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Abstract—This paper reports on an experimental comparison
of three synchronous clock, acoustic, distributed navigation algo-
rithms commonly found in the underwater robotics community
and literature: a naively distributed extended Kalman filter
(NEKF), the interleaved update (IU) algorithm, and a decen-
tralized extended information filter (DEIF). Traditional dead-
reckoned underwater navigation methods result in unbounded
error growth as subsea vehicles do not typically have access
to an absolute position reference. Synchronous-clock acoustic
navigation systems can provide one-way travel time (OWTT)
range constraints to nearby vehicle nodes thereby bounding error.
Several distributed estimation algorithms for such scenarios
have been proposed by the community; however, each makes
fundamentally different trade offs in various specifications such
as scalability, complexity, directionality, and consistency. We
report an experimental comparison between the performance
of each algorithm as compared to the benchmark solution of a
centralized extended Kalman filter (CEKF) applied to a variety of
2-node and 3-node vehicle network topologies using data collected
from two Ocean-Server autonomous underwater vehicles (AUVs)
and a surface craft.

I. INTRODUCTION

Typical advanced navigation sensor suites for underwater
vehicles are capable of measuring Doppler body-frame veloc-
ity, MEMS/gyro attitude, and pressure depth. Integrating these
measurements over time results in so-called dead-reckoned
(DR) navigation solutions, which produce position estimates
whose error grows unbounded with time. The strong attenua-
tion of electromagnetic (EM) signals underwater precludes the
use of GPS (except for at the surface), which is frequently used
to bound pose-error growth in terrestrial and aerial navigation
scenarios. Higher quality DR sensors are only capable of
reducing the rate of uncertainty growth, therefore, alternative
methods for constraining navigation errors are required.

Underwater acoustic navigation systems attain bounded-
error navigation through range-only observations to beacons
with known position. Range observations are derived from
measuring the time-of-flight (TOF) of acoustic signals and
assuming a well known sound speed profile. The long-baseline
(LBL) navigation framework, for example, employs a network
of fixed reference beacons to which vehicles can measure
range [1]. LBL, however, limits the area of operations to
the coverage footprint of the reference beacons. Furthermore,
narrowband LBL lacks the ability to scale up to large groups
of vehicles because only a single vehicle can interrogate the

(a) 2-node topologies.

(b) 3-node topologies.

Fig. 1. An depiction of the 2-node and 3-node topologies studied in this
experiment. The arrows in each image represent the direction of communica-
tions (i.e., unidirectional versus bidirectional). Stars indicate that an absolute
position reference (e.g., GPS or LBL ) was available at some point during
the mission while circles represent nodes without absolute position reference.
Subsea and topside nodes are color coded by blue and green, respectively.

beacon network at any one time.
Synchronous-clock acoustic navigation [2] is an alternative

method in which receiving nodes are able to measure one-
way travel time (OWTT) range to a transmitting node. Ad-
vantageously, synchronous-clock acoustic networks scale to
arbitrarily many vehicles because all vehicles within acoustic
range of the transmitting node passively receive a range
measurement leading to constant time update rates.

A variety of estimation frameworks have been introduced
for incorporating acoustic ranging to nodes with known but
non-stationary position. The moving long-baseline (MLBL)
navigation approach [3] allows vehicles with high-quality
navigation sensors to act as position references to vehicles
with less accurate navigation systems. [2] proposes a maxi-
mum likelihood estimate (MLE) solution for synchronously
navigating subsea nodes via ranging to surface ships. Multiple
navigation systems framed around the Kalman family of filters
have been proposed and consider ranging between all acoustic
nodes [4–6]. We consider this scenario of synchronous-clock
acoustic navigation incorporating range measurements across
an acoustic network.

In this work, we seek to benchmark existing algorithms
for synchronous-clock cooperative underwater navigation from
within the associated literature and throughout the community.
Representative network topologies considered in this study are
illustrated in Fig. 1. As our benchmark we report a comparison



of a post-process centralized extended Kalman filter (CEKF)
approach [4] to a naively distributed extended Kalman filter
(NEKF), to a decentralized extended information filter (DEIF)
[7] and to the interleaved update (IU) algorithm [6]. Section
II formalizes the problem statement and reviews each of the
algorithms. Section III presents a multi-vehicle experiment
sharing inter-node ranges and discusses the performance of
each filter. Section IV offers a discussion of the various filter
performances and Section V closes with concluding remarks.

