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ABSTRACT

This paper outlines an architecture for underwater acoustic
cooperative localization. Our system leverages communica-
tion within an acoustic network to both share navigation
information and measure the relative range between vehicles.
We employ a factor graph framework for vehicle position
estimation. The underlying structure of the factor graph
formulation provides a low-bandwidth estimation framework
that is tolerant to communication dropout. We detail the
hardware and software used to implement a three vehicle
cooperative network and provide a performance summary
over several field trials.

Categories and Subject Descriptors

I.2.9 [Robotics]: Autonomous vehicles

1. INTRODUCTION
Underwater acoustic communication enables subsea vehi-

cles to broadcast and receive command, control, and health
information from surface operators. Additionally, time-of-
flight (TOF) measurements of acoustic broadcasts between
vehicles can be used to augment an underwater navigation
framework. In this paper, we outline the design, implemen-
tation, and deployment of a system architecture for multiple
vehicle operations that exploits acoustic communication for
online navigation.
Underwater vehicles are unable to directly observe XY

position; seawater is opaque to electromagnetic signals such
that standard terrestrial systems like the global positioning
system (GPS) are unavailable. Underwater vehicles integrate
body-frame Doppler velocity, attitude, and depth to compute
a dead-reckoned navigation estimate. XY position errors
from dead-reckoned navigation, however, grow unbounded
in time. Bounded-error navigation can be achieved using
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(a) Multiple vehicles exchange information over the
acoustic communication channel and observe their

TOF-based relative range.

(b) Independent navigation and control system onboard
Iver AUVs. The cooperative localization process is

highlighted in red.

Figure 1: Block diagram of a multi-vehicle system architec-
ture. Single vehicle inter-process communication is handled
via LCM. Communication between multiple vehicles is han-
dled over the acoustic channel.

static acoustic beacon networks such as narrowband long-
baseline (LBL) [1]. As vehicle network size increases, however,
the rate at which each vehicle can query the LBL network
decreases. Moreover, the range of vehicle operations is limited
by the range of the LBL network.

With the addition of synchronous clock hardware, vehicles
in an acoustic network can passively measure the one-way-
travel-time (OWTT) of broadcast messages. Assuming a
known sound velocity profile, receiving vehicles observe the
relative range at their time-of-arrival (TOA) to the time-of-
launch (TOL) position of the broadcasting vehicle. Unlike
static beacon networks, OWTT-based underwater localiza-
tion requires vehicles to share state information across the
network. Solutions detailing information exchange and the
resulting estimation frameworks have appeared throughout
the literature including [2–8].
Below, we outline a recent distributed estimation frame-

work for multi-vehicle OWTT cooperative localization [8].
The primary contribution of this paper includes the details



Figure 2: Example factor graph estimation framework and
corresponding measurement Jacobian, A (left). Each row of
pose nodes (large circles) represents a single vehicle (right).
Small circles represent factors (observations). The full (cen-
tralized) graph is highlighted in gray, while the reconstruction
on board the third (purple) vehicle is fully colored.

of the hardware and software processes employed within our
system and their integration within a multi-vehicle architec-
ture (Fig. 1). We also provide the cooperative localization
functionality as an open-source software library. While the
architecture described is applicable to a wide range of acous-
tic networks, we summarize an implementation on a three
vehicle network. Finally, we present a performance summary
over several field trials.

2. COOPERATIVE LOCALIZATION
Cooperative localization refers to the estimation of a vehi-

cle state given relative position observations to other vehicles.
Vehicles fuse measurements from onboard sensing (e.g., veloc-
ity and attitude) with external information such as relative
vehicle observations and shared data. Herein relative position
observations specifically refer to OWTT ranges.
The limitations of the acoustic communication channel

[9] challenge the design of a cooperative localization system.
Chiefly, low-bandwidth and unacknowledged data packets
constrain each vehicle’s ability to share information across
the network. We show below that jointly estimating the full
trajectory of each vehicle leads to a solution that can be
efficiently distributed across an acoustic network.

2.1 Factor graph trajectory estimation
We apply a maximum-likelihood approach to jointly es-

timate the trajectory of each vehicle, that is, we compute
the set of vehicle trajectories that best explains the set of
observations. We use a factor graph to represent the joint
probability distribution over vehicle trajectories. A factor
graph is a bipartite graphical model composed of variable
nodes (poses along a trajectory) and factor nodes (measure-
ments). Factor graphs have become a standard within the
robotics community for estimation, in particular, for the si-
multaneous localization and mapping (SLAM) problem [10].
For a more thorough derivation of the below framework, the
interested reader is referred to [8].

