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Abstract

This thesis reports on the design and validation of estimation and planning algorithms for un-
derwater vehicle cooperative localization. While attitude and depth are easily instrumented with
bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly ob-
serves XY position. The global positioning system (GPS) and other radio-based navigation tech-
niques are not available because of the strong attenuation of electromagnetic signals in seawater.
The navigation algorithms presented herein fuse local body-frame rate and attitude measurements
with range observations between vehicles within a decentralized architecture.

The acoustic communication channel is both unreliable and low bandwidth, precluding many
state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure
of a post-process centralized estimator in order to derive two real-time decentralized estimation
frameworks. First, the origin state method enables a client vehicle to exactly reproduce the cor-
responding centralized estimate within a server-to-client vehicle network. Second, a graph-based
navigation framework produces an approximate reconstruction of the centralized estimate onboard
each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client
vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic chan-
nel model into prior Gaussian belief space planning frameworks.

In summary, cooperative localization reduces XY position error growth within underwater ve-
hicle networks. Moreover, these methods remove the reliance on static beacon networks, which
do not scale to large vehicle networks and limit the range of operations. Each proposed localiza-
tion algorithm was validated in full-scale AUV field trials. The planning framework was evaluated
through numerical simulation.

xiv



Chapter 1

Introduction

1.1 Motivation

Autonomous underwater vehicles (AUVs) have equipped oceanographers with the ability to safely
and efficiently explore and research a variety of difficult environments (Bellingham and Rajan,
2007) including the under-ice Arctic Ocean (Jakuba et al., 2008; Kunz et al., 2009), the deepest
regions of the Mariana trench (Bowen et al., 2009; Whitcomb et al., 2010), and the Great Barrier
Reef (Williams and Mahon, 2004). AUVs require robust navigation algorithms to safely operate
in such hostile environments and geo-reference the valuable scientific data that they collect.

Water is opaque to electromagnetic signals, prohibiting the direct use of the global positioning
system (GPS) and other radio frequency based navigation techniques while submerged. Terrain-
aided navigation utilizes prior bathymetric terrain maps for localization, but is not applicable to op-
erations in the mid-depth zone where rich altitude information is not available. Visually-aided nav-
igation, commonly used in terrestrial and aerial robotics, is only possible when an AUV is close to
the seafloor due to backscatter, strong attenuation, and a generally unstructured scene, which chal-
lenge state-of-the-art computer vision algorithms. Underwater vehicles typically employ acoustic
beacon networks, such as narrowband long-baseline (LBL) and ultra-short-baseline (USBL), to
obtain accurate bounded-error navigation in the mid-depth zone where there is no apparent visual
information. Acoustic beacon methods, however, generally require additional infrastructure and
limit vehicle operations to the acoustic footprint of the beacons.

Acoustic modems enable vehicles to both share data and observe their relative range. How-
ever, the underwater acoustic channel is unreliable, exhibits low-bandwidth, and suffers from high
latency (sound is orders of magnitude slower than light). Despite these challenges, underwater
navigation can benefit from cooperative localization—each vehicle is treated as a mobile acoustic
navigation beacon, which requires no additional infrastructure and is not limited in the range of
operations by static beacons.
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This thesis reports on novel estimation and control algorithms for synchronous-clock coop-
erative underwater localization. The contributions of this work include: an exact one-to-many
(server-to-client) localization algorithm, an approximate many-to-many (peer-to-peer) cooperative
localization algorithm, and a planning framework for establishing more informative geometries for
range-only server-client localization. These algorithms are designed to be tolerant to the extremely
faulty and bandwidth-limited acoustic communication channel. Moreover, they are not limited to
AUVs and can be applied to any network of platforms (terrestrial or aerial, manned or unmanned)
in order to share navigation information with limited communication bandwidth. The work pre-
sented in this document builds upon the existing state-of-the-art in related work stemming from
single-robot navigation, terrestrial cooperative localization, underwater navigation, and planning
under uncertainty. The most salient features of the prior literature are discussed below.

1.2 A Review of Single Robot Navigation

Figure 1.1 Illustration of the full SLAM problem. A SLAM solution computes the unknown robot and landmark poses
represented by circles and stars, respectively, given noisy observations illustrated by edges.

One of the fundamental challenges in robotics lies in answering the question ‘where am I?’.
The problem of concurrently building a model of an a priori unknown environment and localizing
within it has been addressed by robotics researchers over the last several decades by the develop-
ment of simultaneous localization and mapping (SLAM) frameworks. Since we are interested in
underwater localization, we focus on metric SLAM formulations. This class of algorithms com-
putes a joint estimate over robot poses and a map—generally a collection of landmarks or features.
The SLAM solution is often partitioned into two sub problems: inference (i.e., optimization) and
data association (i.e., recognizing landmarks), known as the back-end and front-end problems,
respectively. Here, we only review the back-end SLAM problem as it relates to cooperative local-
ization and assume that the identities of robots and landmarks are known.

In general, the full metric SLAM solution is provided by the maximum a posteriori (MAP)
estimate over a set of poses X = {x1, . . . ,xn} and landmarks L = {l1, . . . , lm} given the set of

2



control inputs U = {u1, . . . ,un−1} and observations Z = {z1, . . . , zp}

X̂, L̂ = argmax
X,L

p(X,L|U,Z), (1.1)

as illustrated in Fig. 1.1. In the following sections, we review various solutions to the general
problem.

1.2.1 Filtering Approaches

The pioneering SLAM formulation by Smith et al. (1986) began to address the problem of fusing
uncertain spatial information from sensors of varying quality for robot navigation. Their solution,
among others including Leonard and Durrant-Whyte (1991), tracks the so-called stochastic map,
a map composed of various landmarks such as corners, edges, or other fiducial markers scattered
throughout the environment. The robot adds landmarks to the map relative to its current pose as it
travels. Subsequent re-observation of the initialized landmarks provides a constraint on the robot’s
pose as a loop closure event. The power of SLAM algorithms rests in the ability to identify and
incorporate these events, thereby strengthening map relationships.

Early SLAM solutions recursively track a state vector composed of the current robot pose and
landmark positions, x = [x>n , l

>
1 , . . . , l

>
m]>, within a Bayesian estimation framework, e.g., the

extended Kalman filter (EKF). The filtering solution corresponds to the Bayes filter formulation of
(1.1). Given linear Gaussian noise models, the Kalman filter provides the optimal minimum mean
squared error (MMSE) estimate. System nonlinearities are dealt with in ad hoc estimators such
as the EKF by repeated linearization or the unscented Kalman filter (UKF) by applying the un-
scented transform. The posterior distribution over state, however, is assumed to be approximately
Gaussian, x ∼ N

(
µ,Σ

)
with mean µ and covariance Σ. Filtering complexity generally grows

with state size because map updates involve expensive matrix operations (in general, matrix mul-
tiplication is O(n3) in the state dimension). Additionally, the fully dense covariance matrix has a
quadratic memory requirement.

The information filter (Bar-Shalom et al., 2001) is the information (inverse covariance) form of
the Kalman filter, x ∼ N−1

(
η,Λ

)
, where η and Λ are the information vector and matrix, respec-

tively. Thrun et al. (2004) empirically observed that the information matrix over landmark states is
dominated by a few terms that encode relationships between nearby landmarks, suggesting that the
dense information matrix can be approximated as a sparse matrix. By performing a sparsification
procedure, the authors improved upon previous EKF based implementations, allowing constant
time updates and memory requirements linear in the number of map landmarks. The sparsification
procedure, however, introduced the potential for overconfidence as it throws away information,
i.e., ignores conditional relationships between map elements.

3



Particle filters (Doucet et al., 2001) are also a popular tool for filter-based SLAM (Montemerlo
et al., 2002). Unlike the previously mentioned methods, the particle filter is able to represent ar-
bitrary posterior distributions—not only unimodal Gaussian. However, the complexity of particles
filters is difficult to evaluate due to the ambiguity in defining adequate particle density.

1.2.2 Graph-based Approaches

The challenge of the data association problem is defining a set of repeatably observable landmarks
or features. Lu and Milios (1997) proposed a SLAM solution that copes with this problem through
an alternate map representation: modeling the environment as a collection of robot poses or views
as opposed to a set of landmarks or features. The collection of historic robot poses is commonly re-
ferred to as the pose-graph. Lu and Milios (1997) showed that the pose-graph formulation leads to
an equivalent optimization problem that minimizes the error of reprojected data between overlap-
ping views. Although their original solution solved a batch maximum likelihood estimate (MLE)
problem, Gutmann and Konolige (1999) later presented a real-time implementation that essentially
performs a batch update over a sliding window of robot poses. Several derivative works employ
an equivalent ‘delayed-state’, i.e., view-based, filtering framework (Eustice et al., 2006a; Walter
et al., 2007) to achieve real-time performance.

Based on the work of Lu and Milios (1997) and Thrun et al. (2004), Eustice et al. (2006a) ob-
served that the information matrix of a delayed-state representation is exactly sparse, i.e., requires
no approximate sparsification procedure. The authors noted that the information matrix becomes
fully dense as a result of marginalizing out robot poses, whereas maintaining the robot trajectory
preserves sparsity. The distribution over the delayed-state vector can be factored as a Markov
random field (MRF) and represented graphically (Fig. 1.2a). The information matrix exactly cor-
responds to the adjacency matrix of the the MRF. Marginalization introduces new edges in the
graph called fill-in, which generally increases the graph density and therefore the complexity of
the solution. This insight allows the benefits of constant time updates without the drawbacks of
an approximate sparsification that can lead to overconfidence. Furthermore, Eustice et al. (2006a)
noted that the information form encodes a sparse linear system in which most updates involve only
a small portion of the system, suggesting a fast approximate method for state-recovery.

Filtering solutions all suffer from eventual divergence that occurs as a result of linearization
error (Julier and Uhlmann, 2001). Lu and Milios (1997) computed the full robot trajectory as
the solution to a sparse nonlinear system over robot poses—minimizing the squared error over
robot poses. Similarly, the full SLAM problem defines a sparse system over both robot poses
and landmarks as in Fig. 1.2. Graphical SLAM by Folkesson and Christensen (2004), Square
root smoothing and mapping (SAM) by Dellaert and Kaess (2006), and GraphSLAM by Thrun
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Figure 1.2 The graphical representation of the SLAM problem (Fig. 1.1) exposes its sparse underlying structure.

(a) Information matrix and MRF associated with the full SLAM problem.

(b) Measurement Jacobian and factor graph associated with the full SLAM problem. Small circle nodes
represent factors, i.e., measurements. The factor graph corresponds to a least-squares problem that
computes the parameter vector, Θ, in order to best explain the observations.

and Montemerlo (2006) considered the efficient solution of this system using the Gauss-Newton
algorithm, involving iteratively solving a large sparse linear system. Current state-of-the-art SLAM
algorithms leverage well established sparse linear algebra routines to quickly and efficiently solve
the underlying large linear system (Dellaert and Kaess, 2006; Olson et al., 2006b; Kaess et al.,
2008, 2012; Kummerle et al., 2011; Polok et al., 2013).

For additive Gaussian noise models, the MAP SLAM formulation (1.1) can be written

Θ̂ = argmax
Θ

p(Θ|U,Z)

= argmin
Θ
− log p(Θ|U,Z)

= argmin
Θ

∑
i

∥∥∥fi(Θ)− ui

∥∥∥2

Qi

+
∑
j

∥∥∥hj(Θ)− zj

∥∥∥2

Rj

, (1.2)

where the parameter vector Θ includes poses X and landmarks L, and fi( · ) and hi( · ) are the
process and observation models with noise covariance matrices Qi and Rj , respectively. We rec-
ognize (1.2) as a nonlinear least-squares problem. Within a nonlinear least-squares solver (e.g.,
Gauss-Newton), (1.2) is linearized to produce a large linear least-squares problem in the estimate
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update δΘ

δΘ̂ = argmin
δΘ

∥∥∥AδΘ− b
∥∥∥2

(1.3)

= (A>A)−1A>b,

where the matrix A represents the stacked whitened measurement Jacobian and Λ = A>A is the
information matrix (inverse error covariance matrix, i.e., Σ−1). Probabilistic graphical models
corresponding to this problem are discussed in Appendix A.

Algorithms to solve linear systems are classified as direct methods (e.g., matrix factorization
as in Cholesky, LU, or QR), or iterative methods (e.g., relaxation or conjugate gradients). Direct
methods are more common for SLAM solutions. Dellaert and Kaess (2006) considered direct fac-
torization methods (LU and QR) in their Square root SAM algorithm. Kaess et al. (2008) proposed
recursively updating the QR factorization within the incremental smoothing and mapping (iSAM)
framework. Direct solution methods rely on variable elimination (equivalent to marginalization).
As such, an optimal variable ordering exists which reduces fill-in as variables are eliminated, there-
fore preserving sparsity and boosting performance. Both Square root SAM and iSAM exploit
efficient variable ordering heuristics to speed up inference.

Iterative linear solvers offer several advantages over direct methods in terms of memory man-
agement, parallelization, and distribution. However, they may require many iterations for conver-
gence. Duckett et al. (2000, 2002) proposed a Gauss-Seidel relaxation based SLAM algorithm
that was capable of producing consistent maps. Both Howard et al. (2001) and Frese et al. (2005)
considered multi-grid relaxation methods popularized in computational mechanics for the solu-
tion of large partial differential equations. Relaxation based methods unfortunately have no upper
bound on the number of iterations required to reach a desired tolerance of a fixed-point solution.
Conjugate gradients only requires a finite number of iterations to converge, but cannot guaran-
tee that intermediate steps monotonically approach the minimum. Moreover, the required number
of iterations may still be prohibitively large. Thrun and Montemerlo (2006) suggested conjugate
gradients for a batch solution, while Konolige (2004) implemented a real-time iterative method
based around conjugate gradients similar to Gutmann and Konolige (1999). Dellaert et al. (2010)
proposed a special preconditioned conjugate gradients method for large scale SLAM problems
that outperforms direct methods for dense maps. Preconditioning is extended to extremely large
structure-from-motion (SfM) problems (analogous to the batch full SLAM problem) by Agarwal
et al. (2010) and Jian et al. (2012, 2013).
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1.3 A Review of Cooperative Navigation

Figure 1.3 The graphical representation of cooperative SLAM illustrates the sparse structure as well as the origin of
information, i.e., edges and factors are colored by their origin platform. Θ includes poses of all platforms, while no
landmarks are present in this example—observations are only directly between platforms.

(a) Information matrix and MRF associated with the cooperative SLAM problem.

(b) Measurement Jacobian and factor graph associated with the cooperative SLAM problem.

Fielding teams of robots promises to boost reliability and performance over single robot de-
ployments. Additionally, information can be shared across the team to improve navigation. Similar
to single-robot SLAM, cooperative multiple-platform SLAM is interested in answering the ques-
tion ‘where are we?’. These algorithms fuse information originating from several platforms includ-
ing relative vehicle observations in addition to odometry and landmark measurements. Cooperative
SLAM imposes a larger computational cost (as the state dimension grows linearly with the number
of platforms) and increased communication cost when compared to single robot SLAM. Addi-
tionally, cooperative SLAM algorithms may have to determine the initial correspondence between
local reference frames defined for each separate platform. For the cooperative AUV algorithms
presented in this thesis, all platforms are initialized in the same local reference frame given GPS
observations at the surface.

The multi-platform SLAM problem can be solved as a batch process within a centralized esti-
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mator as suggested by Howard et al. (2002) and Dellaert et al. (2003) using an MLE framework.
A centralized system has direct access to all measurements as they become available and hence
provides the benchmark solution. This solution corresponds to (1.1) where all vehicle poses are
now included as illustrated in Fig. 1.3. Centralized solutions, however, are not generally attainable
online due to their large communication and processing requirements. Decentralized solutions are
necessary for real-time implementation within the underwater domain given the constraints of the
acoustic communication channel (Section 1.5). Below, we classify distributed systems as a su-
perset of decentralized in that distributed systems may require some centralized coordination (Mu
et al., 2011).

