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Abstract—This paper reports on an exact real-time solution
for server-client cooperative localization over a faulty and ex-
tremely bandwidth-limited underwater communication channel.
Our algorithm, termed the origin state method, enables a ‘server’
vehicle to aid the navigation of multiple ‘client’ vehicles via a
novel representation of the server’s pose-graph that is robust to
communication packet loss. This transmitted pose-graph can be
used in conjunction with a decentralized extended information
filter on the client to reproduce the corresponding two-vehicle
server-client centralized result exactly. We present a full com-
parative evaluation for the first-ever real-time field implemen-
tation of the proposed algorithm for a multi-agent autonomous
underwater vehicle network using underwater acoustic modems
to communicate in a synchronous-clock transmission framework.

I. INTRODUCTION

Underwater vehicles typically rely on fusing Doppler ve-
locity log (DVL) body-frame velocities, attitude, and pressure
depth observations to compute a dead-reckoned navigation
solution. While attitude and depth are well instrumented, there
is no easy method to directly observe x, y horizontal position
[the global positioning system (GPS) does not work under-
water]. In this paper, we report a novel algorithm enabling
multiple underwater vehicles (servers) to cooperatively aid the
navigation of several other vehicles (clients) that is robust to
packet-loss and low-bandwidth that is endemic in underwater
acoustic communication networks. Our algorithm is capable
of bounding the error growth of the client vehicles to that of
the server vehicles.

Typical bounded-error underwater navigation methods, such
as long-baseline (LBL), measure the relative range between
the vehicle and fixed reference beacons [18, 29]. The relative
range is measured using two-way time-of-flight (TOF) acoustic
broadcasts and assuming a known sound-speed profile. Nar-
rowband acoustic beacon networks, however, are limited in
their ability to scale to many vehicles as only one vehicle
can interrogate the network at a time. Moreover, the range of
vehicle operations is limited to the acoustic footprint of the
beacon network.

The use of synchronous-clock hardware enables a team
of vehicles to observe their relative range via the one-way-
travel-time (OWTT) of narrowband acoustic broadcasts [7].
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Fig. 1: Origin state method algorithm overview. The server (blue) fuses its
local observations and adds delayed-states at time-of-launches. It uses our
novel origin state method to incrementally transmit its pose-graph in a fault-
tolerant way. At the time-of-arrival of each received origin state packet, the
client (yellow) reconstructs the server pose-graph and updates its estimator to
fuse all new information. In this example, although the client misses the server
transmission at t2, the client can still reconstruct the server pose-graph after
receiving the origin state packet at t3 and perform a relative range update.

The OWTT relative range is measured between the trans-
mitting vehicle at the time-of-launch (TOL) and the receiv-
ing vehicle at the time-of-arrival (TOA). Since ranging is
passive—all receiving platforms observe relative range from
a single transmission—OWTT networks scale well. OWTTs
to augment vehicle navigation present several open questions
regarding how to share and incorporate information across the
network in a robust and optimal way.

The underwater acoustic communication channel is severely
limited by the physical characteristics of seawater [21]. Acous-
tic communication is constrained by large latency and low
bandwidth with packet loss often greater than 50%. The under-
water acoustic channel has an upper-bound range rate product
of 40 km · kbps. In practice, underwater vehicle networks
are only able to obtain real-world bandwidth on the order
of 100 bps [19], which is several orders of magnitude less
than terrestrial communication networks. An unacknowledged
broadcast protocol is also commonly employed in conjunction
with time division multiple access (TDMA) scheduling, which
further limits overall bandwidth by dividing transmission time
over the communication network. All of these challenges
amount to a communication framework that enforces small-
payloads and infrequent updates between vehicles.

A variety of cooperative localization frameworks exist for
improving the position estimates across a team of robots via
sharing of navigation information. No method, however, cur-
rently addresses the severely limited bandwidth and fragility
of the underwater acoustic communication channel in a po-
tentially scalable and optimal way. In this paper, we consider
the solution for the navigation of a client vehicle aided by a
server platform. The contributions of this work are:

1) We present a general algorithm, called the origin state
method (OSM), that allows multiple servers to transmit
their pose-graphs via a faulty, low bandwidth, commu-
nication channel, and to optimally fuse this information



onboard a client within a decentralized extended infor-
mation filter (DEIF) [28] that works in real-time for
practical, underwater, acoustic networks.

2) We present a comparative experimental evaluation in full-
scale autonomous underwater vehicle (AUV) trials. Our
algorithm performance is compared to other previously
reported methods including an egocentric filter [16] and
a fully nonlinear smoothing approach (i.e., iSAM) [14].

