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Abstract— This paper reports on an algorithm for planning
a practical trajectory for a surface vehicle that provides range
measurements to an autonomous underwater vehicle (AUV). We
consider server-client cooperative localization in which a server
vehicle provides relative range constraints to minimize the un-
certainty of a client vehicle. Our approach assumes the nominal
client mission plan is available and draws potential server
trajectories from a set of parameterized trajectory classes. We
provide a comparative evaluation over several simulations, for
both a single client and multiple clients, demonstrating that
our algorithm computes operationally practical server paths
and performs well relative to existing planning frameworks.

I. INTRODUCTION

Ocean science has greatly benefited from the quantity and
breadth of data collected by autonomous underwater vehicles
(AUVs) [1]. Bounded-error navigation methods are required to
safely operate the vehicles and georeference this data. Range-
only underwater cooperative localization promises a flexible
and infrastructure-free alternative to static beacon networks
(e.g., long-baseline (LBL)) for bounded-error precision navi-
gation at area scales currently not achievable.

In a synchronous-clock network, one-way-travel-time
(OWTT) observations measure the range between a server
time-of-launch (TOL) pose and a client time-of-arrival (TOA)
pose. Previous work in underwater cooperative localization
has mainly focused on distributed position estimation across
a bandwidth limited communication channel [2], [3], [4], [5],
[6]. The quality of the navigation solution strongly depends
upon the relative vehicle trajectories. Fig. 1 illustrates the
dependence of client localization quality for two simple
server trajectories. Accordingly, we are interested in planning
server trajectories that provide informative range measure-
ments with which a set of client vehicles can localize.

In this paper we explore the cooperative localization plan-
ning problem through the lens of informative path planning.
In general, the optimal planning problem can be expressed

P∗ = arg maxP∈Ψ I(P) , (1)

where P is a trajectory in the set of candidate trajectories,
Ψ, and I( · ) represents the utility or reward of a path. We
will compute practical server trajectories that minimize the
client’s position uncertainty given the client’s mission plan.

Planning consists of two coupled tasks: (i) generating the
set of candidate trajectories Ψ, and (ii) finding the best
path in Ψ. Various planning algorithms tackle these two
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Fig. 1: Illustration of cooperative localization with different server trajec-
tories. Range circle measurements are shown in green, client in red, and
server in blue. Clearly (c) reduces the client navigation uncertainty better
than (b), as evidenced by the size of the posterior covariance ellipses (shown
in black).

tasks in a variety of ways including dynamic programming
[7] and sampling-based paradigms [8]. The quality of the
optimal path largely depends upon the candidate set Ψ.
In this work, the candidate set is provided by classes of
parameterized trajectories. While these paths do not provide
concrete optimality guarantees, we show that a search over
practical trajectories greatly reduces the search complexity
and performs well relative to an upper bound on the objective
function.

Specifically, the contributions of this work include:
• A mutual information objective function for a single

server localizing multiple clients.
• A search procedure for planning useful server trajecto-

ries to localize a set of client AUVs.
We validate our algorithm in simulation over several trials.
We also provide a comparison with previously reported
planning algorithms for underwater cooperative localization.

II. PRIOR WORK

A. Informative path planning

Informative path planning represents a growing literature
concerned with optimally planning paths in order to gather
evidence about some uncertain variable. Prior work has
generally employed sampling-based planners at their core.

Sampling-based motion planning algorithms such as the
probabilistic road map (PRM) [9] and the rapidly-exploring
random tree (RRT) [10] can quickly explore high-dimensional
configuration spaces and offer probabilistic guarantees on
completeness given start and goal states. The rapidly-
exploring random graph (RRG) algorithm and its deriva-
tive RRT* [11] provide both probabilistic completeness and
asymptotic optimality. Essentially, their proof relies on show-
ing that in the limit the RRG contains all possible paths
through the environment.



Optimal sampling-based algorithms inevitably result in a
combinatorial optimization problem—find the path through
the graph that satisfies the constraints and maximizes (min-
imizes) an objective. Searching the set of possible paths
through a graph is, in general, an NP-hard problem.

Robot exploration strategies represent a similar problem
to our cooperative localization problem. In this scenario,
robots seek paths that allow them to observe landmarks used
for localization. Sim and Roy [12] presented an A-optimal
exploration strategy relying on a breadth-first search over a
grid. The belief road map (BRM) algorithm [13] similarly
searched over a PRM for finding minimum uncertainty tra-
jectories through a known environment.