1.3.1 Distributed SLAM

Early work on decentralized cooperative networks by Kurazume et al. (1994) and Rekleitis et al.
(2000) assigned alternating dynamic and static roles to each robot team member. Each moving
team member performs single-robot SLAM treating the stationary robots as landmarks. Although
these methods do not recreate the centralized benchmark, they do not require any (or have little)
communication overhead and greatly reduce the rate of error accumulation. However, error growth
is still unbounded in time since the ‘landmarks’ must be re-initialized each time the role designation
switches. Moreover, this scheme slows the overall rate of team movement as several team members
are static at any given time vitiating several benefits of multiple vehicle operations.

Egocentric algorithms, e.g., Fox et al. (2000), consider the problem of strictly localizing a vehi-
cle given the estimated pose of another vehicle and a relative pose measurement. These algorithms
apply the naive Bayes assumption, i.e., that all vehicle estimates are independent, and are so-called
egocentric since they track only their own state estimate. After incorporating information from
another platform, however, the two vehicle states are dependent. At the next measurement update,
the vehicles (erroneously) assume that their estimates are independent. These methods incur very
low communication cost as only a single pose vector and covariance ever need to be transmitted.
Egocentric methods ignore dependency, and are inconsistent (overconfident) as a result, but are
trivially tolerant to communication failure. Problems associated with ‘double-counting’ informa-
tion are a hallmark of the cooperative localization literature. A consistent estimate is one that does
not produce an overconfident covariance estimate (Bar-Shalom et al., 2001), i.e., Σ̂ � Σ, where Σ̂

and Σ are the estimated and true covariance, respectively.
Roumeliotis and Bekey (2002) first noted that ignoring dependencies that develop between

estimates can lead to gross inconsistency and overconfidence. They proposed a distributed Kalman
filter approach, which accounts for the interdependency of information at the cost of significantly
increased communication. Thrun and Liu (2003) presented the distributed version of the sparse
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extended information filter (SEIF), which is similar in spirit to Roumeliotis and Bekey (2002),
although it performs a sparsification procedure to reduce complexity. These methods distribute
the full computation of the centralized filter, which is guaranteed to be consistent as it accounts
for all information, amongst the vehicle network. Nerurkar and Roumeliotis (2008) and Nerurkar
et al. (2009) developed a distributed nonlinear MAP estimator. The authors leverage a distributed
conjugate gradients algorithm (Bertsekas and Tsitsiklis, 1997) to distribute the computation of the
centralized linear subproblem.

Instead of attempting to reconstruct a centralized filter, Bahr et al. (2009b) proposed a book-
keeping strategy to prevent fusing correlated data, termed the interleaved update (IU) algorithm.
While IU avoids inconsistency, the communication cost is significantly higher than its egocentric
counterpart as it maintains and communicates a bank of filters, which grows exponentially in the
size of the vehicle network. Moreover, IU only uses a subset of relative platform information as it
periodically discards correlated information.

Decentralized data fusion (DDF) for general multiple sensor systems has recently informed
cooperative navigation research. The key philosophy of DDF is that locally obtained information
is first fused locally and then communicated where it is fused with all accumulated messages from
the network. In this way, each platform has a consistent estimate that is tolerant to communica-
tion failure using all received information. Covariance intersection (CI) presented by Julier and
Uhlmann (1997), later expanded by Mahler (2000) and generalized by Bailey et al. (2012), sug-
gests a conservative approach for combining estimates with unknown dependence. Grime et al.
(1992) reported the channel filter, which is capable of distributing the linear information filter for
known communication topologies. In the case of DDF frameworks, each locally computed esti-
mate will not exactly match the centralized solution because each platform may have only received
a subset of the information.

Graph-based cooperative localization research shares the DDF mentality by combining a local
and global fusion layer. As such, many algorithms require that each platform perform the following
three tasks:

i. Build a local graph fusing local information (as in the single robot SLAM scenario),

ii. Communicate and collect local graphs from other platforms,

iii. Optimize the global graph that fuses the received local graphs.

The decentralized data fusion smoothing and mapping (DDF-SAM) algorithm, proposed by Cun-
ningham et al. (2010, 2012, 2013) explicitly performs exactly these tasks within the iSAM frame-
work. Each robot builds a local graph just as in single robot SLAM and communicates it across
the network. Concurrently, each robot collects local graphs from each of its teammates. The set

9



of received local graphs is then optimized in a single framework. These methods attempt to recon-
struct the centralized graph (Fig. 1.3). Unfortunately, the communication cost grows with the size
of each local graph.

The DDF model for distributed robot localization, such as in Cunningham et al. (2010), remains
the standard. Kim et al. (2010) report on the alignment of multiple pose-graphs using iSAM. They
employ the ‘anchor-node’ concept, equivalent to the base-nodes of Ni et al. (2007), to simultane-
ously compute the initial correspondence between robot reference frames. Howard et al. (2003)
distribute their earlier centralized MLE approach (Howard et al., 2002) using a system similar to
relaxation. The advantage to these solutions is that the estimate is guaranteed to be consistent
because the full pose history is maintained.

The above algorithms may consider a communication limit, but do not constrain it to the point
of affecting performance. Ribeiro et al. (2006) suggested a noteworthy approach to multi-sensor
data fusion, transmitting a single bit per measurement, the sign-of-innovations. Within this frame-
work, each platform attempts to approximate the centralized estimate using each quantized mea-
surement. The authors derive an algorithm that closely mirrors the standard Kalman filter by ap-
proximating the posterior probability given each quantized measurement as a Gaussian. Nerurkar
et al. (2011b) elaborated on this work by allowing local analog (not quantized) measurements in
addition to the remote quantized observations. Trawny et al. (2009) presented a MAP estima-
tor integrating sign-of-innovations quantized observations. Although there is a small bandwidth
requirement, these algorithms require a non-lossy all-to-all communication topology.

Leung et al. (2010) attempted to reduce the required bandwidth of communicated information
by leveraging the Markov structure of local graphs. This approach greatly reduces the required
bandwidth, although relies on acknowledgments to bound communication. Without acknowledg-
ment, the required communication may grow too large.

1.3.2 Submap Approaches

Submap-based SLAM, multiple session SLAM, and the multiple platform cooperative localiza-
tion problem are in many ways strongly related. Submap and multiple session approaches seek to
align several maps originating from a single robot at different times, whereas multiple platforms
may align several maps from different robots collected simultaneously. In order to efficiently cope
with large environments, many single-robot SLAM algorithms employ submap-based distribution
schemes such as ATLAS SLAM (Bosse et al., 2004; Newman et al., 2002). A submap-based ap-
proach essentially performs SLAM within small regions of the environment to remain tractable,
then performs a separate optimization step to align each of the submaps. Multiple session algo-
rithms (Ozog et al., 2015) may be employed to support long-term single-robot applications.
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Ni et al. (2007) proposed a submap-based SAM approach termed Tectonic SAM. The authors
partition the measurement Jacobian by metric submaps, and perform the optimization first over
submaps and then over the map separators. The global alignment can be performed efficiently by
adding ‘base-nodes’—variables that dictate the relative coordinate frame of each submap. Base-
nodes reduce the complexity of the measurement Jacobian. Tectonic SAM was then trivially ex-
tended to a distributed multi-robot application by Andersson and Nygards (2008) in an algorithm
dubbed collaborative smoothing and mapping (C-SAM) wherein each submap was defined as each
robot’s local map. Each robot then communicates information regarding the separator variables
across the network.

1.3.3 Network Localization

Relative robot localization shares a high dot product with network localization from the distributed
sensor network community. Researchers here often want to localize static nodes given only rela-
tive range or bearing information to a number of neighboring nodes (Hendrickson, 1995; Jacobs
and Hendrickson, 1997; Patwari et al., 2005; Aspnes et al., 2006). These algorithms are often
based on geometrical methods aiming to avoid ambiguities endemic to the partial-state informa-
tion contained in range- or bearing-only observations (Anderson et al., 2008). Another body of
work considers the optimization problem given a set of range-only measurements. In particu-
lar, Barooah et al. (2006) proposes a decentralized relaxation-based algorithm for localization and
time-synchronization. While these applications involve static nodes, a relaxation-based method is
attractive for its low-bandwidth requirement and ability to reconstruct the centralized solution after
a number of iterations.

1.3.4 Consensus

Consensus algorithms have gained popularity in multiple platform systems for their distributive
properties (Ren et al., 2005). Consensus describes methods for summarizing and sharing informa-
tion in order to reach an agreement. Other than fairly weak assumptions on network connectivity,
communication in a consensus network only depends on the estimated quantity—independent of
the number of platforms, or even the origin of each message. In the cooperative control com-
munity, agreement may refer to the relative geometry within a vehicle formation. Within sensor
networks, agreement could pertain to estimating a particular quantity, e.g., ocean temperature or
salinity (Lynch et al., 2008). Peterson and Paley (2013) proposed a consensus-information filter
for estimating flow-field parameters in mobile networks based on the distributed Kalman filter by
Olfati-Saber (2007).
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Aragues et al. (2012) proposed a multiple platform consensus-based SLAM formulation to
estimate the global landmark map. Within a cooperative localization context, instantaneous vehicle
poses involved in relative measurements could be considered landmarks. The size of the map, then,
would monotonically increase for each new relative measurement, quickly exceeding allowable
bandwidth in the underwater domain. While ill-suited to the cooperative localization problem,
consensus deserves mention for its low-bandwidth decentralized estimation capabilities and use
within cooperative control architectures.

1.4 A Review of Underwater Navigation

Figure 1.4 AUVs onboard the R/V Tioga in Buzzard’s Bay, MA. The two adjacent AUVs on deck were used for
experimental validation throughout this thesis.

Underwater vehicles (Fig. 1.4) typically integrate body-frame velocity and attitude measure-
ments to compute a dead-reckoned navigation solution. While depth and attitude are instrumented
with bounded-error, dead-reckoned XY-horizontal position errors grow unbounded in time without
absolute position measurements, (e.g., GPS). Higher quality sensors are only capable of reducing
the rate of error growth. Therefore, alternative methods for constraining navigation errors are re-
quired. A detailed survey of the state-of-the-art in underwater navigation is presented by Kinsey
et al. (2006). We review typical Doppler navigation techniques and acoustic beacon-based naviga-
tion for underwater vehicles.
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Figure 1.5 Acoustic navigation example. (a) illustrates the trilateration of a vehicle position (black triangle) given
ranges to known beacons (yellow stars). (b) shows trilateration using mobile beacons whose positions are not well
known.

(a) Fixed-beacon LBL example (b) Mobile-beacon example

1.4.1 Doppler Navigation

The Doppler velocity log (DVL) is capable of accurately measuring seafloor referenced (bottom-
lock) or water-column referenced (water-lock) velocity (RD Instruments, 1996). DVLs observe
velocity by measuring the time-dilation (either frequency shift or phase) of a reflected acoustic
beam. Vehicles compute a dead-reckoned navigation estimate by transforming observed beam
velocities into the world frame using observed attitude and then integrating in time. Whitcomb
et al. (1999a) report that noisy heading measurements are the most significant source of error for
bottom-track DVL navigation. For vehicle altitudes in excess of the bottom-lock maximum range,
water-lock navigation is possible, although vehicles must also estimate the water currents. Without
an absolute position reference, dead-reckoned position uncertainty will grow unbounded in time.

1.4.2 Fixed-beacon Acoustic Methods

Underwater acoustic beacon navigation systems attain bounded-error navigation by measuring
their relative range to beacons with known position (Vickery, 1998). These systems include: long-
baseline (LBL), short-baseline (SBL), and ultra-short-baseline (USBL) systems.

Vehicles observe their range to a beacon by measuring the acoustic time-of-flight (TOF) and
assuming a known sound velocity profile. Two-way travel-times (TWTTs)—round-trip TOF—are
obtained when a vehicle interrogates and then receives a response from the beacon network. The
rate at which vehicles can receive range measurements decreases with the number of vehicles in the
network. In contrast, the one-way-travel-time (OWTT) is computed with knowledge of the exact
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transmit and receive times; the OWTT is the time difference between the time-of-launch (TOL)
and the time-of-arrival (TOA). This is accomplished by synchronizing all clocks in the network.
Synchronous-clock acoustic networks can scale to arbitrarily many vehicles because all vehicles
within acoustic range of the transmitting platform passively receive a range measurement leading
to constant time update rates. The synchronous-clock hardware employed in this thesis is detailed
in Appendix C.

The LBL navigation framework, for example in Fig. 1.5a, employs a network of fixed reference
beacons to which vehicles can measure range via TWTT (Hunt et al., 1974; Milne, 1983; Whit-
comb et al., 1999b; Yoerger et al., 2007) and provides the standard in underwater acoustic position-
ing. LBL, however, limits the area of operations to the coverage footprint of the reference beacons.
LBL range and accuracy is dependent on the acoustic frequency employed since attenuation of
acoustic signals is frequency dependent. Low frequency systems (8− 16 kHz) can achieve a max-
imum range greater than 10 km, while more accurate high frequency systems (200− 300 kHz)
only provide coverage up to a few hundred meters.

Most LBL systems require a lengthy calibration procedure to survey the beacon network,
spending valuable ship time (Jakuba et al., 2008). Range-only landmark-based SLAM (discussed
in Section 1.2) with a priori unknown beacon positions was initially proposed for terrestrial navi-
gation with radio frequency (RF) beacons by Kantor and Singh (2002) and later expanded by Dju-
gash et al. (2006) using the traditional EKF. This concept was later adapted to underwater acoustic
networks by Newman and Leonard (2003) and Olson et al. (2006a). The important insight in these
works was to treat beacon TOL positions as landmarks in the SLAM map.

Some recent work has addressed localization given only a single static beacon with known po-
sition. The vehicle is not able to trilaterate its position given a single range observation. However,
the vehicle can estimate its position given multiple range observations to the beacon and its dead
reckoned navigation. The observability requirements of such a system have been studied by sev-
eral authors including Song (1999), Gadre and Stilwell (2005), Zhou and Roumeliotis (2008), and
Fallon et al. (2010b) using both linear (Chen, 1984) and nonlinear observability analysis (Hermann
and Krener, 1977). The literature shows that only a few trivial scenarios exist that are unobserv-
able. In general, if the relative velocity between the platforms change, their relative position is
observable. In Chapter 4, we consider the information utility of relative vehicle trajectories.

1.4.3 Mobile-beacon Acoustic Methods

The idea of single fixed beacon navigation has led to the development of algorithms considering
a single mobile beacon. Scherbatyuk (1995) proposed an early least-squares algorithm to estimate
the initial position of an AUV and water current given ranges to a single beacon with known
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location. Similar solutions using an EKF are presented by Baccou and Jouvencel (2003) and
Gadre and Stilwell (2005). Both Scherbatyuk (1995) and Baccou and Jouvencel (2003) note that
the beacon could be another mobile vehicle given that it is able transmit its own position estimate.
Likewise, Vaganay et al. (2004) also reports an EKF-based solution where a well instrumented
AUV acts as a communication/navigation aid, providing an accurate position estimate to a ‘client’
vehicle.

Recent algorithms for mobile-beacon acoustic navigation are instances of the more general
cooperative localization algorithms reviewed in Section 1.3. The challenge for these approaches
is in performing distributed estimation over the acoustic channel; each platform must decide what
information to share with its team and how to compute a navigation solution given that information.

Eustice et al. (2011), McPhail and Pebody (2009), and Fallon et al. (2011) consider navigating
an AUV given acoustic ranges to a ‘server’ surface ship using MLE, a nonlinear least mean squares
method, and iSAM, respectively. These methods consider each range estimate originating from an
independent ship position estimate, which is, in general, only valid if the position is provided via
independent GPS observations.

Bahr et al. (2009a) provide an alternative augmented navigation framework allowing an AUV
to navigate given ranges to a cooperative navigation aid (CNA) (GPS reference source). This
algorithm tracks all potential AUV positions as the intersection of range circles propagated forward
by the AUV’s dead-reckoning. Morice and Veres (2010) suggests a similar geometric bounding
technique to solve for the initial AUV position based on set membership.

Maczka et al. (2007) present an egocentric EKF (equivalent to the egocentric approaches pre-
sented in Section 1.3) that is capable of sharing range measurements and position estimates be-
tween multiple AUVs. As noted by Roumeliotis and Bekey (2002) and demonstrated by Walls
and Eustice (2011), ignoring the correlation that builds between platform estimates given rela-
tive observations leads to inconsistency. On the other hand, this approach is trivially tolerant to
communication failure.