II. RELATED WORK

Cooperative networks enable robots with the best navigation
sensors to localize robots with poorer position estimates.
Simple, real-time algorithms that require minimal bandwidth
are within the egocentric class of filters [11, 16, 25]. These
algorithms scale by treating each relative observation as in-
dependent and only require the transmitter’s current position
estimate. While trivially resistant to communication failure,
these methods do not account for the correlation that develops
between robot estimates, which eventually leads to inconsis-
tent (i.e., overconfident) estimates.

In response to egocentric approaches, Bahr et al. [2] and
Fallon et al. [9] propose distributed bookkeeping strategies to
ensure that information is incorporated in a consistent manner.
Each of their approaches requires additional bandwidth or
use of acknowledgments. Similarly motivated, Ribeiro et al.
[22] and Nerurkar et al. [20] achieve consistency through
a noteworthy approach to cooperative navigation in which
they transmit just a single bit per measurement (representing
the sign-of-innovations)—yielding an algorithm that closely
mirrors the standard Kalman filter. While reducing overall
bandwidth, the algorithm requires 100% packet reception,
which is unrealistic for faulty communication channels.

The most general cooperative navigation algorithms esti-
mate the full joint distribution over all vehicle poses [5, 13].
Roumeliotis and Bekey [24] developed a distributed extended
Kalman filter (EKF)-based method, though it requires high
bandwidth, and two-way information exchange. Cunningham
et al. [4] and Kim et al. [15] later studied the problem of
nonlinear simultaneous localization and mapping (SLAM) in
a distributed fashion where each platform (i) transmits its
full local pose-graph, (ii) collects the local pose-graphs from
neighboring platforms, and (iii) estimates the full distribution
by optimizing over all available graphs. The result is a
consistent estimate that matches the centralized omniscient
estimator solution at the expense of high communication cost,
which grows with the size of the local graph.

Webster et al. [27] presented a post-process centralized EKF
specifically designed for synchronous-clock acoustic cooper-
ative localization. They later distributed this centralized filter
result exactly [28], called the DEIF, by leveraging the sparse
update properties of the delayed-state information filter. Their
solution requires a strict server-to-client support topology,
as the server transmits representative local information to
the client where the centralized filter solution is reproduced.
Bailey et al. [3] independently developed an equivalent for-
mulation for sharing locally obtained information, relying on

fusion centers to perform relative robot measurement updates.
The fusion centers increase complexity, but allow for arbitrary
communication topologies. In practice, both of these methods
are not realizable in the underwater scenario because they
require a non-faulty communication channel. We previously
reported [26] a preliminary method toward alleviating the non-
faulty communication constraint in distributing local server
information that relied upon a client acknowledgment scheme.

Several other works in acoustic cooperative underwater
navigation have emerged for fusing OWTT-based relative
ranges between teams of vehicles [1, 2, 8, 10, 16, 17, 25].
These methods, however, generally trade off between offline
and consistent, or real-time and inconsistent.

Our work is closest to [28], [3], and [26] in its effort to
distribute local data fusion in an optimal way and to leverage
the sparsity of the Gaussian information form to compactly
transmit this information. In this paper we (i) build upon the
previously reported approach in [26] by improving network
scalability via a passive origin shifting scheme that eliminates
the need for acknowledgments, (ii) introduce a recovery packet
mechanism that enables clients to enter and leave the network
or recover after a long period of communication dropout, and
(iii) present full-scale comparative AUV trials demonstrating
our algorithm’s ability for real-time underwater navigation.

III. CONSISTENT COOPERATIVE NAVIGATION

We consider several independent server vehicles aiding
the navigation of multiple client vehicles. For the sake of
presentation, we refer to a single server vehicle, although our
algorithm can support multiple. The client vehicles are able
to passively observe their range to the server vehicle during
periodic server transmissions. Each client then updates its pose
estimate using its local information, the range observations,
and the transmitted information. Relative range observations
occur between the server at the time-of-launch (TOL) and each
client at the time-of-arrival (TOA) by measuring the one-way-
travel-time (OWTT) of an acoustic broadcast. A centralized
estimator, e.g., [27], which has access to the local and relative
observations of all vehicles, but is realizable in post-process
only, serves as the gold-standard benchmark solution. Our
formulation is able to reproduce this centralized filter result
onboard each client vehicle in real-time for the server and
client states.