Binney and Sukhatme [14] presented a branch and
bound procedure for informative path planning. The rapidly-
exploring random belief tree (RRBT) algorithm [15] leveraged
the probabilistic guarantees of the RRG to plan minimum
uncertainty paths to a goal that converge to the global optimal
over the configuration space. At each iteration, the RRBT
updates a tree over the RRG that contains all potentially
optimal paths. The search space is pruned by specifying a
partial ordering of nodes in the tree. Following each iteration,
the tree contains the optimal path through the set of RRG
vertices. The rapidly-exploring information gathering (RIG)
algorithm [8] extended the RRBT to an information gathering
objective.

B. Planning for range-only localization

Control theoretic observability analysis has been applied
to the range-only estimation problem [16], [17], [18], [4].
Observability, however, can only point to a few trivial server-
client relative trajectories for which the client position cannot
be estimated. The planning framework developed herein es-
tablishes trajectories that are observable, but also minimizes
the uncertainty of the estimated client position.

Martinez and Bullo [19] explored two problems: (1) op-
timal range sensor placement for localizing a static target
and (2) motion coordination for localizing a moving target.
They define their objective as the determinant of the Fischer
information matrix (minimizing the trace of the Cramer-Rao
lower bound). The authors discovered that positioning the
sensors around the target at equal angular intervals provided
the optimal solution. For the dynamic target, the authors
take a suboptimal (but arguably good) approach: they control
mobile sensors to arrange themselves around the target as in
the static case.

Surveying LBL networks involves determining unknown
beacon locations given ranges to a topside ship with known
position. Hunt et al. [20] evaluated the resulting beacon
uncertainty for various ship survey configurations. In a sense,
this evaluation constitutes optimal planning for static beacon
localization. Jakuba et al. [21] recommend that the topside
ship circle the beacons at a fixed radius (up to water depth).
Olson et al. [22] briefly described a greedy exploration
strategy to disambiguate LBL beacon position hypotheses
when observed by a survey AUV.

For client AUV localization, Fallon et al. [4] suggested the
server follow zig-zag or encirclement patterns around the
client. Tan et al. [7] proposed a finite-horizon exhaustive
search algorithm for planning server trajectories with a
preplanned AUV client trajectory. They employ a dynamic
programming framework over a discrete action set to min-
imize the sum of the trace of client covariance over client
poses. Bahr et al. [23] similarly compute the single next best
action (greedy approach) to localize a group of AUV clients
optimizing the same trace-based objective function. The
authors assume that the client trajectories are unknown and
estimate their positions from reported acoustic broadcasts.
German et al. [24] suggested a heuristic algorithm to localize
a subsea client. Their algorithm is simple and adapts to the
real-time location of the client. While their method requires
knowing the client’s mission plan, they do not explicitly
optimize an information objective or quantify the quality of
the achievable solution.

Charrow et al. [25], [26] consider localizing an unknown
mobile target using radio-based range-only observations by
maximizing the mutual information between the target prior
belief and expected range measurements. Most notably, the
authors use a Monte Carlo based approximation to the mutual
information instead of assuming a linear Gaussian noise
model for range observations as is typical.

III. RANGE-ONLY COOPERATIVE PLANNING

Client AUVs travel through the environment collecting
myriad scientific and navigation observations. The client
vehicles we consider here have a predetermined mission
plan or survey. Our goal is to accurately localize the client
vehicle along its nominal trajectory exploiting range-only
observations to a server (Fig. 1).

We represent a client trajectory by a set of expected TOA
poses, for example, a set of N client poses is denoted Xc =
[xc0 , . . . ,xcN−1

] where each pose is the horizontal-plane
vehicle position xci = [xci , yci ]

>. We assume that depth is
well instrumented and range observations can be projected
into the horizontal plane (Appendix I). We assume that the
expected prior belief over this set of poses is available and
can be represented by a Gaussian distribution

Xc ∼ N
(
µc,Σc

)
= N−1

(
ηc,Λc

)
Λc = Σ−1

c

ηc = Λcµc,

where µc and Σc are the mean and covariance, and ηc and
Λc are the corresponding information vector and matrix,
respectively. The prior belief can be constructed from ex-
pected odometry and GPS measurements, for example, given
the preplanned client mission. Eustice et al. [27] discuss
constructing information within a delayed-state information
filter. Generally, Λc will be sparse, but we place no restric-
tions on the information matrix other than it be nonsingular
(i.e., well-constrained).