Diosdado and Ruiz (2007) proposed a decentralized SLAM information filter algorithm for
use with AUVs. Each vehicle transmits the information matrix and vector corresponding to its
accumulated landmark-based map. This algorithm is similar to the channel filter (Grime et al.,
1992) in that it tracks common information in the network in order to maintain consistency.

The centralized extended Kalman filter (CEKF) framework proposed by Webster et al. (2009b,
2012), similar to other centralized delayed-state cooperative navigation solutions (Section 1.3),
is particularly well-suited for synchronous-clock acoustic navigation. This post-process method
fuses all available information. This work was later decentralized by the authors (Webster et al.,
2010, 2013) by exploiting properties of the information filter, but is not feasible in practice without
modification as it requires a non-lossy communication channel. This method serves as the basis
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Table 1.1 Comparison of various underwater communication modes.

Mode Frequency Range Data Rate
Long-Wave Radio 1− 100 kHz 6− 20 m 1 kbps

Optical — 100 m >1 Mbps
Acoustic 8-28kHz 100m-10km 80 bps-5 kbps (burst)

for the work described in Chapter 2.
Fallon et al. (2010a) suggested a bookkeeping method dubbed the ‘measurement distribution

framework’. Similar to some DDF approaches for terrestrial cooperative navigation, this frame-
work distributes locally obtained map representations throughout a network. Unlike its terrestrial
counterparts, only the newest information is transmitted in an effort to reduce the communication
cost. Each vehicle tracks the information it has received from other platforms in a measurement
table. All contiguous information is then processed to obtain the best available estimate over ve-
hicle TOA and TOL poses. Vehicles have the ability to request information that is known to have
been lost (deduced from the measurement table). This method does not practically scale to many
vehicles because of communication cost; every GPS and range measurement must be transmit-
ted accompanied by a delta dead-reckoning from the previous observation event, this includes all
TOLs and TOAs.

1.5 A Review of Underwater Acoustic Communication

Multiple platform underwater navigation relies on the ability of each platform to communicate with
its team. The physical characteristics of the underwater environment limit underwater communica-
tion compared to terrestrial or air (Catipovic, 1990; Preisig, 2006; Partan et al., 2007; Otnes et al.,
2012). The high rate of absorption of both long-wave radio and optical signals in water has limited
their use for communications (see Table 1.1). Acoustic communication improves upon these other
modes in terms of range and reliability but still faces several complications.

Acoustic communication suffers from large propagation delays as a result of the slow sound
speed—roughly 1500 m/s, five orders of magnitude slower than the speed of light. Bandwidth
is also extremely limited when compared to terrestrial radio-based communication networks. A
rough limit on the range-rate product for acoustic communication is 40 km · kbps, which mostly
applies to vertical channels in deep water and overestimates performance in shallow-water (Partan
et al., 2007). Further physical difficulties faced by acoustic communication include: absorption
and spreading losses, waveguide effects, multipath, surface scattering, bubbles, and ambient noise
(Partan et al., 2007). In practice, underwater vehicle networks are only able to obtain real-world
bandwidth on the order of 100 bps (Murphy, 2012).
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Most acoustic transducers cannot simultaneously transmit and receive. Therefore, standard
acoustic communication networks partition a transmission periods amongst the network, limiting
each vehicle’s opportunity to share information. Time division multiple access (TDMA) is used
predominantly although frequency-division multiple access (FDMA) and code division multiple
access (CDMA) are also used with varying degrees of success. No typical medium access control
(MAC) protocol exists, and is usually designed application-specific. The choice of MAC dictates
the ability of each vehicle to regularly transmit navigation information.

1.6 A Review of Robot Planning

Planning has generally been considered a separate problem from localization and SLAM and an-
swers the question ‘how do I get there?’. In general, deterministic start-to-goal path planning is a
well studied problem (Latombe, 1991; Choset et al., 2005; LaValle, 2006). Recently, researchers
have begun to consider planning under uncertainty such that the planned path reflects the uncer-
tainty in the map, and may even attempt to improve the map. For range-only cooperative localiza-
tion, we are interested in computing paths that provide useful localization information to another
vehicle instead of simply a collision-free path to a goal state.

1.6.1 Deterministic Robot Planning

Path planning classically considers computing a collision-free path from a start to goal state given
a known configuration space. In early planning work, the objective of planning algorithms was
completeness—the ability to find a collision-free path if one exists. These methods, however,
did not scale well to high-dimensional configuration spaces and did not explicitly optimize any
performance metric. More recent planning algorithms can generally be categorized into three
classes: grid or resolution-complete, sampling-based, or optimization motion planning. These
methods all assume that the vehicle has perfect state feedback and that all controls will be executed
deterministically. Examples of each planner are illustrated in Fig. 1.6.

Resolution-complete planners discretize the environment into grid cells and apply search tech-
niques such as Dijkstra’s (Dijkstra, 1959) or A* (Hart et al., 1968) in order to find optimal paths
within the grid environment. Dolgov et al. (2010) present an A* approach for driving in unstruc-
tured parking lots. Resolution-complete planners are generally intractable in high-dimensional
configuration spaces. Using optimal search strategies, resolution-complete planners are also reso-
lution optimal.

Sampling-based motion planning algorithms such as the probabilistic road map (PRM) (Kavraki
et al., 1996; Švestka and Overmars, 1997) and the rapidly-exploring random tree (RRT) (Lavalle,
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Figure 1.6 Illustration of planning approaches for a holonomic vehicle moving from the start (green) to goal (red).

(a) Grid-based planner (b) Sample-based planner (RRT
shown)

(c) Optimization motion plan-
ning

1998; LaValle and Kuffner, 2001) can quickly explore high-dimensional configuration spaces and
offer probabilistic guarantees on completeness (completeness with probability one in the limit of
infinite samples). Elbanhawi and Simic (2014) provide a comprehensive review of sampling-based
techniques. Rickert et al. (2014) noted that probabilistic completeness does not generally reflect
the ability of a planner to provide high quality paths. The rapidly-exploring random graph (RRG)
algorithm and its derivative RRT* (Karaman and Frazzoli, 2011) provide both probabilistic com-
pleteness and asymptotic optimality for a user defined performance metric. Essentially, their proof
relies on showing that in the limit, the RRG contains all possible paths through the environment.

Optimization motion planning and trajectory optimization have recently become popular due
to the local optimality guarantees they provide (Quinlan and Khatib, 1993; Brock and Khatib,
2002; Ratliff et al., 2009; Kalakrishnan et al., 2011; Zucker et al., 2013). Sampling-based planners
often include an optimization or ‘smoothing’ final step. Optimization motion planning can also be
performed more rapidly than sampling-based planners, although initialization may be nontrivial.

1.6.2 Robot Planning under Uncertainty

Unfortunately, both control and sensing are nondeterministic, that is, control actions cannot be
applied perfectly nor the true state known exactly. Planning under uncertainty has been addressed
by planning in the information state or belief state, herein referred to as belief space planning.
Optimal paths are constructed over beliefs (distribution over state) as opposed to the underlying
state. Belief space planners will often seek paths that gain information (reduce uncertainty) in the
state. As with deterministic planning, solutions to belief space planning problems include both
sampling-based and optimization approaches.

Sampling-based approaches to belief space planning include: a simple breadth-first-search
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graph search (Sim and Roy, 2005), roadmap algorithms (Prentice and Roy, 2009; Agha-mohammadi
et al., 2014), RRT (van den Berg et al., 2011a), and RRG methods (Bry and Roy, 2011; van den
Berg et al., 2011a). These methods do not explicitly perform an optimization step, but are able to
find near optimal paths by searching over a set of candidate solutions.

Optimal motion planning with perfect state feedback can be formalized as a Markov deci-
sion process (MDP) given a probabilistic state transition model. With imperfect state information,
the belief space planning problem can be framed as a partially observable Markov decision pro-
cess (POMDP). While POMDPs are generally intractable (Kaelbling et al., 1998), several recent
methods have assumed parametric belief states (e.g., Gaussian) and are able to compute solutions
in polynomial time (Platt et al., 2010; van den Berg et al., 2011b, 2012; Patil et al., 2014; He et al.,
2011). These methods make linear Gaussian approximations and rely on iterative linear quadratic
Gaussian (LQG) or differential dynamic programming (DDP) to solve.

Active SLAM attempts to plan a path in (partially) unknown environments that trade off be-
tween completing some objective and reducing uncertainty in its map. In general, the active SLAM
problem can be expressed as a POMDP. Recently, active SLAM has been framed within belief
space planning frameworks (Sim et al., 2004; Sim and Roy, 2005; Stachniss et al., 2005; Kollar
and Roy, 2008; Kim and Eustice, 2015; Chaves et al., 2014; Indelman et al., 2014, 2015).

1.6.3 Robot Cooperative Control

Several researchers have proposed cooperative adaptive planning strategies in order to optimize
some performance metric. For example, Hollinger et al. (2012) present a path planning algorithm
for collecting data from a sensor network over the acoustic channel, i.e., data-muling, onboard an
AUV to maximize the information collected while minimizing the travel cost. Similarly Burns
et al. (2006) and Leonard et al. (2007) propose planning and control methods to maximize com-
munication performance and survey coverage, respectively. Both Lynch et al. (2008) and Peterson
and Paley (2013) present cooperative control algorithms to estimate unknown spatial fields using
consensus-information filters.

1.6.4 Planning for Cooperative Localization

Planning for range-only cooperative localization has been previously considered by several re-
searchers. Olson et al. (2006a) proposed an algorithm for an AUV to localize a fixed LBL beacon.
Charrow et al. (2012) presented an algorithm to localize a mobile target given radio-frequency
based range-only observations. Tan et al. (2014) considered planning a path for one AUV in order
to localize another AUV along a desired path. Both Bahr et al. (2012) and Seto et al. (2011) con-
sidered a similar problem, but did not assume that the desired path was known at planning time.
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To the best of our knowledge, no previous work has considered uncertainty in the execution of a
path or in the acoustic channel.

1.7 Thesis Outline

Cooperation within multiple platform teams offers the potential to improve performance, e.g.,
area-coverage and efficiency, while simultaneously providing navigation information to each team
member. These are desirable traits for a scientific tool, especially in the underwater community
where a vast area is yet unexplored and a high demand for geo-referenced data exists. This thesis
considers two problems:

• Given a team of underwater vehicles, we explore how to localize each team member using
one-way-travel-time (OWTT)-derived range constraints. This problem addresses the infor-
mation that must be exchanged amongst the team to produce a consistent navigation estimate
(i.e., a solution that does not double-count information).

• Certain geometries of cooperative teams are better suited to localize team members given
relative range observations, suggesting that vehicle surveys can be intelligently planned to
minimize error growth. In this problem, we consider the effect of relative vehicle trajectories
on reducing error across the vehicle network.

The solution domain is extremely constrained given the low bandwidth and generally erratic
nature of the acoustic communication channel. Both the estimation and control subproblems must
be tolerant to small infrequent communication updates between team members. The proposed
problem is to exchange information between members of an underwater communication network
in order to augment their navigation with measured relative range and, given an estimation frame-
work, compute minimal navigation error trajectories. Toward this end, we have produced the
following contributions:

(i) Developed an exact one-to-many (server-to-client) cooperative localization algorithm.

(ii) Designed an approximate many-to-many (peer-to-peer) scalable localization framework, which
computes the best solution given the subset of information available at-hand to each platform.

(iii) Developed a planning strategy for producing minimal navigation error survey trajectories.

1.7.1 Document Roadmap

Each objective and contribution is detailed in the following chapters.
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Chapter 2 We show that by expanding the state representation of a vehicle to include historic
poses (i.e., using a delayed-state framework), we can explicitly track correlation that devel-
ops between platform estimates as a result of sharing relative observations. We provide an
efficient method to incrementally transmit the delayed-state pose chain, represented as an
MRF, over a faulty communication channel in order to exactly reproduce the centralized
solution to the server-to-client localization problem.

Chapter 3 We exploit the factor structure of a pose-graph in order to approximately share navi-
gation information over a faulty communication channel. This method achieves a scalable
(albeit approximate) peer-to-peer localization solution, i.e., one in which every vehicle in the
network shares its local information and uses information obtained from other vehicles.

Chapter 4 We present a framework to compute a server trajectory that optimally localizes a client
vehicle along a desired survey path. To this end, we have incorporated both uncertain sensing
and acting into the planning framework, as well as a probabilistic model of the acoustic com-
munication channel. We allow server trajectories to be computed with a receding-horizon
approach or an optimization of parameterized trajectories.

Chapter 5 We provide a summary of contributions as well as potential avenues for future work.

Appendix A We review probabilistic graphical models as they relate to efficient distributed solu-
tions to the cooperative localization problem. Specifically, we review Gaussian MRFs and
factor graph models.

Appendix B We detail the XY AUV odometry model that results from forward Euler integrating
DVL and attitude observations. We also discuss the OWTT range observation model.

Appendix C We summarize specialized hardware and equipment for synchronous-clock acoustic
navigation as employed throughout our field trials. We detail the acoustic message specifi-
cation for each reported localization algorithm.
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Chapter 2

One-to-many Localization

This chapter considers the problem of localizing a client vehicle by measuring its relative range to a
server platform1. In general, the server-client cooperative localization problem is a distributed state
estimation problem. Information sharing and fusion is nontrivial since the server and client state
estimates become correlated after incorporating relative range information. Moreover, platforms
are restricted by severe communication constraints imposed by the underwater acoustic channel.
We leverage properties of the MRF within a ‘delayed-state’ framework in order to achieve a con-
sistent estimate that can be computed onboard the client.

Underwater vehicles typically rely on fusing DVL body-frame velocities, attitude, and pressure
depth observations to compute a dead-reckoned navigation solution. While attitude and depth
are well instrumented, there is no easy method to directly observe XY-horizontal position (GPS
does not work underwater). In this chapter, we report a novel algorithm enabling server vehicles
to cooperatively aid the navigation of subsea client vehicles, and which is tolerant to the packet
loss and low-bandwidth that is endemic in underwater acoustic communication networks. Our
algorithm is capable of bounding the position error growth of the client vehicles to that of the
server vehicles.

Typical bounded-error underwater navigation methods, such as LBL, measure the relative range
between the vehicle and fixed reference beacons (Milne, 1983; Whitcomb et al., 1999b). The
relative range is typically measured using two-way TOF acoustic broadcasts and assuming a known
sound-speed profile. Narrowband LBL beacon networks, however, are limited in their ability to
scale to many vehicles because only one vehicle can interrogate the network at a time. Moreover,
the range of vehicle operations is limited to the acoustic footprint of the beacon network. In the
same vein, USBL systems allow a topside ship to observe the relative range and bearing of a subsea
vehicle, but are similarly limited in their ability to scale to large vehicle networks.

1Portions of this work have appeared in previously published work including (Walls and Eustice, 2012, 2013,
2014a).
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Figure 2.1 Origin state method algorithm overview: the server (blue) fuses its local observations and adds delayed-
state poses at each time-of-launch (TOL) (the blue circles). The server uses our novel origin state method to incre-
mentally broadcast its pose-graph in a fault-tolerant way. At the time-of-arrival (TOA) of each received origin state
packet, the client (yellow) reconstructs the server pose-graph and updates its estimator to fuse all new information. In
this example, although the client misses the server transmission at t2, the client still reconstructs the server pose-graph
after receiving the origin state packet at t3, which encapsulates all server information accumulated between t1 and t3.

The use of synchronous-clock hardware enables a team of vehicles to observe their relative
range via the OWTT of narrowband acoustic broadcasts (Eustice et al., 2011). The OWTT rela-
tive range is measured between the transmitting vehicle at the TOL and the receiving vehicle at
the TOA. Since ranging is passive—all receiving platforms observe relative range from a single
broadcast—OWTT networks scale well. The use of OWTT observations to augment vehicle navi-
gation presents several open questions regarding how to share and incorporate information across
the network in a communication tolerant.

The underwater acoustic communication channel is severely limited by the physical charac-
teristics of seawater (Partan et al., 2007). Acoustic communication is constrained by high latency
and low bandwidth with packet loss often greater than 50%. The underwater acoustic channel has
an upper-bound range rate product of 40 km · kbps. In practice, underwater vehicle networks are
only able to obtain real-world bandwidth on the order of 100 bps (Murphy, 2012), which is several
orders of magnitude less than terrestrial communication networks. An unacknowledged broadcast
protocol is also commonly employed in conjunction with TDMA scheduling, which further limits
overall bandwidth by dividing transmission time between platforms in the network. All of these
challenges amount to a communication framework that enforces small communication data packets
and infrequent updates between vehicles.