The proposed OSM algorithm provides a means to incre-
mentally communicate the server’s pose-graph (represented
in the information form) with a small fixed-bandwidth data
packet that is robust to packet loss. Each server transmission
contains all new local information relative to a server state
known by the client, termed the origin. The client then
reconstructs the server pose-graph to recreate the solution of
the DEIF. Fig. 1 provides an overview of the OSM algorithm.

A. Information Filter

The OSM algorithm relies on manipulating the Gaussian
distribution in the information form to efficiently transmit the
server pose-graph. We use a delayed-state information filter



to initially construct the server pose-graph. The information
filter tracks a Gaussian over its state, x, parametrized in the
information form; that is p(x) = N−1(x : η,Λ), where the
information matrix, Λ, and vector, η, are related to the mean
and covariance by

Λ = Σ−1, η = Λµ (1)

where Σ and µ are the covariance matrix and mean vector of
x, respectively.

The single vehicle navigation problem is framed in terms
of estimating the joint distribution over a collection of historic
poses (past vehicle states). In this case, the state vector is
composed of these historic poses, termed ‘delayed-states’,
x =

[
x>n ,x

>
n−1, . . . ,x

>
1

]>
. The information filter state vector

grows over time by performing prediction with augmentation.
As noted in [6], processes that evolve with the Markov
property result in a sparse, block tri-diagonal information
matrix. This sparsity leads to an update formulation that only
affects a small sub-block of the information matrix and vector.
We assume that new poses are prepended onto the state vector.

The representation of the delayed-state collection is termed
the pose-graph (Fig. 2). Nodes in the graph express delayed-
state variables while edges encode the relationships between
nodes. The sparsity pattern of the information matrix corre-
sponds exactly to the adjacency matrix of the pose-graph.

A pose-graph constructed from proprioceptive measure-
ments (e.g., DVL body-frame velocities, GPS) creates a
Markov chain of vehicle poses. New odometry inputs and local
measurements only modify a block of the information matrix
corresponding to the current robot pose and the most recent
delayed-state; only the value of the pose-graph edge between
the last delayed-state and the current state is affected.

B. Origin State Method

The OSM algorithm represents a way for decomposing,
transmitting, and later reconstructing the server’s pose-graph.
The underlying assumption is that the transmitted pose-graph
grows as a Markov chain—the standard model for a dynamic
system. Each origin state transmission, called an origin state
packet (OSP), encodes a server transition from the origin
state to the current state (see Fig. 2). The OSP represents
the relationship between the origin and newest state as their
joint marginal distribution, i.e., the two-node pose-graph over
the origin and newest TOL state. Since the newest server
measurements continue to smooth the entire pose-graph, the
client is able to infer the newest edge in the server pose-graph
by observing the difference in information known about the
origin state at the current and last received OSP (12).

Conceptually, if the server state were to evolve according
to a simple odometry model between TOL states, then the
client could ascertain the updated pose-graph via inversion

Fig. 2: Pose-graph example illustrating transition encoded in OSM packets.

of compounding operations. For example, in Fig. 1, at t3 the
server could transmit the marginal

[
x0,x3

]
and the client

could then solve for the new edge as x13 = 	x01 ⊕ x03,
where x01 is computed from the client’s prior information and
x03 is obtained from the server’s marginal information. In the
general case where the server fuses arbitrary proprioceptive
measurements (e.g., GPS, LBL), the OSM is a generalization
of this concept so that the client can reconstruct the server
pose-graph distribution.

1) Server-side Origin State Operation: The server vehicle
maintains an information filter, augmenting its state vector
with a copy of each TOL state. At the TOL, the server
broadcasts an OSP containing the marginal information of the
current TOL state and a designated previous delayed-state,
the origin, as depicted in Fig. 2. The index label of the new
TOL state and the origin are also transmitted to the client for
reconstruction.

At time k, the nth TOL, the server vehicle’s state vector
contains the current TOL state in addition to past TOL states,

xk =
[
x>tn ,x

>
tn−1

, . . . ,x>t1
]>
, (2)

where the ‘t’ subscript indicates a TOL. The OSP contains the
marginal,

xs
k =

[
x>tn ,x

>
to

]>
, (3)

computed via the Schur complement [6] where the ‘s’ super-
script represents the marginal computed by the server and the
‘o’ subscript indicates some previous TOL state, designated
the origin state, such that o ∈ {n− 1, . . . , 1}. In order for the
client to reconstruct the server pose-graph, the client must have
the origin state in its representation. The marginal information
contained in the nth OSP is denoted

Λs
n =

[
Λs
tn,tn Λs

tn,to

Λs
to,tn Λs

to,to

]
, ηs

n =

[
ηs
tn
ηs
to

]
. (4)

Algorithm 1 summarizes the server-side operation.
2) Client-side Origin State Operation: The client maintains

two pose-graphs: the first is simply the reconstructed server
pose-graph, the second is the client-side DEIF. The client
incrementally reconstructs the server pose-graph from the
sequence of successfully received OSPs.