II. COOPERATIVE UNDERWATER NAVIGATION

We define the general problem of cooperative underwater
navigation simply as estimating position by measuring range
relative to other nodes. Furthermore, we make the following
assumptions:

1) the motion of each node can be described by indepen-
dent linear dynamics;

2) all nodes carry a sensor suite comprised of Doppler
velocity log (DVL), attitude, and depth for DR;

3) attitude and depth are sufficiently well instrumented so
that we can only consider XY horizontal position esti-
mation, as range measurements can easily be projected
to the local-level plane;

4) each node is equipped with an acoustic modem and a
synchronous clock enabling the exchange of information
and OWTT measurements.

Underwater acoustic networks are constrained by the phys-
ical communication layer and therefore message size is re-
quired to fit limited bandwidth. In addition, the acoustic
channel is extremely susceptible to dropped transmission [8]
requiring that a viable navigation framework should be robust
to packet loss.

For this discussion, the state and distribution of the ith

vehicle are modeled as

xi = [xi, yi, ẋi, ẏi]
>

xi v N (x,P) (1)

where the vehicle position in the local-level plane is denoted
by the xy pair and the corresponding world-frame velocities
are ẋẏ. Each vehicle state is estimated assuming a constant
velocity linear kinematic plant process model and a general
nonlinear observation model

ẋi(t) = Fi(t)xi(t) + w(t) (2)

zi(t) = h(xi(t)) + v(t) (3)

with measurement zi, where velocity and global positioning
system (GPS) observations are linear and OWTT are nonlinear.
Each model is corrupted by time-independent, zero-mean,
Gaussian noise w(t) v N (0,Q(t)) and v(t) v N (0,R(t)).

The state and covariance of each vehicle are propagated
forward in time through a constant velocity linear kinematic
model. After performing a standard discretization of a con-
tinuous linear system, the discrete time process prediction for
estimated state and covariance follows

x̂i(k + 1|k) = Fik x̂i(k|k), (4)

Pi(k + 1|k) = FikPi(k|k)F>ik + Q(k), (5)

where using standard convention, k + 1|k represents the
estimate of the state at time k + 1 given state up through
time k.

The measurement updates for local observations follow
the standard Kalman update equations; however, each fil-
tering scheme handles OWTT range measurement updates
differently. Nonetheless, they all share the same measurement
model, i.e., that the range measurement between vehicle i at
the time-of-arrival (TOA) and vehicle j at the time-of-launch
(TOL) can be modeled as

zOWTT = ‖xi(tTOA)− xj(tTOL)‖+ vOWTT (6)

where the measurement noise, vOWTT v N (0,ROWTT), ac-
counts for timing error multiplied by the speed of sound.

A. Centralized Extended Kalman Filter Implementation

We first consider the implementation of the CEKF, which
serves as our benchmark “gold-standard” solution [4]. The
CEKF is a post process formulation that has access to all
sensor measurements from all nodes. Initially, the navigation
estimates of each vehicle are uncorrelated so that the global
covariance matrix is block diagonal. However, sharing inter-
node range measurements builds correlation between vehicle
navigation estimates (see Appendix A). The power of the
CEKF is that it is able to track the fully dense covariance
matrix of the network, whereas real-time decentralized im-
plementations are, in general, unable to do so as they are
constrained by limited bandwidth.

The CEKF tracks the global state composed of the stacked
state and covariance of all n-vehicles in the network:

x =


x1

x2

...
xn

 P =


P11 . . . P1n

... P22

...
. . .

Pn1 . . . Pnn

 .
The state and covariance follow the standard Kalman predic-
tion equations with a combined state transition matrix, F, and
noise covariance matrix, Q, given by

F = blkdiag(F1,F2, . . . ,Fn)

Q = blkdiag(Q1,Q2, . . . ,Qn).

In order to correctly model range measurement updates, the
CEKF augments the global state to include the transmitting
node at the TOL,

x′ = [x>1 ,x
>
2 , . . . ,x

>
n ,x

>
TOL]>.