A variety of cooperative localization frameworks exist for improving position estimates across
a team of robots by sharing local navigation information. Previous methods, however, do not
address the severely limited bandwidth and fragility of the underwater acoustic communication
channel. In this chapter, we consider a solution to the navigation of a client vehicle aided by a
server platform, as depicted in Fig. 2.1. We present the following contributions:

• We present a general algorithm, called the origin state method (OSM), that allows a server
to broadcast its pose-graph via a faulty, low bandwidth communication channel that works
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in real-time for practical, underwater, acoustic networks.

• We use the OSM algorithm to compute a ‘delta information’ over server TOL poses, which
serves as input to a decentralized extended information filter (DEIF) algorithm (Webster
et al., 2013) that exactly computes the result of the centralized extended information filter
(CEIF) onboard the client up to communication delay.

• We provide extensive evaluation over more than 12 h of field trials demonstrating the abil-
ity of the OSM to broadcast a server pose-graph to multiple clients using a small, fixed-
bandwidth data packet.

• We provide a novel factor-based interpretation of the ‘delta information’ and discuss how it
can be used in real-time in other estimation frameworks such as the nonlinear least-squares
iSAM framework (Kaess et al., 2008).

The remainder of this chapter proceeds as follows. Section 2.1 reviews the prior literature
within cooperative localization. Section 2.2 summarizes the proposed OSM algorithm. Section 2.3
describes the interface between the OSM and the DEIF. Section 2.4 presents the results of more
than 12 h of field trials performed with multiple AUVs. Finally, Section 2.6 concludes.

2.1 Related Work

Cooperative vehicle networks enable robots with the best navigation sensors to localize robots with
poorer position estimates. The goal is to augment each platform’s local sensing with measurement
constraints between the vehicles themselves as depicted in Fig. 2.2. Prior literature is discussed
below and summarized in Table 2.1.

Simple, real-time algorithms that require minimal bandwidth are within the egocentric class
of filters (Fox et al., 2000; Maczka et al., 2007; Vaganay et al., 2004). These algorithms scale by
treating each inter-vehicle relative observation as independent and only require the transmitter’s

Figure 2.2 Joint pose-graph (MRF) over server, xsi , and client, xcj , poses where Θ is a vector including server and
client poses, Λ is the information matrix, and η is the information vector. Green lines illustrate edges generated by
relative range observations between server TOL poses and client TOA poses. In order to construct the full pose-graph,
the client must have access to the server’s local information (shown in red).
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Table 2.1 Summary of prior algorithms for multiple platform navigation, specifically within the context of server-client communication topologies. No previous
method is able to reproduce the centralized solution while being tolerant to communication packet loss.

Literature Online/ Packet loss Bandwidth Reproduces Consistent Comments
real-time tolerant conservative a centralized estimate

Centralized
Howard et al. (2002) no — — yes yes Centralized MLE.
Dellaert et al. (2003) no — — yes yes Centralized MLE.
Webster et al. (2012) no — — yes yes Centralized EKF.

Egocentric
Fox et al. (2000) yes yes yes no no Sampling-based approach.
Vaganay et al. (2004) yes yes yes no no Moving LBL paradigm.
Maczka et al. (2007) yes yes yes no no Egocentric KF.

Distributed

Roumeliotis and Bekey (2002) yes no no yes yes Distributed EKF.
Ribeiro et al. (2006) yes no yes yes yes Quantized innovations.
Bahr et al. (2009b) yes yes yes no yes Bank of estimators.
Fallon et al. (2010a) yes yes no yes yes Requires acknowledgements.
Cunningham et al. (2010, 2012) yes yes no yes yes Transmits reduced pose-graph.
Kim et al. (2010) yes yes no yes yes Transmits entire server graph.
Leung et al. (2010) yes yes no yes yes Transmits knowledge sets.
Webster et al. (2010, 2013) yes no yes yes yes Transmits delta information.
Nerurkar et al. (2011a) yes no yes yes yes Sign-of-innovations.
Bailey et al. (2011) yes no yes yes yes Transmits delta information.
Origin State Method
(this chapter)

yes yes yes yes yes Can be used in conjunction with EIF or
iSAM.

aWe consider an algorithm bandwidth conservative if it employs a fixed-bandwidth data packet and does not require
acknowledgement.

25



current position estimate. While completely resistant to communication failure, these methods do
not account for the correlation that develops through relative observations between robot estimates,
which can lead to inconsistent (i.e., overconfident) estimates (Maczka et al., 2007). The negative
consequences of ignoring correlation have been demonstrated by Roumeliotis and Bekey (2002),
Bahr et al. (2009b), and Walls and Eustice (2011).

Covariance intersection (Julier and Uhlmann, 1997) can be used to consistently fuse two es-
timates with unknown correlation. Recently, it has been applied to the cooperative localization
problem by Li and Nashashibi (2013) and Carrillo-Arce et al. (2013) to cope with inconsistency
in egocentric algorithms. However, previous work requires a full rank (i.e., range and bearing)
relative observation. Bahr et al. (2009b) previously noted the challenge of incorporating partial
relative pose information in cooperative frameworks with covariance intersection.

Bahr et al. (2009b) and Fallon et al. (2010a) proposed distributed bookkeeping strategies to
ensure that information is incorporated in a consistent manner. Each of their approaches requires
additional bandwidth or use of acknowledgments. Similarly motivated, Ribeiro et al. (2006) and
Nerurkar et al. (2011a) achieve consistency through a noteworthy approach in which they transmit
just a single bit per measurement (representing the sign-of-innovations)—yielding an algorithm
that closely mirrors the standard Kalman filter. While reducing overall bandwidth, the algorithm
requires full packet reception, which is unrealistic for faulty communication channels.

The most general cooperative localization algorithms estimate the full joint distribution over all
vehicle poses termed the pose-graph (Fig. 2.2), and can generally be realized through centralized
estimators in post-process or high-bandwidth systems in real-time (Howard et al., 2002; Dellaert
et al., 2003). Roumeliotis and Bekey (2002) developed a distributed EKF-based method, though
it requires moderately high-bandwidth, and two-way information exchange. Cunningham et al.
(2010, 2012) and Kim et al. (2010) studied the problem of nonlinear SLAM in a distributed fash-
ion using SAM where each platform (i) transmits its full local pose-graph (or a representative
subset), (ii) collects the local pose-graphs from neighboring platforms, and (iii) estimates the full
distribution by optimizing over all available graphs. The result is a consistent estimate that matches
the centralized estimator solution at the expense of high communication cost, which grows with
the size of the local graph. Leung et al. (2010) exploits the Markov property to reduce the required
information exchange within a recursive Bayesian filter.

Webster et al. (2012) presented a post-process centralized EKF for synchronous-clock acoustic
cooperative localization. They later distributed this centralized filter result exactly (Webster et al.,
2013) with the DEIF by leveraging the sparse update properties of the delayed-state information
filter. Their solution requires a strict server-client support topology, as the server transmits repre-
sentative local information (the ‘delta state’ information) to the client where the centralized filter
solution is reproduced. Bailey et al. (2011) independently developed an equivalent formulation
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for sharing locally obtained information, relying on fusion centers to perform relative robot mea-
surement updates. The fusion centers increase complexity, but allow for arbitrary communication
topologies. In practice, both of these methods are not practical in the underwater scenario because
they require a non-faulty communication channel. We previously reported (Walls and Eustice,
2012) a preliminary method toward alleviating the non-faulty communication constraint in dis-
tributing local server information, but which still relied upon a client acknowledgment scheme—
limiting scalability to multiple clients.

Several other works in acoustic cooperative underwater navigation have emerged for fusing
OWTT-based relative ranges in server-client communication topologies (Vaganay et al., 2004;
Maczka et al., 2007; McPhail and Pebody, 2009; Bahr et al., 2009a,b; Eustice et al., 2011; Fal-
lon et al., 2010b, 2011). Previously considered ‘single-beacon’ cooperative localization or the use
of CNAs are equivalent to the server-client scenario explored here. Earlier methods, however,
generally compromise between offline and consistent (by estimating the full joint distribution), or
real-time and inconsistent (by ignoring correlation between relative range observations). Note that
online methods that neglect correlation are, in fact, exact when the server positions are actually
independent. While many of these algorithms have been validated in post-process using exper-
imental data, only a few have been presented with real-time field trials including Maczka et al.
(2007), Fallon et al. (2010b), and Fallon et al. (2010a).

Our work is closest to Webster et al. (2013) and Bailey et al. (2011) in its effort to distribute
local data fusion and to leverage the sparsity of the Gaussian information form to compactly broad-
cast this information. The approach reported herein improves upon previous methods by (i) im-
proving network scalability via a generally passive origin shifting scheme that eliminates the need
for client-side acknowledgments, (ii) introducing a recovery packet mechanism that enables clients
to enter and leave the network or recover after a long period of communication dropout, and (iii)

presenting several AUV trials demonstrating our algorithm’s ability for real-time underwater nav-
igation.

2.2 Consistent Cooperative Localization

We consider one or more independent server vehicles aiding the navigation of multiple client ve-
hicles, such as is depicted in Fig. 2.3. For the sake of presentation, we refer to a single server
vehicle throughout this section, although our algorithm can support multiple (the multiple server
scenario is demonstrated in Section 2.4). The client vehicles are able to passively observe their
range to the server vehicle during periodic server broadcasts. Each client updates its pose estimate
using its local information, the range observations to the servers, and the information broadcast by
each server. A centralized estimator, for example Webster et al. (2012), which has access to the
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Figure 2.3 Supported communication topology. One or more server vehicles (left, blue) broadcast state information
to a network of client vehicles (right, yellow). The OSM algorithm allows each client to reproduce the corresponding
centralized estimate. Servers can support many clients in parallel.

local and relative observations of all vehicles, but is realizable in post-process only, serves as the
gold-standard benchmark solution. The centralized solution includes information from all servers
and a single client vehicle, but not information from the other client vehicles. Our formulation is
able to reproduce this centralized delayed-state filter result onboard each client vehicle in real-time
for the server and individual client states.

Relative range observations occur between the server at the time-of-launch (TOL) and each
client at the time-of-arrival (TOA) by measuring the one-way-travel-time (OWTT) of an acoustic
broadcast. All vehicles synchronize their local clocks to GPS time while at the surface. Low-
drift reference clocks enable the vehicles to remain synchronized throughout operation. During
our trials we used a SeaScan Inc. temperature compensated crystal oscillator (TXCO), which
provides a stable reference pulse with approximately 1 ms drift over 14 h (Eustice et al., 2011).
Newer commercially available free-running clocks promise several orders of magnitude improved
performance, for example, Symmetricom (2013) provides a 120 mW chip scale atomic clock with
less than 1 ms drift over 5000 h (∼208 days). Appendix C details the synchronous-clock and
acoustic modem hardware.

Previously reported algorithms that are able to compute a consistent estimate track the joint
distribution over both client and server poses, i.e., the joint pose-graph over the client and server
(see Fig. 2.2). Although the client may only be interested in computing its own state estimate,
tracking the server’s pose-graph allows the client to track correlation between successive relative
range observations. In general, the server must transmit its full local pose-graph to the client at the
time of each new relative measurement in order for the client to compute this full solution. Since
the size of the server pose-graph continually grows, transmitting the full server information is not
feasible in a communication constrained domain. OSM supplies a fixed-bandwidth representation
of new server poses that allows each client to asynchronously reconstruct the server pose-graph
despite high packet loss. Each server broadcast contains all new local information relative to a
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Figure 2.4 Server pose-graph example. The gray-shaded area of the information matrix illustrates that process predic-
tions and measurements occurring between the previous TOL, xs3 , and the current TOL, xs4 , contribute additively to
a subblock of the information matrix. The information matrix sparsity pattern corresponds to the adjacency matrix of
the MRF. The information shown here exactly corresponds to the server information in Fig. 2.2.

server state known by the client, termed the origin state. The client then reconstructs the server
pose-graph and can compute the centralized solution. Fig. 2.1 provides a graphical overview of the
OSM algorithm.

2.2.1 Information Filter

The OSM algorithm relies upon manipulating a Gaussian distribution parameterized in the infor-
mation form to efficiently broadcast the server pose-graph, an MRF. We assume that the server
state evolves with linear Gaussian noise models. Client process and measurement models, how-
ever, can be fully nonlinear. The server MRF will therefore have a known and predictable structure
that we can leverage to broadcast it over an unreliable communication channel. Although we may
use any estimator that satisfies our assumptions, we employ a delayed-state information filter to
initially construct the server pose-graph.

The information filter tracks a Gaussian distribution over its state, x, parametrized in the in-
formation form; that is p(x) = N−1

(
x;η,Λ

)
, where the information vector, η, and matrix, Λ, are

related to the mean and covariance by

η = Λµ and Λ = Σ−1, (2.1)

where µ and Σ are the mean vector and covariance matrix of x, respectively.
The single vehicle navigation problem is framed in terms of estimating the joint distribution

over a collection of historic poses (i.e., past vehicle states). In this case, the state vector is com-
posed of these historic poses, termed ‘delayed-states’,

x =
[
x>1 , . . . ,x

>
n−1,x

>
n

]>
,

corresponding to the distribution p(x), i.e., the pose-graph. The information filter state vector
grows over time by performing prediction with augmentation. As noted in Eustice et al. (2006a),
processes that evolve sequentially with the Markov property, i.e., with distributions that can be
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factored

p(x) = p(xn|xn−1) · · · p(x2|x1)p(x1),

admit a sparse, block tri-diagonal information matrix. This sparsity leads to an update formulation
that only affects a small sub-block of the information matrix and vector, as depicted in Fig. 2.4.
New odometry inputs and local measurements only modify a block of the information matrix and
vector corresponding to the current robot pose and the most recent delayed-state (i.e., only the value
of the pose-graph edge between the last delayed-state and the current state is affected). Herein, we
assume that new poses are appended onto the state vector. Below we review the filter mechanics
originally presented by Eustice et al. (2006a) that lead to these sparse updates.

Process Prediction

Consider a state vector that is composed of a delayed-state and the current vehicle state, xn =

[x>d ,x
>
n ]>, with distribution p(xn|Zn) parameterized by the information matrix and vector

Λn =

[
Λd,d Λd,n

Λn,d Λn,n

]

ηn =

[
ηd

ηn

]
,

where Zn represents the set of observations received up to time index n. The process prediction
computes the distribution p(xn+1|Zn) given a state transition model

xn+1 = f(xn,un) + wn,

where un represents a control input and wn ∼ N
(
0,Q

)
is an independent noise disturbance. The

information matrix and vector are propagated

Λ̄n+1 =

[
Λd,d − Λd,nΩ−1Λn,d Λd,nΩ−1F>Q−1

Q−1FΩ−1Λn,d Ψ

]

η̄n+1 =

[
ηd − Λd,nΩ−1η?

Q−1FΩ−1ηn −Ψ(f(µn,un)− Fµn)

]
,
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where, for notational convenience,

Ω = Λn,n + F>Q−1F

Ψ = (Q + FΛ−1
n,nF>)−1

η? = ηn − F>Q−1(f(µn,un)− Fµn).

State augmentation appends the newest vehicle state to the state vector while also maintaining
the previous state as a delayed-state. In this case, prediction with augmentation simultaneously
appends the new state and predicts forward

Λ̄n+1 =

Λd,d Λd,n 0

Λn,d Λn,n 0

0 0 0


︸ ︷︷ ︸

Λn

+

0 0 0

0 F>Q−1F −F>Q−1

0 −Q−1F Q−1



η̄n+1 =

ηdηn
0


︸ ︷︷ ︸

ηn

+

 0

F>Q−1(f(µn)− Fµn)

−Q−1(f(µn)− Fµn)

 .

We see here that the information update is sparse, as it only affects the lower block corresponding to
the previous and newest states. As mentioned earlier, the cumulative effect is that the information
admits a sparse tri-diagonal structure as more delayed-states are added.