Each OSP represents the two-node server pose-graph con-
sisting of the origin state and the newest TOL state. Prior to the
TOA, the client has already reconstructed the server’s pose-
graph (including the origin state through the last received TOL
state). The target distribution is the updated server pose-graph,
which now includes the edge to the newest TOL state.

The client essentially solves a reverse marginalization pro-
cedure to incorporate the newest OSP. The update rules are
derived by starting with the client-side target distribution (the
current server pose-graph with the unsuccessfully received
TOL states marginalized out), marginalizing out states to
obtain the distribution over the origin and newest TOL states,
and equating terms with the transmitted OSP.

At the TOA of the first received OSP, the client does not
need to perform any computation to reconstruct the server



Algorithm 1 Server-side Origin State Method

Require: Λ0,η0 {initial server belief}
1: Λb,ηb, ob ← 0 {backup origin state packet}
2: loop
3: if k is TOLn then
4: Λs

n, η
s
n, on ← originPacket(Λk,ηk)

5: if on 6= on−1 then
6: {origin has been shifted, update backup packet}
7: Λb,ηb, ob ← Λs

n−1, η
s
n−1, on−1

8: end if
9: broadcastOriginPacket(Λs

n, η
s
n, on,Λb,ηb, ob)

10: if recoveryRequired() then
11: broadcastRecovery() {Section III-B4}
12: end if
13: Λk, ηk ← predictAugment(Λk,ηk)
14: n← n+ 1
15: else
16: Λk,ηk ← predict(Λk,ηk)
17: end if
18: Λk,ηk ← localMeasUpdate(Λk,ηk, zk)
19: k ← k + 1
20: end loop

pose-graph, (4). The initial OSP is simply the two-node server
pose-graph consisting of the server origin state and the TOL
state. (Note that this allows any new clients to immediately
enter and join the network.) At the TOA of the nth OSP, the
client receives the information contained in (4). The client has
reconstructed some portion of the server pose-graph with the
state vector

xd0
=
[
x>tD ,x

>
to ,x

>
tP

]>
, (5)

where D is the set of received TOL states occurring after the
origin state, D = {d0, . . . , dm−1}, P represents the set of all
TOL states before the origin state, and xto is the current origin
state. Using (4) and the client’s current reconstruction, (5), the
client solves for the target distribution, i.e., the updated server
pose-graph with state

xn =
[
x>tn ,x

>
tD ,x

>
to ,x

>
tP

]>
, (6)

where xtn represents the nth server TOL. Due to the
Markovity of the server process, (6) and (5) differ only by
a new edge between the previous and the newest TOL states.
There are three cases for which the client will incorporate the
new packet into its existing reconstruction depending on the
number of TOL states occuring after the origin (number of
states in D = {d0, . . . , dm−1} as in Fig. 2).

a) Case I: The origin is the previously received TOL
state (i.e., D={∅}). The client-side reconstructed pose-graph
begins with the corresponding information matrix and vector

Λo =

[
Λto,to Λto,tP

ΛtP ,to ΛtP ,tP

]
, ηo =

[
ηto
ηtP

]
. (7)

The target distribution the client wants to compute (the current
server distribution) has the information matrix and vector

Λn =

Λtn,tn Λtn,to 0
Λto,tn Λ′to,to Λto,tP

0 ΛtP ,to ΛtP ,tP

 , ηn =

ηtn
η′to
ηtP

 , (8)

respectively, where the boxes surround the new or modified
elements of the client information matrix and vector. Also,
the prime symbols over the blocks corresponding to the origin
state are to stress that these are not the same as the information
blocks of the previously reconstructed information matrix and
vector, (7). These updated terms are computed as

Λtn,tn = Λs
tn,tn

Λtn,to = Λs
tn,to

Λ′to,to = Λs
to,to + Λto,tP Λ−1tP ,tP ΛtP ,to

ηtn = ηs
tn

η′to = ηs
to + Λto,tP Λ−1tP ,tP ηtP .

