set if the line segment between any two points in

C lies within C, i.e. if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.

Definition B.1.2. A function f : Rn → R is a convex function if dom f is a convex set
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and if for all x, y ∈ dom f, and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y)),

which is the chord from x to y, lies above the graph of f . A function is strictly convex if

strict inequality holds wherever x 6= y and 0 < θ < 1.

Definition B.1.3. The graph of a function f : Rn → R is defined as

{(x, f(x))|x ∈ domf},

which is a subset of Rn+1.

Definition B.1.4. The epigraph of a function f : Rn → R is defined as

epif = {(x, t)|x ∈ domf, f(x) ≤ t},

which is a subset of Rn+1.

Less formally, an epigraph is the portion of the space above the graph. A function is

convex if and only if its epigraph is a convex set.

B.1.2 Convex Optimization

An optimization problem in standard form is written as

minimize
x∈Rn

f0(x)

s. t. fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

(B.1)

where x ∈ Rn is called the optimization variable and the function f0 : Rn → R the

objective function or cost function.

Definition B.1.5. A convex optimization problem is one of the form

minimize
x∈Rn

f0(x)

s. t. fi(x) ≤ 0, i = 1, ...,m

a>i x = bi, i = 1, ..., p

(B.2)
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where f0, ..., fm are convex functions.

Here we notice that because the objective function and inequality constraints must be

convex and because the equality constraint functions are affine (convex), the feasible set

of the problem is convex and the cost function is convex. Thus for convex optimization

functions, we minimize a convex objective over a convex set Boyd and Vandenberghe (2004).

B.2 Examples of Convex Optimizataion Problems

B.2.1 Linear Programs

A general linear program (LP) has the form

minimize
x∈Rn

c>x + d

s. t. Gx � h

Ax = b.

(B.3)

LPs are the simplest example of convex optimization problems. In a LP, the cost function

is affine while both equality and inequality constraints are linear.

Current methods can solve linear programs efficiently for large numbers of variables

and constraints. Typical problems may include hundreds of thousands or even millions of

variables or constraints.

B.2.2 Semi-Definite Programs

Another example of a convex optimization program is the semi-definite program (SDP).

An SDP has the form

minimize
x∈Rn

c>x

s. t. x1F1 + · · ·+ xnFn + G � 0

Ax = b.

(B.4)

where G,F1, · · · ,Fn ∈ Sk, A ∈ Rp×n, and Sk is the space of semidefinite k × k matrices.

In comparison with LPs, SDPs can handle much more complicated constraints, while

still being convex and thus providing guarantees of global optimality. However, the nature of

SDPs makes them more difficult to solve. Taking into account the structure of the underlying

problem is essential in order to solve large SDPs efficiently.
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R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3607–3613, Shanghai, China, May 2011.

J. B. Lasserre. Moments, positive polynomials and their applications, volume 1. World
Scientific, 2009.

J. B. Lasserre, K.-C. Toh, and S. Yang. A bounded degree SOS hierarchy for polynomial
optimization. EURO Journal on Computational Optimization, 5(1-2):87–117, 2017.
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