Measurement Update

Consider the general nonlinear observation model

zn+1 = h(xn+1) + vn+1,

where vn+1 ∼ N
(
0,R

)
is an independent noise perturbation. The observation model repre-

sents the conditional distribution p(zn+1|xn+1). We can then compute the distribution over state,
p(xn+1|Zn+1), as a simple additive update

Λn+1 = Λ̄n+1 + H>R−1H

ηn+1 = η̄n+1 + H>R−1(zn+1 − h(µ̄n+1) + Hµ̄n+1),

where H is the observation Jacobian and µ̄n+1 is the state mean following process prediction. The
observation model generally only involves a portion of the state and, therefore, the observation
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Figure 2.5 Pose-graph over server TOL poses. The OSM algorithm allows the client to reconstruct the underlying
server pose-graph (horizontal lines) from the set of received OSPs (colored arcs). Each OSP encodes the transition
from x1, which represents the origin state.

Jacobian H is sparse. The information update term is defined by the outer product, H>R−1H,
which is then also sparse and only touches blocks of the information matrix corresponding to
nonzero elements of the measurement Jacobian.

2.2.2 Origin State Method

Our goal is to broadcast information that allows the client to reconstruct the server pose-graph.
However, the server does not have any knowledge of the information that the client has actually
received, because communication is broadcast and unacknowledged. The underlying assumption is
that the server pose-graph grows as a Markov chain—the standard model for a dynamical system.
The Markov chain is a special case of the more general MRF. Loop closures, popular in SLAM
literature, are not supported by this model since including them in the pose-graph breaks this chain
assumption. Each origin state broadcast, called an origin state packet (OSP), encodes a server
transition from the origin state to the current state (Fig. 2.5). The OSP represents the relationship
between the origin and current state as their joint marginal distribution, i.e., the two-node pose-
graph over the origin and current TOL states. We show here that the client can incrementally
reconstruct the server’s pose-graph from the sequence of received OSPs.

Server-side Origin State Operation

The server vehicle maintains an information filter, augmenting its state vector with a copy of each
TOL state. At the TOL, the server broadcasts an OSP containing the joint marginal informa-
tion over the current TOL state and a designated previous delayed-state, the origin, as depicted
in Fig. 2.5. The index label of the new TOL state and the origin are included in the OSP for
reconstruction by the client.

We can partition the set of intermediate server TOL states occurring between the origin state,
xo, and the nth TOL state, xn, into the set of states received and not received by the client, xr and
xr̄, respectively. The server pose-graph at the nth TOL then represents the distribution over the
state vector

xsn =
[
x>o ,x

>
r∪r̄,x

>
n

]>
, (2.2)
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where the ‘s’ superscript indicates the distribution as tracked by the server. Note that the server
has no knowledge of the partition r and r̄. This distribution is expressed

ps(xo,xr∪r̄,xn|Zn) = N−1
(
xsn;ηsn,Λ

s
n

)
,

Λs
n =

 Λo,o Λo,r∪r̄ 0

Λr∪r̄,o Λr∪r̄,r∪r̄ Λr∪r̄,n

0 Λn,r∪r̄ Λn,n

 , (2.3)

ηsn =

 ηoηr∪r̄
ηn

 , (2.4)

where Zi is the set of all observations up to the ith time index. Note that Λs
n is block tri-diagonal

as per the Markov chain assumption.
Under the OSM, the server computes an OSP at every TOL, which is simply the joint marginal

distribution corresponding to the state vector

xsOSPn
=
[
x>o ,x

>
n

]>
, (2.5)

computed via the Schur complement of (2.3) and (2.4):

psOSPn
(xo,xn|Zn) =

∫
xr∪r̄

ps(xo,xr∪r̄,xn|Zn)dxr∪r̄

= N−1
(
xsOSPn

;ηsOSPn
,Λs

OSPn

)
,

Λs
OSPn

=

[
Λs
o,o Λs

o,n

Λs
n,o Λs

n,n

]
, (2.6)

ηsOSPn
=

[
ηso

ηsn

]
. (2.7)

This formulation allows the server to remain ignorant about states the client has received, r. More-
over, it allows the server to send useful information to multiple clients, where each client has a dif-
ferent set of received server TOL states. In order for the client to reconstruct the server pose-graph,
the client must already have the origin state in its representation, (i.e., the origin is a previously
received TOL state). The index label of the current TOL, n, and the origin, on, are included in the
broadcast.
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Algorithm 1 Server-side Origin State Method

Require: Λ0,η0 {initial server belief}
1: Λb,ηb, ob ← 0 {backup origin state packet}
2: loop
3: if k is TOLn then
4: Λsn, η

s
n, on ← originPacket(Λk,ηk)

5: if on 6= on−1 then
6: {origin has been shifted, update backup packet}
7: Λb,ηb, ob ← Λsn−1, η

s
n−1, on−1

8: end if
9: broadcastOriginPacket(Λsn, η

s
n, on,Λb,ηb, ob)

10: if recoveryRequired() then
11: broadcastRecovery() {Section 2.2.2}
12: end if
13: Λk, ηk ← predictAugment(Λk,ηk)
14: n← n+ 1
15: else
16: Λk,ηk ← predict(Λk,ηk)
17: end if
18: Λk,ηk ← localMeasUpdate(Λk,ηk, zk)
19: k ← k + 1
20: end loop

Algorithm 1 summarizes the server-side operation. The server simply maintains an information
filter over its pose-graph, augmenting its state vector with each new TOL pose. At each TOL the
server computes an OSP to broadcast to the client. Origin shifting and recovery is introduced and
discussed below.

Although, in general, the size of the server pose-graph grows with the addition of each new
TOL pose, the dimension of the OSP marginal information matrix and vector is fixed. The OSP
dimension is twice the state dimension—therefore, a minimal vehicle state size is desirable to
reduce communication packet size.

Client-side Origin State Operation

The client incrementally reconstructs the server pose-graph from the sequence of successfully
received OSPs. Before the nth TOL, the client-side version of the server pose-graph reconstruction
contains the server states

xcrm =
[
x>o ,x

>
r

]>
=
[
x>o ,x

>
r′ ,x

>
rm

]>
,
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Figure 2.6 Illustration of OSM operation. (a) represents the server’s pose-graph at the nth TOL. The server broadcasts
an OSP (b) to the client. The client has already reconstructed a portion of the server graph, (c), having missed TOL
poses, xr̄. The client then reconstructs the server goal information illustrated in (d) by fusion of (b) and (c). (a) and
(d) are equivalent with the unreceived TOL states, xr̄ marginalized out.

ps(xo,xr∪r̄,xn|Zn)

(a) Server pose-graph at the current TOL

psOSPn
(xo,xn|Zn)

(b) Current OSP

pc(xo,xr|Zm)

(c) Client-side reconstruction through the last received OSP

pc(xo,xr,xn|Zn)

(d) Client-side goal information

where the ‘c’ superscript indicates the server distribution as tracked by the client, r = {r1, . . . , rm}
denotes the set of received server TOL indices, rm is the latest received TOL index, and r′ =

{r1, . . . , rm−1} represents other previously received server TOL indices. To simplify notation, we
letm = rm for the remainder of the discussion. Note that the client has no representation for server
states corresponding to missed TOL poses, xr̄. This is equivalent to the server’s distribution at m
with states in xr̄ marginalized out,

pc(xo,xr′ ,xm|Zm) = N−1
(
xcm;ηcm,Λ

c
m

)
,
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Λc
m =

Λo,o Λo,r′ 0

Λr′,o Λr′,r′ Λr′,m

0 Λm,r′ Λm,m

 , (2.8)

ηcm =

ηoηr′
ηm

 . (2.9)

After receiving the nth OSP, the client solves the following problem:

Given the information available to the client,

1. pc(xo,xr|Zm), the client-side server pose-graph up to the last received TOL and

2. ps(xo,xn|Zn), the new OSP (computed server-side),

Construct the client goal distribution, i.e., the server pose-graph up to time n, as if unreceived
TOL states had been marginalized out,

pc(xo,xr,xn|Zn) = N−1
(
xcn;ηcn,Λ

c
n

)
,

Λc
n =


Λo,o Λo,r′ 0 0

Λr′,o Λr′,r′ Λr′,m 0

0 Λm,r′ Λm,m Λm,n

0 0 Λn,m Λn,n

 , (2.10)

ηcn =


ηo

ηr′

ηm

ηn

 . (2.11)

The boxed elements in (2.10) and (2.11) indicate unknown values in the desired goal recon-
struction while the remaining values are known from (2.8) and (2.9) because of the assumed
Markov structure for the server states (block tri-diagonal information matrix). In other words,
all new information since the last received OSP only affects a small portion of the information
matrix and vector. The client-side reconstruction is illustrated in Fig. 2.6.

The client-side reconstruction begins by marginalizing out xr from the (partially unknown)
goal distribution, (2.10) and (2.11), producing an expression that can be equated to the (known)
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received nth OSP, (2.6) and (2.7),

pcOSPn
(xo,xn|Zn) =

∫
xr

pc(xo,xr,xn|Zn)dxr (2.12)

≡ psOSPn
(xo,xn|Zn). (2.13)

Marginalization of the goal distribution via the Schur complement leads to a set of linear equations
in the unknowns. We proceed with a two-step marginalization procedure. First, we marginalize
out r′ states from (2.10) and (2.11) via the Schur complement: Λ̃o,o Λ̃o,m 0

Λ̃m,o Λ̃m,m Λm,n

0 Λn,m Λn,n

 =

Λo,o 0 0

0 Λm,m Λn,m

0 Λn,m Λn,n

−
Λo,r′

Λm,r′

0

Λ−1
r′,r′

[
Λr′,o Λr′,m 0

]
(2.14)

 η̃oη̃m
ηn

 =

ηoηm
ηn

−
Λo,r′

Λm,r′

0

Λ−1
r′,r′ηr′ , (2.15)

where the tilde decoration indicates block elements that are changed from (2.10) and (2.11). This
step results in the following set of expressions,

Λ̃o,o = Λo,o − Λo,r′Λ
−1
r′,r′Λr′,o ,

Λ̃m,m = Λm,m − Λm,r′Λ
−1
r′,r′Λr′,m ,

Λ̃o,m = −Λo,r′Λ
−1
r′,r′Λr′,m ,

= Λ̃>m,o ,

η̃o = ηo − Λo,r′Λ
−1
r′,r′ηr′ ,

η̃m = ηm − Λm,r′Λ
−1
r′,r′ηr′ .

(2.16)

Second, we marginalize out statem from (2.14) and (2.15) and equate to the server-side OSP, (2.6)
and (2.7), [

Λs
o,o Λs

o,n

Λs
n,o Λs

n,n

]
=

[
Λ̃o,o 0

0 Λn,n

]
−
[

Λ̃o,m

Λn,m

]
Λ̃−1
m,m

[
Λ̃m,o Λm,n

]
(2.17)[

ηso

ηsn

]
=

[
η̃o

ηn

]
−
[

Λ̃o,m

Λn,m

]
Λ̃−1
m,mη̃m. (2.18)

The unknown values of the goal client-side server reconstruction, boxed in (2.10) and (2.11), are
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Algorithm 2 Client-side Origin State Method

1: Λ0,η0 ← 0
2: loop
3: if (Λsn, η

s
n, on,Λb, ηb, ob)← receivedPacket() then

4: if havePrimaryOriginIndex(on) then
5: Λn,ηn ← addOriginPacket(Λsn, η

s
n, on)

6: updateDEIF(Λn,ηn) {(2.21), (2.22)}
7: else if haveSecondaryOriginIndex(ob) then
8: Λn−1,ηn−1 ← addOriginPacket(Λb, ηb, ob)
9: Λn,ηn ← addOriginPacket(Λsn, η

s
n, on)

10: updateDEIF(Λn,ηn) {(2.21), (2.22)}
11: else
12: requestRecovery()
13: end if
14: end if
15: end loop

then computed by substituting (2.16) into the above equality

Λ̃m,m = Λ̃m,o

(
Λ̃o,o − Λs

o,o

)−1

Λ̃o,m ,

Λm,m = Λ̃m,m + Λm,r′Λ
−1
r′,r′Λr′,m ,

Λm,n = −Λ̃m,mΛ̃−1
o,mΛs

o,n ,

Λn,n = Λs
n,n + Λn,mΛ̃−1

m,mΛm,n ,

η̃m = −Λ̃m,mΛ̃−1
o,m (η̃o − ηso) ,

ηm = η̃m + Λm,r′Λ
−1
r′,r′ηr′ ,

ηn = ηsn + Λn,mΛ−1
m,mη̃m .

(2.19)

When only one TOL state has been received (i.e., m = 1, r = {r1}, and r′ = {∅}), the derivation
proceeds as above, but with only the second marginalization step.

As an implementation aside, at the TOA of the first received OSP, the client does not need
to perform any computation to reconstruct the server pose-graph. The initial OSP is simply the
two-node server pose-graph consisting of the server origin state and the current TOL state. (Note
that this allows any new clients to immediately enter and join the network, i.e., the network can
dynamically resize).

Origin Shifting

The information difference
(
Λ̃o,o−Λs

o,o

)
in (2.19) represents the delta information known about the

origin state between the client through the last received OSP, pc(xo|xr,Zm), and the server at the
current TOL, ps(xo|xn,Zn). This difference approaches machine precision as the time between the
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origin and new TOL state grows (because little additional smoothing of the origin state occurs after
sufficient time). The reconstruction rules require the inversion of this decreasing term, leading to
numerical inaccuracies that can cause divergent errors in the reconstruction. A simple solution is
to ensure that the origin is periodically shifted forward.

We initially proposed an origin shifting scheme based on acknowledgments from each client
(Walls and Eustice, 2012); however, an acknowledgment based scheme does not scale well to
many clients. Moreover, numerical instability will continue to plague an acknowledgement driven
system if the server does not regularly receive acknowledgments. Instead, we propose a shifting
scheme in which the server evaluates a function based upon the numerical stability of the newest
OSP—keeping the OSP broadcast passive and not requiring any client acknowledgements, such
that the method can more easily scale to many client vehicles.

During our real-time experiments (Section 2.4), the server shifted the origin forward using a
threshold, T, on the trace of the difference term in (2.19),

trace
(
Λ̃o,o − Λs

o,o

)
< T. (2.20)

The trace is only used as a measure to test the numerical stability of the OSP and is tuned to
produce an accurate reconstruction. Note that Λ̃o,o is the Λs

o,o element from the previous OSP, and
is therefore readily available without additional computation.

When the shifting function suggests shifting the origin, the new origin is set to the previous
TOL state. The server is now free to marginalize out TOL states preceding the new origin. To help
ensure that each client vehicle can maintain a reconstruction of the server pose-graph that contains
the origin state, in practice each server broadcast encodes at least two OSPs: the primary OSP
encoding the transition from the origin to the current TOL, and a secondary OSP encoding the
transition from the previous origin to the current origin. Depending upon the available bandwidth,
the server could extend the broadcast to include more than two OSPs to increase tolerance to
packet loss. From an implementation standpoint, the server does not need to recompute previous
OSPs, it simply stores previously broadcast messages. The server-side origin shifting step and
corresponding client behavior are outlined in Algorithm 1 and Algorithm 2, respectively.

After the server shifts the origin forward, the client-side reconstruction will contain server TOL
states preceding the new origin. The reconstruction rules (2.19) are unmodified if the client first
marginalizes out these earlier server states.

Recovery Packet

Passively shifting the origin limits the robustness of the OSM algorithm. The server can no longer
guarantee that the client has received the origin TOL state (or the previous origin state, as described
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above). If the client vehicle has not received an update in a sufficiently long period of time, it will
require a special information packet in order to recover (i.e., reconstruct the current server pose-
graph given the state it has already received). Once the client identifies that it has lagged behind, it
transmits a recovery request to the server containing the last received TOL index. After receiving
a client request, the server computes this special information as an additive ‘delta information’
(discussed in Section 2.3) from the last TOL state that the client has received up to the current
origin state. One implementation detail here is that now the server must not marginalize out the
oldest TOL states from its pose-graph in order to compute a recovery packet, unless it can guarantee
that each client has received a more recent TOL. The full client-side operation is summarized in
Algorithm 2.