This allows the filter to perform a standard nonlinear Kalman
update with the OWTT observation as written in (6). Once the
measurement update has been carried through, the augmented
state can be marginalized out in order to maintain a bounded
state size.



B. Naively Distributed Extended Kalman Filter

The NEKF approach is essentially equivalent to the CEKF
with all of the off block-diagonal elements of the covariance
matrix actively held zero. Distributing this filter only requires
that local state and covariance, x̂i and Pi, respectively, be
transmitted by any source node. Acoustic data packets are con-
stant size as only local information is transmitted. Therefore,
the NEKF can trivially scale up to arbitrarily large networks.
However, this real-time method trades simple application for
an inconsistent (i.e., overconfident) estimate because inter-
node correlation is not tracked.

In order to perform a range measurement update, the receiv-
ing node, j, constructs a combined state vector and covariance
matrix by appending the statistics of the transmitting node, i.

x′ =

[
xi
xj

]
P′ =

[
Pi 0
0 Pj

]
.

The measurement update then proceeds with the standard
Kalman update with measurement model given in (6). Fol-
lowing the update, the state elements corresponding to the
transmitting node, i, are marginalized out. Note that this filter
does not track correlation; when j transmits to i, i will use the
same update procedure assuming no correlation, resulting in
a double-counting of information as j’s state was previously
informed by i’s.

C. Interleaved Update Algorithm

Bahr et al. [6] proposed the IU algorithm as a solution to the
problem of inconsistency in position estimates between nodes
exchanging navigation information. To avoid overconfidence,
the IU algorithm only performs range measurement updates
between vehicle navigation estimates that are known to be
uncorrelated. While the IU algorithm is essentially a book
keeping utility that can be wrapped around a variety of filtering
modalities (e.g., extended Kalman filter (EKF), particle filter,
unscented Kalman filter (UKF)), for comparison with the other
acoustic navigation frameworks considered in this paper, we
present the IU as applied to an EKF.

Each node maintains a bank of EKFs with an index of the
origins of each measurement. The set of state vectors and
covariance matrices at time k tracked by the ith node, denoted
Xi(k) and Pi(k), respectively are defined as

Xi(k) = {x1
i (k),x2

i (k), . . . ,x2n−1
i (k)},

Pi(k) = {P1
i (k),P2

i (k), . . . ,P2n−1
i (k)},

where n is the total number of vehicles in the network.
In order to track the origins of each acoustic broadcast, all

nodes retain a transmission matrix T where each row repre-
sents a filter within its local set and each column corresponds
to a vehicle in the network. Hence, each Tij entry represents
the last time that the ith filter used the jth vehicle to update
its navigation estimate.

Under the IU framework, each source node acoustic trans-
mission encodes the transmission matrix as well as its entire
bank of filters. A receiving node updates each of its filters

by searching for a corresponding filter in the transmitted set
that does not contain an update that could be correlated. The
full mechanics of this update step are detailed in [6]. It is
this combinatorial nature of the IU algorithm that ensures
that double counting of information will not occur where
correlation could exist.

D. Decentralized Extended Information Filter Method

Webster et al. [7] report a distributed algorithm that exactly
reproduces the CEKF by adding a few extra constraints on
the vehicle network topology and system dynamics. The key
insight comes from working with the additive updates available
in the information form of the Kalman equations, resulting in
what is called a DEIF.

Their assumptions limit networks to tree-connected topolo-
gies and force the root of each tree to evolve with linear
predictions and updates. In this scenario the root of each tree
cooperatively navigates each of the leaf nodes by acting as a
moving reference beacon. By encoding “delta information”
into each acoustic packet, the receiving nodes can exactly
reconstruct the distribution tracked by the CEKF.

The interested reader is referred to [7] for full details
pertaining to transmitting and receiving delta information.
Essentially, the transmitting node maintains its current state as
well as delayed-states corresponding to TOLs. The receiving
node tracks its current state in addition to the TOL states of the
transmitting node. The delta information packets summarize
all predictions and observations that have occurred since the
last TOL by the root node allowing the receiving node to track
the state of the transmitting node. Furthermore, the receiving
node filter is able to build correlation in its estimate with
the transmitting node resulting in a consistent estimate that
matches the CEKF at the time of packet integration.