(9)

b) Case II: A single TOL state exists between the origin
state and the newest TOL (i.e., D={d}). Without loss of
generality, we take P={∅} to further simplify the discussion.
The client has already reconstructed the following information
matrix and vector

Λd =

[
Λtd,td Λtd,to

Λto,td Λto,to

]
, ηd =

[
ηtd
ηto

]
. (10)

The desired target distribution has the form

Λn =

Λtn,tn Λtn,td 0
Λtd,tn Λ′td,td Λtd,to

0 Λto,td Λto,to

 , ηn =

ηtn
η′td
ηto

 , (11)

where again the boxes surround new or modified elements. In
this case, the updated terms are:

Λ′td,td =
[
−Λ−1to,td

(
Λs
to,to − Λto,to

)
Λ−1td,to

]−1
Λtn,td = −Λs

tn,toΛ−1td,to
Λ′td,td

Λtn,tn = Λs
tn,tn + Λtn,tdΛ′−1td,td

Λtd,tn

ηtd
= Λ′td,tdΛ−1to,td

(
ηto − η

s
to

)
ηtn = ηs

tn + Λtn,tdΛ′−1td,td
ηtd

.

(12)

c) Case III: Multiple TOL states exist between the origin
state and the new node (i.e., D={d0, . . . , dm−1}). Prior to
incorporating the OSP, the client begins with the information
matrix and vector

Λd0
=

[
ΛtD,tD ΛtD,to

Λto,tD Λto,to

]
, ηd0

=

[
ηtD
ηto

]
, (13)

where d0 corresponds to the most recently received TOL. This
case requires first marginalizing out D′ = D \ {d0} such that

Λc
d0

=

[
Λc
td0 ,td0

Λc
td0 ,to

Λc
to,td0

Λc
to,to

]
, ηc

d0
=

[
ηc
td0
ηc
to

]
, (14)

where the ‘c’ superscript indicates the marginal of the server
pose-graph computed by the client vehicle. The client can
then solve for the server pose-graph with the D′ elements
marginalized out under the conditions of Case II beginning
with Λc

d0
and ηc

d0
. The final target distribution has the follow-

ing information matrix and vector

Λn =


Λtn,tn Λtn,td0

0 0

Λtd0 ,tn Λ′td0 ,td0
Λtd0 ,tD′ 0

0 ΛtD′ ,td0
ΛtD′ ,tD′ ΛtD′ ,to

0 0 Λto,tD′ Λto,to

 , ηn =


ηtn
η′td0
ηtD′
ηto

 ,

(15)



Algorithm 2 Client-side Origin State Method
1: Λ0,η0 ← 0
2: loop
3: if (Λs

n, η
s
n, on,Λb, ηb, ob)← receivedPacket() then

4: if haveOriginIndex(on) then
5: Λn,ηn ← addOriginPacket(Λs

n, η
s
n, on)

6: updateDEIF(Λn,ηn) {(18), (19)}
7: else if haveBackupOriginIndex(ob) then
8: Λn−1,ηn−1 ← addOriginPacket(Λb, ηb, ob)
9: Λn,ηn ← addOriginPacket(Λs

n, η
s
n, on)

10: updateDEIF(Λn,ηn) {(18), (19)}
11: else
12: requestRecovery()
13: end if
14: end if
15: end loop

where Λtn,tn , Λtn,td0
, and ηtn are all computed under Case II.

The final unknown elements of the information matrix and
vector are then computed as

Λ′td0 ,td0
= Λ′ctd0 ,td0

+ Λtd0 ,tD′
Λ−1tD′ ,tD′

Λt′D,td0

η′td0
= η′ctd0

+ Λtd0 ,tD′
Λ−1tD′ ,tD′

ηtD′

. (16)

3) Origin Shifting: The information difference
(
Λs
to,to −

Λto,to

)
in (12) represents the delta information known about

the origin state between the server and client. This difference
approaches machine precision as the time difference between
the origin and new TOL state grows (because additional
smoothing of the origin state is small after sufficient time). The
reconstruction rules require the inversion of this decreasing
term, leading to numerical inaccuracies that can cause diver-
gent errors in the reconstruction. A simple solution is to ensure
that the origin is periodically shifted forward.

An origin shifting scheme based on acknowledgments from
each client was previously proposed in [26]; however, an
acknowledgment based scheme does not scale well to many
clients, and also nullifies several benefits of OWTT-based
relative ranging. Moreover, numerical instability will continue
to plague the system if the server does not regularly receive
acknowledgments. We propose a shifting scheme in which the
server evaluates a criteria based on the numerical stability of
the newest OSP—keeping the algorithm passive, such that the
method can more easily scale to many vehicles.