Recovery requests could limit the scalability of the algorithm because each client vehicle re-
quires a slot in the TDMA schedule to transmit. In our field trials (Section 2.4), recoveries were
rarely necessary, so that only a small fraction of the TDMA was reserved.

2.3 Online Distributed Estimation

We demonstrate that the incremental reconstruction of the server pose-graph within the OSM
framework can be used onboard the client to exactly reproduce the centralized solution to the
multiple vehicle localization problem. We couple the OSM algorithm with the DEIF algorithm
update (Webster et al., 2013) to compute the client-side state estimate following OWTT range
observations. The DEIF algorithm is a method in which a client vehicle can exactly reproduce
the centralized delayed-state filter solution for server-client cooperative networks. Essentially, the
DEIF provides an efficient way to incorporate the newest server information in a delayed-state
framework. The DEIF, as originally proposed, is not real-time practical since it relies on an unre-
alistic communication assumption (perfect packet reception) to build the server information—this
is remedied by the OSM representation. The full operation of the OSM and DEIF is illustrated in
Fig. 2.1.

To review the DEIF, the server vehicle maintains an information filter to fuse its local mea-
surements, augmenting its state vector with each TOL position. As with the OSM, the server state
evolves as a Markov process. Each ‘delta information’ encompasses all the local information that
the server has gained between TOLs, computed as

∆Λsn = Λsn − Λsn−1 ,

∆ηsn = ηsn − ηsn−1
,

(2.21)

where the operation conforms for the dimensionality difference and the ‘s’ subscript indicates the
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Figure 2.7 Illustration of the DEIF update step. The client adds the server delta information to exactly reconstruct the
centralized information.

(a) Server-side DEIF operation. Server information is indicated in red.

(b) Client-side DEIF operation. Local client information and range information are shown in blue and
green, respectively.

server’s information. The delta information is illustrated in Fig. 2.4 and Fig. 2.7. Delta information
packets can be conceptually considered as expressing a transition on the server pose-graph from
the previous TOL state to the current TOL state. The DEIF design insightfully noted that the delta
information updates computed by the server are equivalent to the delta information updates within
the CEIF.

The client-side DEIF is driven by its local measurement updates and periodic (assumed non-
lossy) delta information packets from the server vehicle, which the fault-tolerant OSM algorithm
provides. The client-side DEIF tracks the current client state in addition to the set of server TOL
states

xn =
[
x>cn ,x

>
s1
, . . . ,x>sn

]>
,

where the ‘c’ subscript indicates the client state. Upon packet reception, the client vehicle simply
adds the delta information into its information filter

Λcn = Λ′cn + ∆Λsn ,

ηcn = η′cn + ∆ηsn ,
(2.22)

where information includes both server TOL states and the current client state. Following the
subsequent relative range measurement update, the client-side filter matches the corresponding
centralized filter exactly up to communication delay. The delta information addition is illustrated
in Fig. 2.7. The client is not required to maintain the full set of server TOL poses in its state vector.
Full details of the algorithm as well as extensive comparitve results are provided in Webster et al.
(2013).

The DEIF requires that the client receive each delta information (2.21) broadcast by the server
in order to reconstruct the server pose-graph. We use the OSM to reconstruct the server pose-graph
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Figure 2.8 Ocean-Server, Inc. Iver2 AUVs used in the field experiments.

onboard the client. The client vehicle is then able compute the delta information to the DEIF, and
therefore locally reconstruct the CEIF.

2.4 Field Trials

Seven field trials spanning more than 12 h of operation with a single server and two client ve-
hicles were performed over August 18–20, 2013, at the University of Michigan Biological Sta-
tion (UMBS). These trials demonstrate the OSM algorithm’s ability to incrementally broadcast
and reconstruct the server pose-graph, compute the centralized solution, and fuse range-only con-
straints in a multiple vehicle framework. In addition to the single server-client topology, we provide
post-process results demonstrating a two-server support network.

2.4.1 Experimental Setup

We fielded two Ocean-Server, Inc. Iver2 AUVs, designated AUV1 and AUV2, (Fig. 2.8). Each
AUV is outfitted with an advanced dead-reckoning sensor suite outlined in Appendix C. Through-
out our experiments, AUV1 acts as the server, aiding AUV2, which is considered to be the client.
AUV1 is the only vehicle that observes and fuses GPS when at the surface. To demonstrate the
ability of our OSM algorithm to support multiple client vehicles, we also consider a topside support
ship (with only GPS reported velocity and heading for input) as a client vehicle. All vehicles were
outfitted with a Woods Hole Oceanographic Institution (WHOI) Micro-modem and co-processor
board capable of encoding multiple frame, higher bandwidth phase-shift keying (PSK) data packets
(Freitag et al., 2005a,b).

For baseline comparision of our OWTT navigation, we deployed a three-beacon 25 kHz LBL
network to independently measure underwater vehicle position. Fig. 2.9 depicts the LBL beacon
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Figure 2.9 Experiment B setup with three LBL beacon locations.
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locations used during our field trials, which were positioned to provide good triangulation observ-
ability over the client vehicle survey area (the beacon locations were moored and held fixed for all
experiments). Each vehicle interrogated the LBL network roughly twice per minute, resulting in
a maximum of six range constraints per minute. We recorded two-way LBL, along with GPS po-
sition fixes at the surface, for all vehicles for ground-truth comparison (none of the client vehicles
used these measurements during the real-time experiments).

2.4.2 Vehicle State Description

Since AUV attitude and depth are both instrumented with small bounded error, we focus on world-
frame XY horizontal position estimation. By broadcasting pressure depth with each acoustic
packet, OWTT 3D range measurements, z3D, can be projected into the horizontal plane, zr, ac-
cording to the method outlined in Appendix B. Moreover, we are motivated to maintain a minimal
state size because of the limited acoustic channel capacity.

The state estimator on each vehicle tracks a state vector composed of its horizontal position,
xk = [xk, yk]

>. The state is time-propagated using an odometry-driven plant model,

xk+1 = xk + uk+1,

where uk+1 is the delta odometry measurement. The odometry input and corresponding input
covariance, Qk+1, are obtained by Euler integrating DVL and attitude heading reference sys-
tem (AHRS) measurements and performing a first-order covariance estimate as described in Ap-
pendix B. In the case of the topside surface craft, world-frame velocity is integrated from GPS
reported speed and track direction.

For the server vehicle, GPS reported x, y observations at vehicle surfacings are treated as linear
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Figure 2.10 Acoustic message composition. Each PSK Rate 1 and Rate 2 Micro-modem message contains three 64-
byte frames. We use the first two frames to hold two origin state packets and the third frame is reserved for recovery
packets, or an additional origin state packet if no recovery has been requested.

observations of state. OWTT measurements, zr, provide a range between the server TOL position
and the client TOA position, with nonlinear observation model:

zr =
∥∥∥xsTOL

− xcTOA

∥∥∥
2

+ v,

where v ∼ N (0, σ2
r) represents the range measurement noise. In our experiments, we used σr =

30 cm, to account for noise in both TOF observation and depth.

2.4.3 Acoustic Communication Considerations

Each origin state packet requires 60 bytes to encode. Each double precision element of the origin
state information is rounded to a precision of 10−5 to reduce the packet size. Moreover, since
the information matrix is symmetric, only the upper diagonal elements are transmitted. The full
message specification is detailed in Appendix C. Both Micro-modem PSK Rate 1 and Rate 2
messages allow the user to broadcast three 64 byte frames (Fig. 2.10). We fill the first two frames
of Rate 1 and Rate 2 messages with the primary and secondary OSPs as discussed in Section 2.2.2.
If a client vehicle has requested a recovery packet, we transmit the custom recovery packet in
the remaining third frame, so that normal operation continues for vehicles that do not require
a recovery step, otherwise we broadcast a tertiary OSP. Acoustic packets were encoded using
dynamic compact control language (DCCL) (Schneider and Schmidt, 2010a) and transmitted using
the Goby-acomms library (Schneider and Schmidt, 2012).

We employed a fixed TDMA cycle, whereby all vehicles were assigned a communication time
slot. The server vehicle broadcast an OSP roughly once per minute, while the client transmitted
a single data packet over the same time window, used to monitor vehicle health state and to place

Table 2.2 Acoustic statistics across Experiments A–G

A B C D E F G
Server:AUV1 broadcast bps 25.6 25.1 22.4 23.0 23.0 22.8 23.2
Client:AUV2 Reception rate 47.9% 43.2% 32.9% 32.1% 53.0% 34.4% 33.7%
Client:Topside Reception rate 46.1% 55.9% 62.6% 57.1% 60.2% 50.4% 39.9%
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Figure 2.11 Pose-graph reconstruction example from Experiment G. Light gray trajectory depicts the server pose-
graph over all poses, while the black pose-graph represents server TOL states. The thick red line represents the
client-side reconstructed server pose-graph (as if missed server TOL poses had been marginalized out). The two
pose-graphs are equal up to communication round-off errors.
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recovery requests when needed. As noted in Table 2.2, the average server throughput used for
navigation data was ∼25 bps. The average client-side navigation packet reception rates across
experiments varied between 32% and 63%. Our origin state method allowed each client to reliably
reconstruct the server pose-graph despite the small bandwidth allotment and low reception rates.

2.4.4 Results

Fig. 2.12 summarizes the relative vehicle trajectories over the seven individual field trials. The
relative server-client geometries between AUV1 and AUV2 were purposely varied between the
different experiments while the topside surface craft had no control and drifted around the survey
site, occasionally motoring to stay within the site boundary. During Experiments A and B, the
server and client swam on orthogonal lawn-mower trajectories, Experiments C and D, the server
and client swam along the same lawn-mower trajectory with the server following at a fixed dis-
tance, Experiment E, the server encircled the client via a bounding diamond-shaped trajectory,
while during Experiments F and G, the server-client swam along the same lawn-mower trajectory,
beginning at different boundaries of the survey area. As seen in Table 2.2, the different relative
geometries and conditions led to varied communication reception performance ranging from 32–
63% throughput. During the course of our experiments, each vehicle swam at fixed depth with
AUV1 holding a depth of 8 m, AUV2 at 10 m (apart from prescribed surface intervals for GPS
ground-truth), and the topside transducer was suspended at 10 m depth.
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Figure 2.12 Summary of the seven field trials used for experimental evaluation. (a)–(g) Topdown view of the 3-node
vehicle trajectories with total trial time indicated in each subcaption. AUV2 and Topside acted as clients while AUV1
performed the server role. (a) AUV1 shifted the origin forward at an accelerated rate in order to artificially induce
recovery requests. (b) AUV1 and AUV2 followed orthogonal lawnmower surveys. (c),(d) AUV1 followed AUV2
along the same lawnmower survey. (e) AUV1 maintained a diamond box path bounding AUV2’s lawnmower survey.
(f),(g) AUV1 and AUV2 followed similar lawnmower surveys, beginning from opposite ends of the survey area, i.e.,
AUV1 began on the East boundary while AUV2 began on the West boundary.
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(a) Experiment A (0.94 h)
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(b) Experiment B (2.02 h)
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(c) Experiment C (1.87 h)
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(d) Experiment D (1.92 h)
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(e) Experiment E (2.01 h)
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(f) Experiment F (1.63 h)
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(g) Experiment G (1.65 h)

Client-side Server Pose-graph Reconstruction

The client was able to accurately reconstruct the server pose-graph using the OSM framework
throughout all of our field trials. Fig. 2.11 illustrates an example ‘true’ server pose-graph with the
client-side reconstruction overlaid. Note that the client-side reconstruction does not contain all of
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Figure 2.13 Server OSP TOL indices and the corresponding index received by the client during Experiment D. The
shaded red/green/blue regions represent the OSPs broadcast by the server (color coded according to Fig. 2.10), while
the thick black line plots the client’s latest received server index. Large steps in the server indices indicate an origin
shift. (a) illustrates the real-time server origin shifting, while (b) demonstrates how the OSM algorithm adapts to
varying conditions, waiting longer before shifting the origin when GPS is cut out. Note that the real-time server
shifted the origin four times during the same region whereas the post-process origin only shifted twice (indicated by
dashed lines).

0 1000 2000 3000 4000 5000 6000 7000

mission time [s]

0

20

40

60

80

100

120

Se
rv

er
T

O
L

in
de

x

2nd OSP
1st OSP
OSP
Client

(a) GPS available during surface intervals

0 1000 2000 3000 4000 5000 6000 7000

mission time [s]

0

20

40

60

80

100

120

Se
rv

er
T

O
L

in
de

x

NO GPS

(b) No GPS during shaded region

the server TOL poses. The client’s version of the server pose-graph, however, is equivalent to the
server’s as if the TOL states corresponding to dropped messages had been marginalized out. As
shown in Fig. 2.14a, each client is able to reconstruct the server pose-graph with small error, on
average to the order of 10−5 m. Moreover, this error is attributed to the communication round-off
of the OSP (using the origin-shifting scheme with full precision OSPs in post-process, both mean
and max reconstruction error is on the order of 10−12 m).

Server Origin Shifting

During Experiment A, the server shifted the origin forward at an artificially increased rate (every
other TOL) in order to force a client recovery request. During this trial, AUV2 and Topside received
one and three recovery packets, respectively, after transmitting requests to the server. These packets
were successfully integrated into the server pose-graph reconstruction.

Throughout the remaining 11 h of field trials showcasing normal operation, neither client re-
quired a recovery packet. Moreover, during normal operation (Experiments B–G), both clients
used a total of 554 Frame 1 OSPs, 62 Frame 2 OSPs, and only 2 Frame 3 OSPs. The server used a
trace threshold T = 5 · 10−2.

The client will require a secondary (Frame 2) OSP at most once per server origin shift, because
the secondary packet ’catches’ the client up to the current origin. We expect the client to occasion-
ally require a secondary packet following an origin shift because of the high likelihood of missing
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any single transmission. However, the client would need to lose communication with the server
over an entire period between origin shifts in order to require the tertiary (Frame 3) OSP. In order
to require a recovery packet, communication would have to drop out over at least two origin shift
periods, depending on the number of broadcast redundant OSPs.

The rate at which the server will shift the origin (based on the trace metric in (2.20)) depends
on the server noise models and available measurements. Absolute position observations, e.g., GPS,
and noisy process models will reduce correlation between the current state and the origin state, so
that subsequent measurements will not influence the origin as much. Therefore, after receiving
absolute position observations or sufficient time given a noisy process model, the server will be
forced to shift the origin. Fig. 2.13 illustrates the server’s origin shifting during Experiment D.
The server surfaced at regular intervals, receiving several GPS observations. In post-process, we
cut out GPS measurements over a nearly 30 min window. In this case, the server shifted the origin
forward less frequently (twice as opposed to four times as seen in Fig. 2.13b). This demonstrates
the ability of the OSM algorithm to automatically adapt origin shifting to varying measurement
availability.

Client-side DEIF

Each client employed a DEIF to integrate server and client information with relative range observa-
tions. The state estimate of the post-process CEIF agrees with our real-time DEIF with differences
commensurate with those reported by Webster et al. (2013) (on the order of 10−5 m) and on par
with the errors observed in the server pose-graph reconstruction (see Fig. 2.14b). The two esti-
mates are equal at the TOA of each OSP. The estimates may vary in between TOAs because the
CEIF is able to incorporate server information the instant it is received, while the DEIF must wait
to incorporate server information until the OSP is received (i.e., up to communication delay).

Multiple Server Implementation

It is a relatively simple extension to move from a single to multiple independent server implemen-
tation as is depicted in Fig. 2.3. In this case, the client vehicle reconstructs the local pose-graph
from each server and fuses relative range constraints. Range constraints are still measured by the
client to each server. The client-side DEIF reproduces the centralized filter (up to communication
delay). Communication delay will cause the linearization point used for range observations to dif-
fer between the client-based and centralized results. This is because one (or both) of the servers
will have made observations that the client has not yet received.

We tested the two server scenario in post-process using the field collected sensor data from
Experiment C. In this trial, the Topside vehicle acted as the client with AUV1 and AUV2 acting
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Figure 2.14 Summarized reconstruction and estimation error across all seven field trials (A–G). (a) The server pose-
graph reconstruction error is computed as the norm of the difference between server TOL poses received on the client
and their actual value computed on the server. The maximum error for any single pose remains below 1 mm for all
trials, while the mean error is on the order 10−5 m. (b) Difference in the CEIF versus the DEIF client trajectory
estimate at the TOA. Each bar represents the mean norm difference between state estimates for each estimator. Note
that the client-side DEIF is able to reproduce the centralized CEIF estimate in real-time to high accuracy.
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as servers. The Topside-based DEIF solution differs with the corresponding CEIF on average by
4.5 cm. We can attribute this difference primarily to a difference in range observation linearization
point.