Factor graphs represent a smoothing approach as opposed
to standard state estimation, which only estimates the current
vehicle state. The complete trajectory of the ith vehicle is
represented by a set of rigid-body poses, Xi = {x1, . . . ,xN}.
To minimize bandwidth in our distributed system, each rigid-
body pose is represented as its XY position. The distribution
over all poses can be factored given the set of all local obser-
vations, Zi, as

p(Xi|Zi) ∝ p(x1)
∏

i

p(zodoi |xi−1,xi)
∏

j

p(zpriorj |xj). (1)

We only consider two factor types: unary ‘prior’ factors (such
as GPS) and binary ‘odometry’ factors (integrated velocity).
The structure of the single vehicle factor graph is a chain.
Herein, the ith vehicle’s local factor graph will be referred to
as factor chain Ci. Poses along the chain with their associated
factors are referred to as links. In Fig. 2, each row of pose
nodes represents a separate vehicle chain.
When considering the factor graph over the full vehicle

network, OWTT relative range measurements introduce con-
straints between the broadcasting vehicle TOL pose and the
receiving vehicle TOA pose. Within the factor graph formu-
lation, the joint distribution over the set of poses for each of
M vehicles can be factored over the set of vehicle chains and
relative ranges

p(X1, . . . ,XM |Z1, . . . ,ZM ,Zr) ∝

M∏

i=1

p(Xi|Zi)
︸ ︷︷ ︸

Ci

∏

k

p(zk|xik ,xjk )
︸ ︷︷ ︸

relative ranges

,
(2)

where Zr is the set of relative range factors. Fig. 2 illustrates
the factor graph over a three vehicle network.
Each vehicle estimates its trajectory given the full set of

factors. For zero-mean additive Gaussian noise models, the
maximum likelihood estimate results in a nonlinear least-
squares problem with linear subproblem

min
X

∥
∥AX− b

∥
∥2

, (3)

where A is the sparse measurement Jacobian weighted by
the square root information [10]. A is the matrix analogue
of the factor graph (Fig. 2). Sparsity here implies efficient
solutions.
We can exploit the factorization of the joint distribution

over all vehicle poses, to arrive at a distributed solution.
Within our estimation framework, each vehicle shares por-
tions of its local chain with the network1. Properties of
the constituent factors allow for low-bandwidth and dropout
tolerant communication. In turn, each vehicle can then
reconstruct a portion of the global factor graph using its
local chain, the set of received chains, and the set of locally
observed relative range factors (Fig. 2).

3. SYSTEM ARCHITECTURE
Our multiple vehicle system architecture spans two sub-

systems (Fig. 1): a single vehicle module containing sensor
drivers, navigation, and control processes and a multiple
vehicle module encompassing interaction between vehicles
over the acoustic channel.
We discuss the system architecture as implemented on a

three vehicle network consisting of two Ocean Server, Inc.
Iver2 AUVs (Fig. 3) and a topside ship. While we make spe-
cific notes about this three vehicle network, the architecture
is vehicle independent.

3.1 Single vehicle subsystem
Each vehicle executes several processes including sensor

drivers, a pose estimator (Section 2), and, in the case of the
AUVs, a vehicle controller. The vehicle software architecture
is built around several open source projects, most notably

1The described approach only shares local vehicle informa-
tion. Avenues for future work include forwarding information
from the wider vehicle network.



Figure 3: Iver2 AUVs used within the described cooperative
acoustic network.

lightweight communication and marshalling (LCM) [11] for
inter-process communication. The single vehicle architecture
is outlined in Fig. 1b and described below.

We rely on LCM to promote a modular software architec-
ture in which sensor drivers, estimators, and controllers may
be designed as separate processes. LCM allows processes to
communicate over user datagram protocol (UDP) multicast
within a publish/subscribe paradigm. Processes can publish
user-defined message types to subscribers. LCM provides
additional benefits including logging and playback utilities,
a real-time messaging spy, and wrappers for several popular
languages including C/C++, Java, and Python. Logging
and playback are particularly well suited for robotics to aid
with development and post processing.