During our real-time experiments (Section IV), the server
shifted the origin forward based on a threshold for the RV-
coefficient (a multivariate analog to the correlation coefficient
[23]) between the current TOL state, xtn , and the origin state,
xto . The motivation being that the unstable difference term,
(12), will be small when correlation between the states is
small. Unfortunately, this approach is not general enough, as
the RV-coefficient can remain large while the difference term
decreases when the server is purely dead-reckoning. In post-
process we discovered a superior alternative shifting criteria—
the server compares the trace of the difference term in (12) to
a threshold value, T,

trace
(
Λs
to,to − Λto,to

)
< T. (17)

The trace directly compares the numerically unstable term and
works equally well for a purely dead-reckoning server.

When the criteria suggests shifting the origin, the new
origin is set to the last TOL state. The server is now free to
marginalize out TOL states preceding the new origin. To help
ensure that each client vehicle can maintain a reconstruction of
the server pose-graph that contains the origin state, each server
transmission encodes two OSPs: the standard OSP encoding
the transition from the origin to the current TOL, and a
backup OSP encoding the transition from the previous origin
to the current origin. Depending on the available bandwidth,
the server could transmit multiple backup packets to increase
robustness, although in our implementation we use just one.

4) Recovery Packet: Passively shifting the origin limits
the robustness of the OSM algorithm. The server can no
longer guarantee that the client has received the origin TOL
state (or the previous origin state, as described above). If the
client vehicle has not received an update in a sufficiently
long period of time, it will require a special information
packet in order to recover. After receiving a client request,
the server computes this special information as an additive
‘delta information’ (discussed in Section III-C) from the last
TOL state that the client has received up to the current origin
state. One implementation detail here, is that now the server
must not marginalize out the oldest TOL states from its pose-
graph unless it can guarantee that each client has received
a more recent TOL in order to compute a recovery packet.
Algorithm 2 summarizes the client-side operation.

C. Decentralized Extended Information Filter

The OSM algorithm uses the DEIF algorithm [28] update
to fuse the client state estimate following OWTT range ob-
servations. The DEIF algorithm is a method in which a client
vehicle can exactly reproduce the solution of a centralized filter
for server-to-client cooperative networks. Essentially, the DEIF
provides an efficient way to incorporate the newest server
information in a delayed-state framework. The server vehicle
maintains an information filter to fuse its local measurements,
augmenting its state vector with each TOL position. Each
‘delta information’ encompasses all the local information that
the server has gained between TOLs, computed as

∆Λstn
= Λstn

− Λstn−1

∆ηstn
= ηstn

− ηstn−1

, (18)

where the operation conforms for the dimensionality differ-
ence and the ‘s’ subscript indicates the server’s information.
Delta information packets can be conceptually considered as
expressing a transition on the server pose-graph from the
previous TOL state to the current TOL state.

The client-side DEIF is driven by its local measurement
updates and periodic (assumed non-faulty) delta information
packets from the server vehicle, which the fault-tolerant OSM
algorithm provides. The client-side DEIF tracks the current
client state in addition to the set of server TOL states. Upon
packet reception, the client vehicle simply adds the delta



Fig. 3: Acoustic message composition. Each PSK Rate 1 and Rate 2 Micro-
modem message contains three 64-byte frames. We pack these frames to hold
two origin state packets and a reserved frame for a recovery packet.

information into its information filter
Λctn

= Λ′ctn + ∆Λstn

ηctn
= η′ctn + ∆ηstn

, (19)

where the ‘c’ subscript indicates the client-side information.
Following the subsequent relative range measurement update,
the client-side filter matches the corresponding centralized
filter exactly. Full details of the algorithm are provided in [28].

IV. FIELD TRIALS

We present results for two experiments below. First, Exper-
iment A demonstrates the effectiveness of the OSM algorithm
for a three-node network including one server and two clients.
Second, in Experiment B, we use a two-node network and
purposely shift the origin forward at an accelerated rate to
demonstrate the ability of the client vehicle to receive a
recovery packet after losing communication.

A. Implementation Details

1) Experimental Setup: We fielded two Ocean-Server, Inc.
Iver2 AUVs, designated AUV1 and AUV2, in our experiments.
Each AUV is outfitted with an advanced dead-reckoning (DR)
sensor suite including a 600 kHz RDI DVL, a Microstrain
3DM-GX3-25 attitude heading reference system (AHRS), and
a Desert Star Systems SSP-1 digital pressure sensor. Through-
out our experiments, AUV1 acts as the server, aiding AUV2.
AUV1 is the only vehicle that observes GPS, when at the
surface. To demonstrate the ability of our OSM algorithm to
support multiple client vehicles, we also treated a topside ship
(with only GPS reported velocity for input) as a client vehicle.
We recorded two-way 25 kHz LBL, and GPS position fixes
at the surface, for all vehicles for ground-truth comparison,
although the client vehicles did not fuse these measurements.