III. EXPERIMENTS

A. Experimental Setup

A multi-node autonomous underwater vehicle (AUV) trial
was carried out for a three-node network topology. The exper-
iment consisted of two custom modified Ocean-Server, Inc.
Iver AUVs operated by the Perceptual Robotics Laboratory
(PeRL) at the University of Michigan and a topside surface
craft. Each AUV followed a lawn-mower pattern with roughly
500 m tracklines spaced 50 m apart as depicted in Fig. 2. The
topside ship traveled to various positions around the survey
area during the mission.

The two AUVs, referred to as Iver28 and Iver31, contain
a typical advanced DR AUV sensor suite as detailed in [9].
Each AUV measured body-frame velocities with a 600 kHz
RDI DVL, attitude with a Microstrain 3DM-GX1-AHRS, and
depth with a Desert Star Systems SSP-1 digital pressure
sensor. Since we consider attitude to be well instrumented
with bounded error, we project the body-frame velocity mea-
surements into the world-frame and treat these as linear
observations of the ẋ ẏ elements of our state. The topside
vehicle only observes world-frame position measured by GPS.



(a) AUV and topside trajectories.

(b) One of two Iver AUVs used in field experiments.

Fig. 2. The top plot shows the trajectories of the two AUVs and the topside
surface ship. The lower figure depicts one of the AUVs.

The source of each acoustic transmission was defined by a
fixed time division multiple access (TDMA) schedule during
which each vehicle was assigned a time-slot to send a data
packet. The network maintained a 145 second TDMA cycle,
which consisted of 6 topside broadcasts and 4 subsea broad-
casts from each AUV.

B. Vehicle Network Topologies

We compared the performance of each of the filtering
schemes through post-process implementation. Since the data
sets are bidirectional, time-synchronized and recorded to disk,
we were able to selectively ignore certain OWTT measure-
ments in order to artificially create different network topolo-
gies, as depicted in Fig. 1.

Two two-node experiments were run with the two AUVs
exchanging information as depicted in Fig. 1(a). Both Iver28
and Iver31 communicate bidirectionally in topology A and
unidirectionally in topology B where Iver28 supports Iver31.
In both experiments, neither vehicle had access to an absolute
position reference save for a short surface interval midway
through the mission when Iver28 received several GPS mea-
surements. Note that the AUV acoustic modem sits on the top
of the nose cone, as seen in Fig. 2, so that the nodes cannot
transmit or receive acoustic messages during surfacings due
to the lack of an acoustic coupling.

Three experiments were executed for a three-node vehicle
network consisting of a topside node and the two AUVs

as illustrated in Fig. 1(b). In these experiments only topside
received absolute position observations via GPS. Topology C
represents the fully-connected case in which communication
is shared among all vehicles. Topology D is representative of
the common situation where a topside vessel supports multi-
ple subsea vehicles. The last topology considered, E, limits
communication to pairs of vehicles such that bidirectional
communication links exist only between topside and Iver28
and between Iver28 and Iver31. In this case, we try to localize
one subsea node from another subsea node in a cascaded
cooperative navigation network.

C. Results

1) 2-Node Topology: The uncertainty estimates for both
AUVs and their correlation from the two-node topology ex-
periments are shown in Fig. 3. In both experiments, the NEKF
reports an estimate of position uncertainty that is inconsistent
with that reported by the CEKF. These experiments also show
that relative range measurements between the two vehicles
build correlation between their navigation estimates. Note that
the correlation is greatly reduced when Iver28 receives a GPS
measurement midway through the experiment. The DEIF nav-
igation estimate onboard Iver31 matches the CEKF estimate
to numerical precision as seen in Fig. 3(b). Iver31’s DEIF
uncertainty estimate diverges briefly from the CEKF in this
two node experiment, shown close up in Fig. 3(b). This period
corresponds to a surface interval by Iver28. Once surfaced,
Iver28 observes absolute position, which immediately drives
the uncertainty down for both vehicles (Iver28 and Iver31) in
the CEKF, however it is not until the next acoustic broadcast
from the support vehicle (Iver28) that the subsea node’s DEIF
is able to fully incorporate the delta information with GPS
and fully match the CEKF. Since Iver28 is the support node
in the second two-node experiment and receives no acoustic
broadcasts from Iver31, its NEKF, IU and DEIF navigation
solutions are all equal as they only process local observations.