We field two modified Iver2 AUVs detailed in [12]. Each
AUV is driven by the Ocean Server controller, Underwater
Vehicle Console (UVC). UVC provides an interface to a
‘backseat’ CPU [13] over a serial communication link. Our
backseat Linux host is responsible for all sensor processing
and acoustic communication. Additionally, the backseat
executes a state machine and health monitor to automate
data logging and handle vehicle behavior. All communi-
cation to the UVC is piped through the Backseat driver

process (Fig. 1b), which translates between UVC and the
LCM network.

Our topside vehicle executes sensor and acoustic communi-
cation software on a Linux host. The software stack onboard
the topside vehicle is nearly identical to each AUV with the
exception of the vehicle controller. We also run a viewer
and acoustic communication user interface to visualize AUV
state information provided by periodic acoustic broadcasts
and submit control commands.

3.2 Multiple vehicle subsystem
The multiple vehicle subsystem includes all hardware and

software processes that interface directly with the acous-
tic communication system. While LCM handles communi-
cation between processes on a single vehicle, the acoustic
hardware and software handle communication between vehi-
cles. Multiple vehicles interact via periodic acoustic broad-
casts. Our architecture is similar to the one described by
[14]. Each vehicle is equipped with a Woods Hole Oceano-
graphic Institution (WHOI) Micro-modem and co-processor
board [15], 25 kHz BTech Acoustics 2RCL transducer, and a
synchronous-clock reference. The Micro-modem is configured
to operate in a synchronous clock mode, using the user sup-

plied pulse per second (PPS) signal to discipline its internal
clock.
Stable synchronized clock references serve as the corner-

stone for the acoustic network onboard each vehicle. The
topside ship clock is disciplined by a Meinberg GPS time-
server. Each Iver2 AUV is outfitted with a PPSBoard [16],
which provides a free-running low-drift PPS signal (aligned
to a GPS time signal while at the surface) while the vehicles
are subsea. The PPSBoard is built around a SeaScan, Inc.,
temperature compensated crystal oscillator which produces
less than 1 ms drift over 14 h (corresponding to a ∼1.5 m
bias in range observations). Newer commercially available
free-running clocks provide improved performance. For exam-
ple, Symmetricom provides less than 1 ms drift over 5000 h
(∼208 d).

Our acoustic communication software, Acomms manager in
Fig. 1a, is built around the C++ Goby acomms library [17]
for medium access (MAC) scheduling and data quantization
and serialization. During a mission, each vehicle executes a
preconfigured fixed time division multiple access (TDMA)
schedule. Each vehicle is assigned a slot, or several slots,
within the TDMA period to broadcast messages. Slots are
preconfigured for specific message types, for example, LBL
pings or varying size data packets. We frequently use a simple
TDMA in which vehicles broadcast a state data packet and a
navigation data packet roughly once per minute. The Goby
MAC library is responsible for signaling transmissions time
so that messages are broadcast at the top of the second for
synchronous communication.

The Micro-modem with the co-processor board is capable
of broadcasting various length frequency-shift keying (FSK)
or phase-shift keying (PSK) data packets[15]. We typically
use FSK rate 0 Micro-modem (one 32 Byte data frame) data
packets to broadcast vehicle state and health to the topside
ship. The topside ship uses a variety of 13 bit mini and
32 Byte data packets for control. We use rate 1 and rate 2
PSK data packets (three 64 Byte data frames) to relay navi-
gation links for factor graph-based cooperative localization.
The Goby dynamic compact control language (DCCL)

library [18] handles quantizing and marshalling data messages
for acoustic communication. Goby relies on Google protobufs
to specify the range and resolution of each field within a
specific message type. Our acoustic communication process
translates between LCM message types on the local vehicle
and a DCCL type for broadcast. We employ message types
for navigation data, state (e.g., estimated position, depth,
battery health), and command (e.g., abort, abort-to-surface,
jump to waypoint, manual override).

3.2.1 Estimator implementation

Our implementation of the distributed factor graph ap-
proach (Section 2) is built around the incremental smooth-
ing and mapping (iSAM) [10] library and is released as an
open-source C++ library2. iSAM updates the weighted mea-
surement Jacobian to efficiently recover a navigation solution.
The factor graph approach can easily include additional fac-
tor types in each vehicle’s local graph. For example, we
can incorporate ranges to LBL beacons by including LBL
nodes along with the estimated vehicle trajectories. Running
on relatively modest hardware, an Intel Core 2 Duo CPU,
the Estimator process required approximately 3% CPU load
during our field trials.