A. Single Client Range Measurement Update

We first demonstrate a single range update event between
an uncertain server and client vehicle to derive a geometry
independent measurement update rule for the client. Consider
the server TOL pose, xsTOL

, and client TOA pose, xcTOA
.

A range observation is modeled as the Euclidean distance
perturbed by zero-mean Gaussian noise

zr = hr(xcTOA
,xsTOL

) + wr

=
∥∥xcTOA

− xsTOL

∥∥
2

+ wr,

where wr ∼ N
(
0, σ2

r

)
. The observation model, hr( · ), is

a nonlinear function over the client and server states. We
assume that the observation model behaves linearly in a
neighborhood around the current state estimate. The range-
observation Jacobian for a 2D state x = [x, y]> is given

Jc = ∂hr

∂xc

∣∣∣
x̂c

=
[
cos θ sin θ

]
Js = ∂hr

∂xs

∣∣∣
x̂s

=
[
− cos θ − sin θ

]
,

(2)

where θ = tan-1 yc−ys
xc−xs

is the relative angle between the
client and server.

Since the client and server distributions are initially
independent, the prior joint distribution is p(xc,xs) =

N−1
(
η,Λ

)
where η =

[
η>c ,η

>
s

]>
and Λ = diag(Λc,Λs).

We can compute the information matrix corresponding to the
joint posterior distribution, p(xc,xs|zr) ∼ N−1

(
η′,Λ′

)
, as

the additive update

Λ′ = Λ +
1

σ2
r

J>J,

where J = [Jc, Js]. We obtain the posterior information over
the client vehicle alone by marginalizing out the server pose

Λ′c = Λc + 1
σ2

eq
J>c Jc

σ2
eq = σ2

r + JsΛs
−1J>s ,

where σ2
eq is the equivalent variance accounting for both the

range and prior server uncertainty. The above formulation
provides the client update rule for ranges to an independent
server pose. Note that when the server’s prior covariance is
isotropic Σs = Λ−1

s = σ2
sI, then the equivalent variance is

independent of the relative vehicle geometry, i.e.

σ2
eq = σ2

r + σ2
s . (3)

Range measurement updates add information along the
vector between the client and server vehicle. The eigenvector
corresponding to the nonzero eigenvalue of the information
update, Λr = 1

σ2
eq

J>c Jc, points along θ. Intuitively, then,
the server should position itself to add information along
directions for which the client is most uncertain.

We now consider the full set of client TOA poses, Xc. Let
Zr(P) = {zr0 , . . . , zrN−1

} represent the set of N range-only
observations as a function of the server path P containing
TOL poses Xs = [xs0 , . . . ,xsN−1

]. We assume that the server
positions are independent and have identical isotropic prior
uncertainty. In general, server poses are not independent or

isotropic but can be so approximated with regular access to
an absolute position reference, for example a topside support
ship with GPS [28]. We can therefore consider each range
observation independently with uncertainty independent of
the relative vehicle geometry as in (3).

Since each range observation is independent and identi-
cally distributed, we can write the total range information as
a sum of the information due to each observation,

Λr(P) =
∑
i

Λri

=
1

σ2
eq

J>c0Jc0
. . .

J>cn−1
Jcn−1

 ,
where Jci is the range measurement Jacobian in (2) for xci
and xsi . The posterior client information, p

(
Xc|Zr(P)

)
∼

N−1
(
η′c,Λ

′
c

)
, is then simply computed

Λ′c = Λc + Λr(P).

B. Information-based Objective
A mutual information objective seeks informative range

observations while simultaneously considering the prior be-
lief over the client. For example, mutual information will
seek to add observations along directions for which the client
is most uncertain. We maximize the mutual information
between the client and expected range-only observations,

MI[Xc|Zr(P)] = H[Xc]−H[Xc|Zr(P)]

= −1

2
log
∣∣Λc∣∣+

1

2
log
∣∣Λc + Λr(P)

∣∣ ,
where H[ · ] represents the entropy of the distribution [29].
We can drop constant and multiplicative terms to arrive at
our objective function

I(P) = log
∣∣Λc + Λr(P)

∣∣ = log
∣∣Λ′c∣∣ . (4)

Since log is a monotonically increasing function, maximizing
mutual information is equivalent to maximizing (minimizing)
the volume of the posterior information (covariance). This
objective function is therefore equivalent to evaluating the
determinant of the Fischer information matrix considered
previously by [19] and [30] for static beacon localization.