2) 3-Node Topology: Results for each AUV for all three-
node topology experiments are shown in Fig. 4. We see that
correlation computed within the CEKF framework between
Iver28 and Iver31 does not persist as in the two-node case due
to frequent topside GPS measurements. Note that correlation
develops in the CEKF between both AUVs through the topside
node, even in the experiment corresponding to topology D
(Fig. 4(b)) where neither AUV directly communicates. The
NEKF navigation uncertainty estimate for each vehicle more
closely follows the CEKF, although still frequently over-
confident. The DEIF does not exactly reproduce the CEKF
output in the experiment corresponding to topology D (though
unnoticeable at this scale); however, this is to be expected
because a small amount of correlation develops between the
leaf nodes that the DEIF is ignorant of. Unlike the CEKF in
this topology, the DEIF only models interaction between pairs
of vehicles, not the entire network. The cascaded navigation
network performs well as Iver28 (communicating with the
topside node) is able to effectively localize and bound the
uncertainty of Iver31.



(a) Topology A: bidirectional 2-node network. (b) Topology B: unidirectional 2-node network.

Fig. 3. The above plots show the 1-σ position uncertainty growth of Iver28 and Iver31 as computed by the different filters, and the true correlation that
develops between the two subsea nodes as computed by the CEKF during a 2-node experiment. Halfway through the mission Iver28 receives GPS measurements
during a brief surface interval. (a) corresponds to the case of a bidirectional communication link while (b) limits the topology to one-way communication.

TABLE I
DISTRIBUTED FILTER COMPARISON (X= YES, X = NO)

CEKF NEKF IU DEIF
Consistent X X X X

Bounds Error X X X X

Arbitrary Network Topology X X X X

Real-time X X X X

Robust to dropped packets X X X X

Number of floats per packet N/A 6 1 + 4 per filter 15

Comments realizable in post-process
only

fixed bandwidth indepen-
dent of network size

guaranteed to be con-
sistent for any network
topology

exactly reproduces CEKF
in 2-node unidirectional
topologies

IV. DISCUSSION

A comparison of the different filter characteristics is sum-
marized in Table I and discussed in further detail below.

A. NEKF

The experiments clearly show that the NEKF fails most
drastically to produce an estimate consistent with the CEKF
within topologies where large correlation persists. For ex-
ample, relative range measurements create large correlation
between the two subsea nodes. Contrastingly, absolute position

observations tend to destroy correlation between previously
correlated nodes. Refer to Appendix A for a simplified exam-
ple illustrating this phenomenon.

B. IU Algorithm

In general, we observe that the IU EKF shows improvement
over DR. Although the estimate is consistent, the result still
leads to unbounded uncertainty growth. This is due to the
mechanism IU employs to ensure measurement updates are
not performed using pose estimates that are correlated. We can
easily see this in the two-node case. Each vehicle maintains



(a) Topology C: fully connected network.

(b) Topology D: single support node with uni-directional communication links.

(c) Topology E: cascaded support navigation network.

Fig. 4. Each subfigure displays Iver28 and Iver31 1-σ position uncertainty as computed by the different filters and the true correlation between their position
estimates as computed by the CEKF within a 3-node acoustic network. (a) corresponds to a fully-connected network. Only topside transmits in the experiment
corresponding to (b). (c) displays the cascaded support navigation topology.

two filters: a filter that only processes local measurements and
a filter incorporating range measurements. To avoid correla-
tion, the second filter always uses the estimates from each
vehicle that have only included local observations (DR for
vehicles without access to an absolute position reference) to in-
tegrate a new range measurement. The unbounded uncertainty
growth that develops with the IU is shown in all experiments,
though improvement over DR is clear.

C. DEIF

Due to the assumptions of the DEIF, this filter is only
applicable to two-node unidirectional topologies where one
vehicle navigates a second. The DEIF performance in these
cases, however, matches the CEKF exactly immediately upon
incorporating delta information packets.