2) Vehicle State Description: Since AUV attitude and depth
are both instrumented with small bounded error, we focus on
world-frame x, y horizontal position estimation. By transmit-
ting pressure depth with each acoustic packet, OWTT range
measurements can be projected into the horizontal plane. We
are also motivated to maintain a minimal state size because of
the limited acoustic modem channel capacity.

The state estimator on each vehicle tracks a state vector
composed of its horizontal position; xk = [xk, yk]

>. The
state process is driven forward with an odometry measurement
input, uk+1,

xk+1 = xk + uk+1.

The odometry input and corresponding input covariance,
Qk+1, are obtained by Euler integrating DVL and AHRS
measurements and performing a first-order covariance estimate
as described in [8]. In the case of the topside client vehicle,
world-frame velocity is integrated from GPS reported speed
and track direction.

For the server vehicle, GPS reported x, y observations at
vehicle surfacings are treated as linear observations of state.
OWTT measurements, zr, provide a range between the server
TOL position and the client TOA position, with nonlinear
observation model:

zr =
∥∥xsTOL

− xcTOA

∥∥+ v,

where v ∼ N (0, σ2
r) represents the range measurement noise.

3) Acoustic Communication Considerations: Each vehicle
is outfitted with a WHOI Micro-modem [12] and a co-
processor board capable of encoding multiple frame, higher
bandwidth phase-shift keying (PSK) data packets. Each origin
state packet requires 60 bytes. Each double precision element
of the origin state information is rounded to a precision
of 10−5 to reduce the packet size. Furthermore, since the
information matrix is symmetric, only the upper diagonal
elements are transmitted. Both Micro-modem PSK Rate 1 and
Rate 2 messages allow the user to transmit three 64 byte
frames (Fig. 3). We fill the first two frames of Rate 1 and
Rate 2 messages with the two OSM packets as discussed in
Section III-B3. If a client vehicle has requested a recovery
packet, we transmit the custom recovery packet in the remain-
ing third frame, so that normal operation continues for vehicles
that do not require a recovery step.

We employed a fixed TDMA cycle, whereby all vehicles
were assigned a communication slot. The server vehicle trans-
mitted three OSPs per two minute TDMA period, while the
client transmitted a single data packet, used for recovery
requests. The average client-side reception rates in different
experiments varied between 36.96% and 64.47%.

B. Experiment A

Experiment A was conducted to demonstrate a typical appli-
cation scenario in which inter-vehicle correlation is high and
must be properly tracked to obtain the optimal result—a server
AUV that periodically surfaces to receive GPS while aiding
another subsea AUV with no GPS. During two trials (A.1
and A.2), AUV1 acted as server and drove in a diamond-box
pattern around AUV2’s lawn-mower survey pattern (Fig. 4).
Each leg of the lawn-mower survey was roughly 500 m in
length. Both AUVs maintained a depth of approximately 5 m
with AUV1 occasionally coming to the surface at the apex of

Fig. 4: Experiment A: vehicle trajectories during multi-vehicle field trial.
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Fig. 5: Pose-graph reconstruction. The left plot in each subfigure shows the origin index from both the current origin state packet and the backup packet. Also
plotted is the index of the most recent TOL that the client has received. When the client index dips below the transmitted origin, it indicates that the client
used the backup packet. If the client index is less than the backup packet origin, the client would require a recovery packet (this occurs in Experiment B).
The right plot of each subfigure illustrates the full server pose-graph with the client-side reconstruction (a subset of the full) overlaid.

the diamond pattern. The topside ship acted as a client in the
first trial (A.1) of this experiment, drifting around the survey
area and periodically driving to new locations. Since we did
not use topside GPS position for state, it serves as a proxy for
a vehicle with extremely poor navigation as compared to the
server vehicle.

Table I lists the mean norm difference between TOL states
in the server pose-graph (constructed onboard the server) and
the client’s reconstructed server pose-graph. In all cases, the
client accurately reconstructs the server pose-graph despite low
reception rates. The maximum error during the experiment
is roughly 10 cm. This difference is due to compounded
numerical inaccuracies in the OSM algorithm and round-off
errors in acoustic transmission. Using the alternate trace-based
origin shifting criteria (designated ‘trace’), both the mean and
maximum error in the pose-graph reconstruction are reduced.