We can modify our objective function to support multiple
client vehicles. Each client vehicle is only informed about
the server vehicle (and not the other clients) during real-
time operation, so that the jth client tracks a distribution
p
(
Xcj |Zr(P)

)
. Therefore, each client is considered inde-

pendently and the objective for M clients is simply the sum
over each individual client

I(P) =

M−1∑
j=0

log
∣∣Λ′cj ∣∣ .

We would obtain a different objective function if
we considered the joint distribution over all vehicles,
p
(
Xc0 , . . . ,XcM−1

|Zr(P)
)
, which models correlation that

develops between clients as a result of range observations
through the server. Due to communication constraints, this
centralized estimator is realizable in post-process only.
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Fig. 2: Illustration of the parameterized trajectories that we consider. Arrows
and dots indicate free parameters listed in Table I.

C. Mutual Information Upper Bound

We define an upper bound on the maximum achievable
information objective to serve as a yardstick with which
to compare our performance. Computing an exact bound,
however, is as hard as the original planning problem (1). To
reduce the complexity, we relax the constraint that server
poses lie along a feasible trajectory and instead allow the
server to ‘teleport’ between TOL positions.

Each observation, in this case, can be represented by the
relative angle between server and client alone. The upper
bound solves for the set of N relative server angles Θ =
{θ0, . . . , θN−1} that maximize the objective,

Imax = max
Θ

log
∣∣Λc + Λr(Θ)

∣∣ . (5)

The relaxed optimization problem involves solving a difficult
nonlinear program. This bound is not necessarily achievable
since we have relaxed the constraint that server poses lie
along a feasible trajectory. A trajectory that achieves this
bound may exist, however, if the server can reach θi for
each TOL.

We can quickly obtain a local optimal using gradient
descent. The gradient of the objective function with respect
to θi is

∂ log
∣∣Λ′c∣∣

∂θi
= tr

(
Λ′−1
c

∂Λ′c
∂θi

)
.

We initialize pairwise sequential θi’s to be orthogonal. We
expect sequential angles to be orthogonal depending on the
prior information based on static beacon localization analysis
[19]. In practice, we expect that the local optimal should still
act as an upper bound on the actual objective function.

Our upper bound is again easily extended to the multiple
client case by computing an independent relative angle for
each client. We expect the bound to be more conservative
in this case since it is unlikely or even impossible for the
server to reach each client’s θi at every TOL.

D. Trajectory Search

Sampling-based planning algorithms are based on graph
search with exponential worst-case complexity. For certain
objective functions, however, heuristics exist for much more
efficient search. Since our cooperative planning problem
involves a time-varying information field (since the client

TABLE I: Trajectory parameters.

Diamond parameters:
Center position xcenter ∈ R2

Width and height w, h ∈ R+

Rotation φ ∈ [0, π)
Starting position along diamond s0 ∈ [0, 1)

Zig-zag parameters:
Start position xstart ∈ R2

Amplitude and wavelength a, b ∈ R+

Rotation φ ∈ [0, 2π)

is dynamic) and a submodular objective function, these
heuristics do not apply.

Prior methods have dealt with exponential complexity
by only planning over a finite horizon [7]. However, we
would like to leverage the full a priori client trajectory
when available. Therefore, instead of searching over the
full space of potential server trajectories, we search over
the parameter space for several classes of trajectories. The
smaller parameter space results in a computationally tractable
solution—exponential complexity in the number of param-
eters, which is far less than exponential complexity in the
number of server poses. Additionally, the trajectory classes
we consider are both simple to plan and execute: diamond
patterns, and zig-zags (Fig. 2). We chose these simple, easily
parameterized paths for their ability to support a variety of
client operations, although any trajectory class that can be
easily parameterized could be included within the search.

1) Search Algorithm: We first describe our basic algo-
rithm defined in Algorithm 1. We perform a parameter sweep
for each trajectory class, Mi, with the parameter range and
resolution defined by the user. Each iteration inside the
parameter sweep executes a local search. For each parameter
set, we find the local maximum of the mutual information
objective and the corresponding optimized parameters. The
algorithm returns the trajectory class and parameters that
result in the highest objective.