Performance Baseline

OWTT navigation allows AUVs to navigate subsea for extended periods of time with bounded
error. Bounded error navigation is usually achieved with the use of networks of stationary acous-
tic beacons, e.g., LBL or USBL. The cost of deploying, surveying, and later recovering an LBL
system is high with respect to time, however. Here, we discuss the ability of OWTT relative rang-
ing frameworks to approach the accuracy of LBL systems without the operational and equipment
overhead. The accuracy of the post-process CEIF has previously been extensively compared to an
LBL navigation solution by Webster et al. (2012).

Fig. 2.15 compares both LBL and OWTT based DEIF navigation solutions to a baseline tra-
jectory computed by fusing GPS and odometry measurements. Since each range observation only
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Figure 2.15 OWTT and LBL navigation comparison to a GPS baseline. OWTT compares well with LBL in (a),
while OWTT has a larger error in (b) (outlined in red in the lower right corner). The server/client relative geometries
(Fig. 2.12), however, greatly influence this result. The middle axis in each subfigure plots the x, y uncertainty estimated
by the DEIF, showing that in (b) y, East, uncertainty is not as well bounded. Finally, the lower axis shows the norm
difference between OWTT and LBL solutions.
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(a) Experiment B: good server-client geometry
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(b) Experiment C: poor server-client geometry

adds information in a single direction, the relative geometry between server and client is of ut-
most importance. Experiment B (Fig. 2.15a) intuitively has an informative relative geometry as
the server continually crosses over the clients path, helping to bound error in both x, y directions.
Experiment C (Fig. 2.15b), however, does not have such a useful relative geometry, as the server
largely remains behind the client along the North–South direction. Indeed, we see that the server is
able to well bound uncertainty along the East–West direction during Experiment B, but not as well
in Experiment C. Moreover, due to an informative relative server trajectory, the client DEIF closely
reproduces the full LBL solution in Experiment B. This is further evidenced by the norm differ-
ence between LBL and DEIF solutions (Fig. 2.15), which illustrates that the difference between
solutions decreases in Experiment B but increases with mission time in Experiment C.

Each client vehicle received at most one OWTT relative range constraint over each one minute
TDMA window, while potentially receiving six LBL ranges over the same period. Using OWTT
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navigation, however, we can achieve bounded error on the same order as LBL. This solution is
only enhanced by selecting appropriate server relative geometries. Advantageously, our method
also scales to many client vehicles, whereas the update rate for narrowband LBL decreases with
new clients. Optimal relative positioning of server vehicles has received recent attention (Tan et al.,
2014; Bahr et al., 2012), and is the subject of Chapter 4.

2.5 Discussion

The OSM with the DEIF constitutes a smoothing algorithm built upon a delayed-state information
filter. While an extended information filter is sub-optimal for nonlinear estimation, our solution
compares well to nonlinear smoothing algorithms such as iSAM (Kaess et al., 2008). The delayed-
state information filter is equivalent to a nonlinear least-squares approach with the exception that
measurement constraints are only linearized once upon their initialization. This difference is small
in our implementation as all odometry constraints are linear, and infrequent range measurements
account for the only nonlinearities.

The OSM algorithm reproduces the linear server information up to communication round-off
errors onboard the client. The delta information (2.21) computed from the client-side reconstructed
pose-graph is a linear factor over the previously received and current server TOL states. This
factor contains all information due to observations occurring between the TOLs including process
predictions, odometry, and absolute position measurements such as GPS. Fig. 2.16, for example,
illustrates a delta factor as summarizing all information that occurs between server TOL poses.

We can compute a factor to represent the delta information using the concept of generic linear
constraints (GLCs) proposed by Carlevaris-Bianco and Eustice (2013). First, we compute the

Figure 2.16 Server factor graph example. The above factor graph shows the full server factor graph. Shaded nodes
and edges indicate constraints occurring between the previous and current TOL. The lower graph illustrates the
reconstructed client-side factor graph. The shaded delta state factor induces an equivalent factor potential as the
original server-side factors.
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Figure 2.17 Difference in estimated pose between the DEIF algorithm and the nonlinear least-squares iSAM during
Experiment F. The mean and maximum differences are 0.079 m and 0.35 m, respectively.

0 1000 2000 3000 4000 5000 6000
Client node id

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
di

ff
er

en
ce

[m
]

eigen-decomposition of the delta information

∆Λ = UDU>,

where ∆Λ ∈ Rp×p, q = rank(∆Λ), U ∈ Rp×q, and D ∈ Rq×q is a diagonal matrix. Using the
decomposition, we define the delta factor as a Gaussian observation with mean and covariance

z∆ = D
1
2 U>x (2.23)

Σ∆ = Iq×q, (2.24)

where x = [x>sn−1
,x>sn ]> is the state vector over the previous and current server TOL poses. This

factorization (while not unique) produces the same information over the server TOL poses as the
additive delta information block.

iSAM is equivalent to the DEIF with the exception that measurement constraints may be re-
linearized after their initialization. This difference is small in our implementation as all odometry
constraints are linear, and infrequent range measurements account for the only nonlinearities.

We implemented the factor representation for delta information, (2.23) and (2.24), to provide
server information to the client. Fig. 2.17 plots the difference between the DEIF and iSAM for
Experiment F. The small difference in DEIF and iSAM estimates is due to differing lineariza-
tion points. The ability to relinearize range constraints may have additional benefits over the
DEIF when a good linearization point is initially not available, for example, when the client dead-
reckoned error has grown too large.
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2.6 Chapter Summary

This chapter presents the OSM for server-client cooperative localization over an extremely faulty
and bandwidth-limited communication channel. Moreover, the OSM algorithm allows a client
vehicle to exactly reproduce the centralized estimate—therefore guaranteeing that the estimate is
consistent. We validated this distributed estimation algorithm over more than 12 h of field trials
deploying three vehicles. We demonstrated how our algorithm is adaptable to support both multiple
clients and multiple servers, albeit while maintaining strict server-client communication.
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Chapter 3

Peer-to-peer Localization

In the previous chapter, we presented a method for server-client cooperative localization that ex-
ploited the structure of the underlying Gaussian MRF in order to distribute inference. The OSM
algorithm allowed the client vehicle to reconstruct exactly the corresponding centralized estima-
tor. However, OSM requires an unwieldy recovery mechanism because the server pose-graph
reconstruction is limited by machine numerical precision. Moreover, OSM requires that the server
distribution grows according to a Markov chain. In this chapter, we present an algorithm that is
similar in spirit, but exploits the structure of the underlying factor graph1. By exploiting properties
of the constituent factor types, we derive an algorithm that is completely tolerant to communication
failure (i.e., never requires a recovery packet) and is extensible to other graph-based factors. Each
vehicle reconstructs a consistent approximation to the full centralized estimator. This method,
while approximate, more readily scales to larger vehicle networks toward peer-to-peer cooperative
localization.

We employ approximate marginalization techniques to enable vehicles to share an informative
subset of composed factors. Approximate marginalization has recently become a popular tool
within the SLAM community for reducing graph complexity, e.g., (Vial et al., 2011; Carlevaris-
Bianco et al., 2014; Huang et al., 2013; Mazuran et al., 2014). In this work, we exploit similar
tools in order to efficiently distribute locally obtained information within a cooperative localization
framework.

The specific contributions of this chapter include:

• We present a cooperative localization algorithm for communication-limited networks that is
completely passive (i.e., does not rely on acknowledgments) and employs a fixed bandwidth
data packet.

• We approximate the true locally constructed factor graph using approximate marginalization
1Portions of this work appear in (Walls et al., 2015b).
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techniques to produce a structure that can be more easily broadcast.

• We provide a comparative evaluation of our algorithm and a performance summary from a
three vehicle field deployment including two AUVs and a topside ship.

3.1 Related Work

Within cooperative localization frameworks, teams of communicating vehicles localize each other
by sharing local sensor data and observing relative vehicle pose. Early work explored sharing
information among the team and performing local data fusion (Kurazume et al., 1994; Fox et al.,
2000; Roumeliotis and Bekey, 2002; Howard et al., 2002; Dellaert et al., 2003).

More recent methods proposed framing cooperative localization as a multiple vehicle graph-
based SLAM problem (Kim et al., 2010; Cunningham et al., 2013). These methods implicitly
handle correlation that develops between vehicle estimates when relative information is shared;
our proposed method falls within this category. The centralized estimator for OWTT coopera-
tive localization shares a similar structure to a pose-graph SLAM formulation with known data
association.

Leung et al. (2010) presented a decentralized cooperative localization algorithm capable of re-
producing the centralized estimate in the presence of dropped communication. The bandwidth re-
quired for transmitting knowledge sets, however, may exceed the acoustic channel capacity during
periods of lost communication connectivity. Nerurkar and Roumeliotis (2013) similarly targeted
cooperative localization in bandwidth constrained scenarios, but require constant communication.

Many other researchers in the underwater domain have considered fusing relative range mea-
surements derived from observing the TOF of acoustic broadcasts. Previous work (Vaganay et al.,
2004; Maczka et al., 2007; Bahr et al., 2009a,b; Fallon et al., 2010a; Eustice et al., 2011; Webster
et al., 2012, 2013; Walls and Eustice, 2014a; Paull et al., 2014) has considered the limitations of
the acoustic channel and the difficulties of fusing range-only observations.

The complexity of graph-based estimation is largely dependent on the size (i.e., number of
variable nodes) and sparsity of the graph (i.e., number of edges). Graph sparsification methods
have been introduced (Vial et al., 2011; Carlevaris-Bianco et al., 2014; Huang et al., 2013; Mazuran
et al., 2014) to both reduce the number of variables in the graph and increase the sparsity without
greatly affecting the solution. We take advantage of approximate marginalization techniques—
used in graph sparsification to reduce the number of variables—to refactor a local factor graph
over a smaller set of pose variable nodes to reduce the communication requirement.

The work proposed here is closest to Fallon et al. (2010a) and the OSM presented in Chapter 2.
Within OSM, we exploited the structure of the information matrix associated with the underyling
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Figure 3.1 Example cooperative localization factor graph—empty circles represent variable pose nodes, solid dots
are odometry and prior factors, and arrows illustrate range-only factors and the direction of communication. In this
example, red represents a topside ship with access only to GPS, while blue and orange represent AUVs. Take note that
the dashed blue factors represent a new set of approximate factors distinct from the original in (a).

(a) Centralized factor graph over vehicle network.

(b) Factor graph over vehicle network constructed onboard the orange vehicle by our algo-
rithm.

Gaussian MRF to cope with unpredictable packet loss. Unfortunately, the algorithm requires pe-
riodically shifting an origin pose, requires a recovery mechanism for pathological communication
failures, and does not seamlessly allow for a vehicle with no odometry (e.g., a surface vehicle with
only GPS) to participate because of its Markov chain assumption. Fallon et al. (2010a) proposed
constructing a graph-based estimator on each vehicle by broadcasting individual factors to the
team. Their method transmits each factor over a large set of pose nodes and requires data requests
when communication is lost. In contrast, we exploit the factor structure of the local graph to com-
municate information within a completely passive framework. Paull et al. (2014) independently
arrived at a similar solution discussed in Section 3.4 and Section 3.5.
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3.2 Problem Statement

We formulate cooperative localization within a factor graph framework (discussed in Appendix A).
We show that the underlying structure of the centralized factor graph consists of factors that rep-
resent local vehicle observations and factors that represent relative vehicle measurements. We will
first review the factor graph formulation for a single vehicle and then expand to the full vehicle
network.

In the single vehicle setting, the factor graph approach is a smoothing algorithm that estimates
the entire trajectory of the vehicle. Recall that a factor graph is a bipartite graph with pose (variable)
nodes and factor (measurement) nodes representing the joint distribution over the unknown poses.
The ith vehicle graph represents the joint distribution over its N poses, Xi = [x1, . . . ,xN ], as

p(Xi|Zi) ∝ p(x1)
∏
i

p(zodoi |xi,xi−1)
∏
j

p(zpriorj |xj), (3.1)

where Zi represents the set of observations and we assume each vehicle has access to its initial
belief p(x1). The graph structure is a chain as we only consider unary ‘prior’ factors, zprior, (e.g.,
GPS) and pairwise sequential ‘odometry’ factors, zodo, (e.g., integrated velocity). We assume
that pose variable nodes represent rigid-body position and orientation. An odometry factor is the
observed rigid-body transformation between two poses.

For convenience, we define a ‘link’, Li = (zodoi , zpriori), associated with the ith pose node, xi,
as a 2-tuple containing the odometry factor to the previous pose node and a prior factor. Note that
each link need not have both an odometry and prior factor, for example the initial link only contains
a prior factor. The local chain is the set of links that represent the vehicle trajectory corresponding
to (3.1), Clocal = {Li}Ni=1. In Fig. 3.1a, each uniformly colored subgraph represents a local chain.

We can construct the posterior distribution over the entire M vehicle network (i.e., all vehicle
poses), {X1, . . . ,XM},

p(X1, . . . ,XM |Z1, . . . ,ZM ,Zr) ∝
M∏
i=1

p(Xi|Zi)︸ ︷︷ ︸
Clocali

∏
k

p(zk|xik ,xjk)︸ ︷︷ ︸
relative factors

, (3.2)

where Zr is the set of relative vehicle constraints and each zk represents a constraint between
poses on vehicles ik and jk. In this chapter, zk is a OWTT range constraint between a transmitting
vehicle’s TOL pose and a receiving vehicle’s TOA pose. The factor graph for a three vehicle
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network is illustrated in Fig. 3.1a. The centralized MAP estimate for each vehicle is obtained

X∗i = argmax
{X1,...,XM}

p(X1, . . . ,XM |Z1, . . . ,ZM ,Zr)

= argmin
{X1,...,XM}

− log p(X1, . . . ,XM |Z1, . . . ,ZM ,Zr), (3.3)

which results in a nonlinear least-squares problem for Gaussian noise models (Dellaert and Kaess,
2006).

The full joint distribution (3.2) can be factored as a product of each vehicle’s local chain and the
relative vehicle factors. Therefore, in order to construct (and perform inference on) the full factor
graph, the ith vehicle must have access to the set of local factors from all other vehicles, {Clocalj}j 6=i,
and the set of all relative vehicle factors. Sharing this information, however, is nontrivial due to
the limitations of the acoustic communication channel.

In this chapter, we present an algorithm for each vehicle to communicate an approximation of
its local chain. In turn, each vehicle in the network can construct a graph consisting of its local
chain, the set of approximate chains received from other vehicles, and the set of relative vehicle
measurements that it observes locally, i.e., range constraints for which it has measured the OWTT
(a subset of all ranges) as in Fig. 3.1b. We will show that our approximation produces an accurate
representation that allows communication over a faulty and bandwidth-limited channel, and that
using a subset of relative vehicle measurements still provides significant improvement over dead-
reckoned navigation.

3.3 Cooperative Localization

The key requirement for cooperative localization is the ability to share locally obtained observa-
tions, contained here within a local chain. Below, we develop an algorithm for broadcasting a
local chain across a faulty low-bandwidth communication channel. Our approach is completely
passive, in other words, the information each vehicle broadcasts is independent of the rest of the
network—a desirable property for an unacknowledged channel. In this section, we outline an effec-
tive strategy to (i) share a local chain (Algorithm 3) and (ii) use the set of received local chains and
observed relative range observations to compute a navigation estimate (Algorithm 4), as illustrated
in Fig. 3.1.

A local chain consists of odometry and prior factors. We first show that we can leverage the
composition operation over odometry factors to represent each new odometry factor as a trans-
formation relative to an ‘origin’ (Section 3.3.1). A corresponding decomposition operator is per-
formed onboard the receiving vehicle in order to recover the original factor. Moreover, both of
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Algorithm 3 Local chain distribution.