2http://robots.engin.umich.edu/SoftwareData/OWTT
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Figure 4: Summary of field trial and performance comparison.
(a) An XY view of the vehicle trajectories. Blue dots indicate
where AUV-B received range observations. (b) The smoothed
uncertainty in each AUV-B pose as the fourth root of the
determinant of the pose marginal covariance.

The cooperative localization process, Estimator in Fig. 1b,
interfaces with the acoustic communication Acomms manager

to determine when to add pose nodes to the graph and to
share navigation links over the network. The Estimator

packs odometry and GPS prior factors by subscribing to the
sensor driver LCM stream.
At the TOL, the Acomms manager requests a data packet

from the Estimator. The Estimator adds a TOL pose node
to the graph and computes the navigation information to be
broadcast. At the TOA of a data packet, the Acomms man-

ager publishes the decoded navigation data and the OWTT
range observation to the Estimator, which, in turn, adds the
new factors and pose nodes to its graph. Following OWTT
measurement updates, the Estimator publishes the current
vehicle state estimate to the Backseat driver so that UVC
can correct for navigation error. A similar interaction occurs
when an LBL range observation is obtained. We leverage
robust cost functions, specifically dynamic covariance scaling
[19], within the factor graph to reduce the influence of outlier
range observations.

−50 0 50 100 150 200 250

x [m]

−200

−150

−100

−50

0

50

100

y
[m

]

GPS

Dead-reckoned

OWTT/LBL

Figure 5: AUV trajectory (1 h) with topside OWTT and
LBL support. Blue dots indicate where range observations
were received. The inset plots LBL beacon locations.

4. FIELD TRIALS
The described multi-vehicle architecture has been success-

fully deployed in several shallow water field trials carried out
at the University of Michigan Biological Station. We summa-
rize two field trials below highlighting typical configurations
for multiple vehicle operations. For convenience, we refer to
each Iver2 AUV as AUV-A and AUV-B.

4.1 Two AUV deployment
The first trial represents a typical three vehicle deployment.

The topside vehicle supported AUV-A and AUV-B during
a 1.5 h mission. AUV-A followed a large diamond at a
fixed depth of 8 m over AUV-B’s lawnmower survey (fixed
depth 6 m) while the topside vehicle drifted above the survey
area (Fig. 4a). AUV-A had periodic access to GPS during
brief surface intervals. The factor graph produced here is
illustrated in Fig. 2. All vehicles remained within 500 m
during the trial. Acoustic reception rates were asymmetric
between the vehicles, ranging between 37–87%.

Fig. 4b shows the resulting uncertainty over trajectory
poses for dead-reckoning, the post-process centralized estima-
tor, and the distributed factor graph framework. Although
AUV-B used only the local subset of range factors, its esti-
mate was able to benefit from relative range observations
and the difference compared to the centralized estimator is
small.

4.2 Single AUV with LBL support
The second trial highlights the ability of our navigation

architecture to include additional navigation constraints. In
this trial, a single AUV, AUV-A, executed a lawn-mower
survey at a constant 5 m depth. The topside ship provided
OWTT support. AUV-A also interrogated the three-beacon
LBL network roughly once per minute. 44% of acoustic
broadcasts were successfully received between the vehicles.
The estimated AUV position fuses only acoustic ranges and
dead-reckoned navigation. During the trial, the AUV peri-
odically received GPS for post-process comparison.



The estimated trajectory is shown in Fig. 5 along with
the dead-reckoned only navigation result. We post-processed
optimized the AUV trajectory with GPS observations to
compare to the accuracy of the acoustic navigation solution.
The on-line solution using acoustic ranges is able to closely
follow the GPS optimized result and shows clear improvement
of the dead-reckoned solution, which drifts approximately
10 m by the end of the mission.

5. CONCLUSIONS
As AUV network sizes grow, cooperative architectures will

serve an important role in monitoring underwater vehicles.
The cooperative localization system architecture described
is extensible and vehicle independent. We have successfully
deployed this system during several field trials with a three
vehicle network and demonstrated the ability to augment
dead-reckoned navigation with OWTT range constraints be-
tween vehicles. Moreover, the acoustic communication sys-
tem allows topside operators to monitor AUV state and
health as well as broadcast commands.
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