2) Trajectory Classes: We rely on two simple trajectory
classes in order to find useful server paths: diamond patterns,
and zig-zags. We choose the diamond pattern because it
displays periodic behavior, consists of straight line tracks,
and is described by relatively few parameters. Similarly, zig-

Algorithm 1 Server Cooperative Path Planning

Require: Λc,ηc {Initial client distribution}
Ensure: Mbest,Θbest {Optimal trajectory class and parameters}

1: Ibest = 0,Mbest = ∅,Θbest = ∅
2: for Mi ∈ {M0, . . . ,Mm} do
3: for Θ ∈ dom Mi do
4: Θ∗ = arg maxΘ I(P(Mi,Θ))
5: if I(P(Mi,Θ

∗)) > Ibest then
6: Ibest = I(P(Mi,Θ

∗))
7: Mbest = Mi

8: Θbest = Θ∗

9: end if
10: end for
11: end for
12: return Mbest,Θbest



TABLE II: Percent achieved information gain relative to upper bound—
1−∆I/∆Imax. Smaller fraction indicates closer to upper bound.

Single A Single B Multiple A Multiple B
Centroid [24] 24.005% 8.484% 8.690% 9.483%
Finite-horizon [7] 5.851% 8.238% 9.673% 8.097%
Proposed 0.003% 3.956% 5.604% 5.793%

zag patterns consist of straight line tracks and are easily
parameterized. Fallon et al. [4] previously suggested zig-zag
paths for range-only localization with cooperative navigation
aids. We assume that the server travels at a constant pre-
scribed velocity with deterministic control, so that the TOL
poses are evenly spaced along its path. The total server path
length is determined by the duration of the client survey. The
parameters for each trajectory class are illustrated in Fig. 2
and listed in Table I.

IV. EXPERIMENTS

We present several examples to demonstrate the ability
of our algorithm to provide informative server trajectories
to support client vehicles. We also compare our solution to
the centroid method proposed by German et al. [24], and a
finite-horizon planner using dynamic programming similar
to the one reported in [7]. The centroid method is a heuristic
that simply positions each server TOL at the centroid of
the remaining client survey area. We modified the objective
function evaluated in [7] for the finite-horizon method to our
objective (4) for fair comparison. We initialized the server
position at the origin for the finite-horizon planner, as it does
not optimize over the initial position.

We solved the upper bound optimization problem using the
BFGS optimization procedure [31]. The parameter optimiza-
tion was performed using a derivative-free iterative quadratic
approximation algorithm [32]. The client’s prior information
Λc was block tri-diagonal (Markov chain dynamic model) for
all experiments, and therefore we were able to employ effi-
cient routines for computing the determinant of the posterior
information.

We evaluate the performance of each planned path by
comparing the fraction of the acheived information gain to
the upper bound objective

1− ∆I

∆Imax
= 1− I(P)− I(∅)

Imax − I(∅)
,

where I(∅) = log
∣∣Λc∣∣ represents the prior objective value

(i.e., the mutual information objective with no range mea-
surements). This metric indicates how close the planned path
came to providing the upper bound information, (5).

A. Single Client Simulations

Here we explore two typical AUV client usage scenarios:
client travels in a straight line (Single A), and client performs
a lawn mower survey (Single B). Expected TOA poses were
simulated with a fixed time division multiple access (TDMA)
schedule, adding roughly one OWTT constraint per minute.
Single client results are summarized in Table II and Fig. 3.

The planned server path for the straight line scenario
(Single A) is shown in Fig. 3. The computed zig-zag server

path alternately places server TOL poses directly along the
N-S and E-W axes relative to the client TOA pose. This
solution essentially meets the upper bound optimal solution
by providing sequentially orthogonal relative angles. The
centroid method does not perform well in this configuration
as expected because information is continually added in the
same direction. The finite-horizon method chooses a path
similar to the zig-zag but is unable to reach the optimal
configuration because the discrete action set does not contain
such a path.

The server computes another zig-zag path for the client
lawn mower survey (Single B), Fig. 3. The server path
is roughly centered within the N-S area covered by the
client survey area and continually travels E-W across the
lawn mower. The centroid method slowly moves E-W along
the N-S center of the server area. Both our algorithm and
the centroid produce similar paths, relying on the client to
produce N-S relative motion. The finite-horizon algorithm
continually encircles the the survey area.