D. Filter Bandwidth Considerations

For completeness, we include a brief outline of the band-
width requirements of each algorithm because of the severe
bandwidth constraints imposed on data packet size by the
acoustic channel. The relative data packet size demanded
by each filter is summarized in Table I. We place a small
overhead on each transmission by including depth information

because we project range measurements into the local-level
plane. The NEKF only requires that local state and covariance
corresponding to xy position be encoded. Since symmetry is a
property of covariance matrices, it is only necessary to transmit
the upper diagonal elements. Therefore, the NEKF requires
that 2 floats for state and 3 for covariance are transmitted.
Since delta state in the DEIF is computed between the last
TOL augmented state and the current xy position, the DEIF
requires 4 floats for the delta information vector and 10 for the
delta information matrix to be encoded in each data packet.
The DEIF relies on a lossless communication network to
correctly reassemble delta information packets. Practically this
is not achievable, so a working implementation would require
added bandwidth for increasing robustness, perhaps through
sending the last k delta information packets [10]. Since the
IU algorithm transmits its entire bank of filters, packet size
is variable. In addition to encoding the transmission matrix,
IU requires 2 floats for state and 3 for covariance (as each
filter is a NEKF) be sent per filter. In a two-node network, for
example, each vehicle must maintain three filters requiring 15
floats to transmit the filter set.



V. CONCLUSIONS AND FUTURE WORK

We have presented a comparison of various filtering mech-
anisms for incorporating range-only measurements into an
underwater position estimation framework. Through applica-
tion to real-world data sets, we have shown the benefits and
shortfalls of each algorithm. The attributes of each examined
algorithm are summarized in Table I. Filter selection for an
application depends on mission specifications such as network
topology, sensor suite, and computational resources available
on each vehicle. Future work in this area will be toward an
algorithm that combines the best of all worlds, i.e. small
bandwidth requirements with a consistent estimate that uses
all information available, thereby continuing to leverage the
benefits of synchronous-clock acoustic navigation networks.
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APPENDIX

To demonstrate how absolute and relative position obser-
vations affect correlation between vehicles in a CEKF, we
refer to a 2-node single degree of freedom (i.e., monobot)
example. Two monobots exist on a line with global state
xg = [xA, ẋA, xB , ẋB ]>. We represent the state vector and
covariance of this system after marginalizing out ẋA and ẋB ,
which does not affect the shown result, by

x =

[
xA
xB

]
Σ =

[
σ2
a ρabσaσb

ρabσaσb σ2
b

]
where the two monobot states initially have some arbitrary
correlation coefficient ρab.

This multi-monobot system occasionally observes the abso-
lute location of the first vehicle with the following measure-
ment model:

z = Hx + v, H =
[
1 0

]
with measurement noise v v N (0, σ2

r).
Applying the standard Kalman update equations results in

the new covariance matrix:

Σ′ =

 σ2
a

(
1− σ2

a

σ2
a+σ

2
r

)
ρabσaσb

(
1− σ2

a

σ2
a+σ

2
r

)
ρabσaσb

(
1− σ2

a

σ2
a+σ

2
r

)
σ2
b

(
1− ρ2abσ

2
a

σ2
a+σ

2
r

)
 .

From the updated covariance matrix, we observe that the
variance in the location of the first robot as well as the
correlation between the two robots is driven down for any
finite measurement noise σr. Moreover, the variance σ2

b is
reduced for any non-zero correlation ρab.

Conversely, now consider two monobots that are initially
uncorrelated so that their joint covariance is

Σ =

[
σ2
a 0

0 σ2
b

]
.

Assume that this system is able to measure the relative range
between the two monobots as modeled by

z = Hx + v, H =
[
1 −1

]
with measurement noise v v N (0, σ2

r). Again, after applying
the standard Kalman update, the resulting covariance matrix
is

Σ′ =
1

σ2
a + σ2

b + σ2
r

[
σ2
a(σ2

b + σ2
r) σ2

aσ
2
b

σ2
aσ

2
b σ2

b (σ2
a + σ2

r)

]
,

showing that correlation has been established between the two
vehicles where previously it had not existed.
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