During both 2 hour long trials, neither the topside client nor
AUV2 required a recovery packet. The origin was shifted for-
ward by the server roughly every 14 TOL states corresponding
to a time of about 9 minutes. The transmitted TOL indices as
well as the reconstructed server pose-graph for trial A.1 are
shown in Fig. 5(a). While on average the server shifted the
origin forward more frequently with the trace-based shifting
method, AUV2 still would not have required a recovery packet.

Table II summarizes the client position error relative to
LBL/GPS. These error values serve as a basis for comparison

TABLE I: Mean norm diff. Server Pose-Graph and Client Reconstruction

Exp. A.1 Exp. A.2 Exp. B
AUV2 OSM (RV) 0.013454 m 0.002761 m 0.000010 m
AUV2 OSM (trace) 0.000631 m 0.000984 m NA
Topside OSM (RV) 0.001880 m NA NA

TABLE II: Mean norm diff. Client Estimate and LBL/GPS Fixes

Exp. A.1 Exp. A.2 Exp. B
LBL GPS LBL GPS GPS
[m] [m] [m] [m] [m]

AUV2 DR 11.72 9.50 13.36 8.55 16.47
AUV2 OSM (RV) 6.08 7.50 9.82 4.63 7.71
Topside DR 251.36 267.22 NA NA NA
Topside OSM (RV) 19.95 19.56 NA NA NA

between DR and the OSM algorithm. Since the LBL/GPS
data itself is noisy, the reported errors are not absolute error
measures. In trial A.1, topside DR is quite poor as it only fuses
GPS-derived speed and heading. The OSM algorithm provides
an obvious improvement over pure DR for both topside and
subsea clients as it is able to bound the client error growth.

C. Experiment B

Experiment B consisted of two intersecting lawn-mower
surveys run by the server and client, AUV1 and AUV2, respec-
tively. Each leg of both lawn-mower surveys is roughly 300 m
in length. We artificially forced the server vehicle to shift the
origin forward at a much faster rate (every two transmissions)
to demonstrate the ability of the client vehicle to request
and receive a recovery packet. LBL was not available for
comparison during this experiment.

During the 45 minute experiment, the client received sev-
eral origin state packets that it could not integrate into its
reconstructed server pose-graph because it had not received the
server’s origin state. The client received two recovery packets
during the experiment and successfully added the recovery
information. As can be seen in Fig. 5(b) and Table I, the
client (AUV2) is able to reliably reconstruct the server pose-
graph using the recovery information. Moreover, the position
difference of AUV2 relative to GPS is tabulated in Table II,
and shows that the OSM algorithm running onboard AUV2 is
able to reduce its mean position error by half over DR.

D. Nonlinear Algorithm Comparison

The OSM constitutes a smoothing algorithm built upon a
delayed-state information filter. Our algorithm has an obvious
advantage over egocentric methods in that it produces a con-
sistent estimate by tracking correlation between the server and
client vehicles. Moreover, the OSM reproduces the centralized
filter estimate up to communication round-off and pose-graph
reconstruction errors.

While an extended information filter is sub-optimal for
nonlinear estimation, our solution compares well to nonlinear



TABLE III: Delayed-state filter TOA estimate comparison to iSAM

Central OSM (RV) OSM (trace) Ego
Mean norm diff. [m] 0.1030 0.1295 0.1229 1.5721
Mean KLD [nats] 0.0162 0.0207 0.0187 2.5700
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Fig. 6: Norm difference between estimated client TOA states and iSAM result.

smoothing algorithms such as incremental smoothing and
mapping (iSAM), [14]. The delayed-state information filter
is equivalent to a nonlinear least-squares approach with the
exception that measurement constraints are only linearized
once. This difference is small in our implementation as all
odometry constraints are linear, and infrequent range measure-
ments account for the only nonlinearities.

We treat the fully nonlinear iSAM solution as the gold-
standard benchmark. Fig. 6 and Table III summarize the dif-
ference between the delayed-state filter client TOA pose
estimates and iSAM, as well as illustrate the ability of the
centralized EKF [27] and the OSM to reproduce the iSAM
distribution over client states at the TOA. The small difference
between the centralized filter and OSM is due to small
numerical errors during the server pose-graph reconstruction.
The OSM performs much better than the egocentric approach
in its ability to match both the client mean and covariance
estimates. The egocentric approach differs in mean and is also
overconfident in its uncertainty estimate.

V. CONCLUSION

We presented the first-ever practical real-time method al-
lowing a client vehicle to exactly reproduce the centralized
filter estimate under an extremely faulty and bandwidth limited
underwater acoustic communication channel. We validated
this decentralized estimation algorithm with several real-world
experiments, and showed it to closely reproduce the fully
nonlinear least-squares estimate obtained by iSAM.
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