B. Multiple Client Simulations

We demonstrate two two-client AUV scenarios: clients
perform overlapping and orthogonal lawn mower surveys
(Multiple A), and clients perform adjacent lawn mower
surveys (Multiple B). Again, we used a fixed TDMA schedule
adding one OWTT constraint to each client per minute. Fig. 3
and Table II summarize the planner performance.

For two client vehicles performing overlapping and or-
thogonal lawn mower surveys (Multiple A), the server finds
a diamond trajectory near the centroid of the total survey area
that compromises providing variation in relative angle to both
clients. The centroid method finds a similar path, and actually
outperforms the finite-horizon planner relative to the upper
bound information (without performing any optimization).
The finite-horizon planner circles the survey area around both
clients. The upper bound in this scenario is almost certainly
not realizable, since we anticipate our bound performance to
be more conservative for multiple vehicles.

For two clients performing adjacent lawn mower surveys
(Multiple B), the server chooses a zig-zag pattern main-
taining a position in between the two clients along the E-
W direction. The centroid method similarly moves E-W.
Finally, the finite-horizon planner encircles the survey area.
Our planner again computes the best path relative to the
upper bound.

V. DEEP WATER DISCUSSION

In Section III, we assumed that 3D slant ranges provided
by OWTTs could be projected into the local horizontal plane
with a fixed measurement covariance. In shallow water
environments, the slant range is generally much larger than
the relative depth. For deep water AUV surveys with surface
OWTT support, the relative depth is a significant fraction of
the slant range (Appendix I). Using the correct noise model
for pseudo ranges has important repercussions for planning.

As illustrated in Fig. 4, the information added in the
horizontal plane by a range measurement decreases as the
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Fig. 3: Planned server trajectories for single and multiple clients. Legend shown in (a).

ratio of depth to slant range increases. When the depth
dependent range uncertainty is considered, we expect the
server to seeks paths with a small depth to range ratio (i.e., a
wide baseline away from the client). If a fixed pseudo range
uncertainty is naively employed, resulting server paths will
not execute wide baseline changes, and the client will not be
well informed.

The vertical acoustic channel provides the best reception
characteristics. Communication and navigation, therefore,
represent conflicting goals [24]. We anticipate that this
tradeoff could be managed by modeling the acoustic channel
within our objective function (4), and taking the expectation
with respect to the relative vehicle paths. This remains the
subject of future and ongoing work.

VI. CONCLUSIONS

We have shown that our planning framework produces op-
erationally practical server trajectories for supporting client
AUVs. Moreover, these paths perform well relative to an upper
bound on the objective and compared to existing planning

frameworks. Several avenues remain open for future work
including modeling the acoustic channel and considering
nondeterministic server control.

APPENDIX I
PSEUDO RANGE NOISE VARIANCE

Many prior estimation and planning frameworks for OWTT
localization have projected 3D slant ranges into the 2D
horizontal plane, obtaining a set of pseudo ranges used with a
fixed measurement covariance. Here, we give a formulation
for the pseudo range as a function of the measured slant
range and relative depth between the server and client and
provide a first-order covariance approximation.

We model a slant range between 3D client and server states
xc,xs ∈ R3 as

zslant =
∥∥xs − xc

∥∥
2

+ wslant (6)

where wslant ∼ N
(
0, σ2

slant

)
. We assume that we have access
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to a relative depth observation

zd = zs − zc + wd,

where zs and zc are the depth components of xs and xc,
respectively, and wd ∼ N

(
0, σ2

d

)
. Slant ranges are projected

into the horizontal plane given the relative depth

zpseudo =
√
z2

slant − z2
d,

for zd < zslant. We can model zpseudo as a Gaussian random
variable with variance approximated through the first-order
Taylor expansion, i.e.

σ2
pseudo =

z2
slantσ

2
slant + z2

dσ
2
d

z2
slant − z2

d

. (7)

The variance is not a simple weighted combination of the
depth and slant range variances, nor is it a fixed value. The
variance explodes as zd → zslant, regardless of the depth and
slant range uncertainties. Linearized range observations add
information along the vector between the server and client
positions. As zd → zslant, almost all information is added
along the depth direction, and little information is added in
the horizontal plane. This relationship is illustrated in Fig. 4.
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