1: initialize(Clocal, Capprox) {Prior factor on initial pose.}
2: while is running() do
3: add new link(Clocal) {New odometry and prior factors.}
4: if t is TOL then
5: append approx(Clocal, Capprox) {Section 3.3.2.}
6: LK = choose links(Capprox) {Section 3.3.3.}
7: L′K = compose links(LK) {Section 3.3.1.}
8: broadcast links(L′K)
9: end if

10: end while

these operations are tolerant to communication failure, so that every received odometry factor can
be used to reconstruct a portion of the local chain.

We compose the odometry factor of each link, Li, with all previous odometry factors to obtain
the broadcast link, L′i. A receiving vehicle reconstructs the transmitter’s chain consisting of de-
composed odometry factors and prior factors contained in received links. If a broadcast is missed,
upon the next successful reception the receiving vehicle can still reconstruct the chain without the
prior factor in the missed link. We rebroadcast links with prior factors to help ensure an accurate
chain reconstruction, meaning that at each TOL we broadcast a set of links, L.

Since we only use the set of locally observed range measurements, each vehicle need only
share TOL pose nodes. However, a local chain, Clocal, consists of many additional pose nodes.
To reduce the communication burden, we employ approximate marginalization to compute an
approximate local chain Capprox that only contains odometry and prior factors over TOL pose nodes
(Section 3.3.2).

The ith receiving vehicle is able to reconstruct the broadcast local chains by decomposing
broadcast odometry factors with odometry factors already received. Using the set of reconstructed
approximate local chains {Capproxj}j 6=i, its own local chain Clocali , and the set of observed OWTT
range constraints, the vehicle can construct and solve a batch nonlinear least-squares problem (3.3)
to estimate its smoothed trajectory.

3.3.1 Odometry Composition

In this section, we show that composition of rigid-body transformations is reversible (decomposi-
tion). Moreover, it is equivalent to marginalization over the odometry chain—that is, the marginal
information induced by the the full set of odometry factors is equal to the information induced by
the composed odometry factor. We leverage this property to broadcast each link Li ∈ Capprox over
an unreliable communication channel.
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Composed Odometry Factor

Rigid-body transformation (e.g., odometry) observations are full rank relative-pose constraints
expressed as

zij = hij(xi,xj) + wij (3.4)

= 	xi ⊕ xj + wij, (3.5)

where xi and xj are two poses with respect to the same reference frame, wij ∼ N
(
0,Rij

)
is an

independent additive noise vector, and ⊕ and 	 represent generalized compounding and inverse
operators. These operators are simple addition and subtraction for poses in Rd and are nonlinear
functions defined for poses on SE(2) and SE(3) (Smith et al., 1986).

Per Smith et al. (1986), a composite observation zik is computed through the sequence

zik = g(zij, zjk) (3.6)

= zij ⊕ zjk. (3.7)

The composite relation zik is a random variable. A first-order covariance approximation is com-
puted through

zik ≈ g|zij ,zjk + J1⊕δzij + J2⊕δzjk (3.8)

∼ N
(
zij ⊕ zjk, J1⊕RijJ

>
1⊕ + J2⊕RjkJ

>
2⊕
)
, (3.9)

where J = ∂g/∂(zij, zjk) = [J1⊕, J2⊕].
Suppose we are given the composed observations (zij,Rij) and (zik,Rik). It follows directly

from (3.9) that we can invert this operation to recover the transformation between xj and xk and

Figure 3.2 A sequence of odometry factors can be composed into a single factor. Likewise, a composed factor can be
decomposed given another factor.
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its covariance as

zjk = 	zij ⊕ zik (3.10)

Rjk = J−1
2⊕(Rik − J1⊕RijJ

>
1⊕)J−>2⊕ , (3.11)

where J2⊕ is guaranteed to be nonsingular by the nature of the compounding operation—a full-rank
rigid-body transformation. We call this operation, ‘decomposition’. Composition and decomposi-
tion are illustrated in Fig. 3.2.

In our field trials, each pose is parameterized by the vehicle’s XY horizontal position, i.e., xi ∈
R2. In this case, J1⊕ = J2⊕ = I, and composition and decomposition reduce to simple addition and
subtraction, respectively. Paull et al. (2014) introduced an equivalent composition/decomposition
operation applicable in only R2.

Any link in the local chain can be communicated by broadcasting its composed odometry to an
‘origin’ pose (in practice, we use the local coordinate frame origin) as in line 7 of Algorithm 3. The
receiving vehicle simply decomposes the odometry factor with the set of already received links as
in line 5 of Algorithm 4. In this manner, we can exactly distribute the odometry backbone of a
local graph. The subset of links each vehicle has received is unknown to the broadcasting vehicles,
however, composition/decomposition still allows a receiver to reconstruct a complete chain over
received links.

Composed Factor Equivalence

Here, we elaborate on the claim that the information induced by the composed odometry factor is
equivalent to the marginal information induced by the full set of odometry factors. The result of
this claim is that the composed odometry factor adds exactly the same information as the original
factors, i.e., no information is either gained or lost. Without loss of generality, we consider two
odometry factors: zij between poses xi and xj , and zjk between poses xj and xk. The composed
factor, zik, is computed through (3.9).

The marginal information induced by zij and zjk is computed by constructing the full potential
and then marginalizing over the intermediate pose node xj , i.e.,

p(xi,xk|zij, zjk) =

∫
xj

p(xi,xj,xk|zij, zjk)dxj.
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First, the information induced over the set of involved pose variable nodes, {xi,xj,xk}, is obtained

Λijk = J>ijkR
−1
ijkJijk

=

[
J1⊕J	 J2⊕ 0

0 J1⊕J	 J2⊕

]> [
Rij

Rjk

]−1 [
J1⊕J	 J2⊕ 0

0 J1⊕J	 J2⊕

]

=

J>	J>1⊕R−1
ij J1⊕J	 J>1⊕J>	R−1

ij J2⊕

J>2⊕R−1
ij J1⊕J	 J>2⊕R−1

ij J2⊕ + J>	J>1⊕R−1
jk J1⊕J	 J>	J>1⊕R−1

jk J2⊕

J>2⊕R−1
jk J1⊕J	 J>2⊕R−1

jk J2⊕

 .
The marginal information, Λik is then computed by the Schur complement. For poses in Rd,
J1⊕ = J2⊕ = −J	 = I and the marginal information induced by the original factors is

Λik =

[
(Rij + Rjk)

−1 −(Rij + Rjk)
−1

−(Rij + Rjk)
−1 (Rij + Rjk)

−1

]
. (3.12)

The information induced by the composed factor zik is easily computed

Λ′ik = J>R−1
jk J

=
[
J1⊕J	 J2⊕

]>
R−1
jk

[
J1⊕J	 J2⊕

]
=

[
J>	J>1⊕R−1

ik J1⊕J	 J>	J>1⊕R−1
ik J2⊕

J>2⊕R−1
ik J1⊕J	 J>2⊕R−1

ik J2⊕

]
(3.13)

where Rik is determined from (3.9). Again, for poses in Rd, we can compute the induced informa-
tion

Λ′ik =

[
R−1
ik −R−1

ik

−R−1
ik R−1

ik

]
=

[
(Rij + Rjk)

−1 −(Rij + Rjk)
−1

−(Rij + Rjk)
−1 (Rij + Rjk)

−1

]
. (3.14)

The information (3.14) is equivalent to the marginal information induced by the original factors
(3.13), i.e., Λik = Λ′ik. This equivalence can also be verifed for poses on SE(2) and SE(3).

3.3.2 Local Chain Approximation

A local chain, Clocal, will include both unary prior factors and pairwise sequential odometry factors
over the full set of pose nodes. Ideally, the local chain would only include pose nodes at each
TOL—the only poses involved in relative ranging events observed by other vehicles—to reduce
the size of the chain that must be shared. In this section, we detail a method to incrementally
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Figure 3.3 At the new TOL, xk, we compute a set of factors (orange) that best represents the distribution induced by
the original factors (blue) since the last TOL, xj , with intermediate nodes (shaded) marginalized out.

(a) Local chain, Clocal, over all poses.

(b) Approximate local chain, Capprox, over TOL poses.

approximate the full local chain with a chain only over TOL pose nodes, Capprox, as illustrated in
Fig. 3.3.

We refer to the marginal distribution over TOL pose nodes computed from Clocal as the target
distribution. The marginal cannot be exactly represented by a set of prior and odometry factors (a
requirement for communication by odometry composition, see Section 3.3.1). However, we can
compute the set of factors that most closely models this target distribution. The general framework
for representing a Gaussian distribution using a desired nonlinear factor set is outlined by Mazuran
et al. (2014).

We incrementally construct the approximate local chain by ‘refactoring’ the full local chain
between TOLs as in Fig. 3.3. The links contained between the last TOL and the current TOL
induce a marginal distribution over the TOL nodes p(xj,xk) = N

(
µ,Σ

)
= N−1

(
η,Λ

)
, the target

distribution.
We compute a single odometry factor, zjk = hodo(xj,xk) + wjk, and a prior over each node,

zj = hprior(xj) + wj and zk = hprior(xk) + wk, that most closely induce the target distribution,
p(xj,xk). Each factor is perturbed by independent zero-mean Gaussian noise with covariance
given by Rjk, Rj and Rk. Let the distribution induced by the approximate factors be

q(xj,xk) = N−1
(
η′,Λ′

)
(3.15)

η′ = J>R−1 (Z− h(xi,xj)) (3.16)

Λ′ = J>R−1J (3.17)

Z = [z>jk, z
>
j , z

>
k ]>

R = diag(Rjk,Rj,Rk)

J =

∂hodo/∂xj ∂hodo/∂xj

∂hprior/∂xj

∂hprior/∂xk

 ,
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where Z represents the stacked observation vector, J is the stacked measurement Jacobian, and R

is the block-diagonal stacked measurement covariance. We compute Z and R to minimize the
Kullback-Leibler divergence (KLD) between p(xj,xk) and q(xj,xk)

DKL (p(xj,xk)||q(xj,xk)) =
1

2

(
tr(Λ′Σ) + (µ′ − µ)>Λ(µ′ − µ)− k + ln

det Σ′

det Σ

)
, (3.18)

where k is the dimension of the stacked state, i.e., dim(µ). The KLD is minimized when Z is
the expected observation evaluated at the mean, i.e., Z = h(µi,µj) such that µ′ = µ. R is then
computed from (3.18)

R∗ = argmin
R∈S++

tr
(
J>R−1JΣ

)
− ln det

(
J>RJ

)
, (3.19)

where S++ is the cone of symmetric positive definite matrices (with appropriate sparsity structure).
As shown in Mazuran et al. (2014), the above optimization problem is convex and can be solved
efficiently.

We have not enforced a consistency constraint on R, which would guarantee that the approxi-
mate factors are not overconfident. The consistency constraint can be expressed as a linear matrix
inequality, Σ′ − Σ � 0, as in Carlevaris-Bianco and Eustice (2014). Although an explicit consis-
tency constraint was not employed here, the approximation produced a consistent estimate in all
field trials.

In general, Λ will not be full rank and we cannot compute approximate factors as in (3.19). This
will only occur if no prior is available over the time window i → j (as is often true for AUVs).
In this case, however, we can exactly represent the target information with a composed odometry
factor (see Section 3.3.1) and no prior factors. Similarly, if no odometry is available over i → j

(e.g., for a topside vehicle with only GPS), then the TOL poses are independent and a prior may
be computed to exactly represent the target distribution without an odometry factor.

At the TOL, after computing new approximate link factors in Capprox, a vehicle broadcasts
the new TOL link and k additional links to rebroadcast, L, as in Algorithm 3. The size of k is
predetermined depending on the available bandwidth.

3.3.3 Rebroadcasting Priors

Capprox is reconstructed from the set of received links and therefore may not contain all prior factors.
We use some additional bandwidth to rebroadcast useful or informative links with prior factors.
Below, we consider finding the set of prior factors that are most informative about the current
vehicle pose so that receiving vehicles are able to best use their observed range measurement.
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A simple method is to broadcast the k most recent prior factors (k-last in Section 3.4). In-
tuitively, the most recent prior factors may be most informative about the transmitting vehicle’s
current pose. However, as a counterpoint, consider a vehicle with perfect (deterministic) odome-
try. Then, the best prior factors would be the factors with lowest uncertainty, not the most recent.
For this reason, we develop a method to identify a more informative set of prior factors based on
the expected set of factors already received by the network (k-best in Section 3.4).

Since each prior factor is broadcast over a lossy and unacknowledged channel, we assume that
the ith transmission is lost with probability ri. If the jth link has been broadcast mj times, then the
probability that it has been received is

precj = 1−
mj∏
i=1

ri. (3.20)

The results presented in Section 3.4 assume that ri is a fixed parameter; however, ri could in-
corporate additional knowledge, or even be a learned parameter. We employ a similar Bernoulli
reception model in Chapter 4.

We use a mutual information objective for determining the utility of a prior factor. Mutual
information indicates the uncertainty reduction in the current pose of the reconstructed chain, xN ,
by adding knowledge of a prior factor. Let LK = {Li1 , . . . ,Lik} ⊂ {L1, . . . ,LN} be the set of k
links that we will broadcast. The optimal set then satisfies

L∗K = arg max
LK

E [MI[xN |LK ]]

= arg max
LK

E [log det Λrecon(xN)]

Λrecon = Λodo︸︷︷︸
all odo factors

+
∑
j

precj Λpriorj︸ ︷︷ ︸
each prior

,

where Λrecon(xN) represents the marginal information of xN in the reconstructed chain computed
from Λrecon via the Schur complement. In general, this is a difficult combinatorial optimization
problem. Instead, we follow a simpler approach. We evaluate the objective for each link and then
greedily select the single link, Li, that maximizes the objective, incrementmi, and remove Li from
the set of potential links to broadcast. We repeat the process of evaluating each link and greedily
selecting the best k times.

3.3.4 Batch Estimation

As mentioned previously, the gold-standard centralized estimator computes the MAP configuration
over all vehicle poses (3.3). The ith vehicle, however, only has access to its local chain, Clocali , and
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Algorithm 4 Cooperative localization

Require: Clocal {Local chain}
1: C = ∅ {Set of received chains.}
2: Zr = ∅ {Set of received range observations.}
3: while is running() do
4: if Lrec, zr, i = received broadcast() then
5: add links(C[i],Lrec) {Links from vehicle i.}
6: Zr = Zr ∪ zr
7: solve batch(Clocal,C,Zr)
8: end if
9: end while

the set of reconstructed chains from broadcast links. Let I be the set of vehicle indices for which
ith vehicle has reconstructed a chain. The full posterior (3.2) is approximated by

p(Xi,Xj∈I|Zi,Zj∈I,Zr) ∝ p(Xi|Zi)︸ ︷︷ ︸
Clocali

∏
j∈I

p(Xj|Zj)︸ ︷︷ ︸
Capproxj

∏
k

p(zk|xik ,xjk). (3.21)

as illustrated in Fig. 3.1b. Note that the posterior is only computed over local vehicle poses and
the set of received broadcast TOL poses and that only the set of locally obtained relative pose
constraints is used. The vehicle can then employ any graph-based solver (e.g., square-root SAM)
to compute a solution (e.g., see Appendix A). Algorithm 4 reviews the estimation procedure per-
formed by each vehicle.

3.4 Field Trials

For validation, we fielded two Ocean-Server Inc. Iver2 AUVs, termed AUV-A and AUV-B (see
Fig. 3.4), and a topside support ship. The AUVs are each equipped with an advanced dead-

Figure 3.4 One of the Iver2 AUVs used in the field trials.
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reckoning sensor suite. Each AUV observed GPS during intermittent surface intervals. The topside
support ship had access only to GPS (no measured odometry). All vehicles used the WHOI Micro-
modem and co-processor board with a synchronous-clock reference for inter vehicle communica-
tion and ranging. The AUV hardware is detailed in Appendix C. Experiments were conducted July
25–27, 2014, at the UMBS.

Each vehicle pose was parameterized by its XY horizontal position. GPS observations were
transformed to a local coordinate frame and constitute a full-rank linear observation. We assumed
that the GPS accuracy was constant and therefore we assumed noise with a fixed standard de-
viation of 5 m. The AUV odometry, zij , and corresponding covariance, Rij , were computed by
Euler integrating DVL and AHRS and performing a first-order covariance approximation (see Ap-
pendix B.1).

Observed OWTT ranges represent a 3D slant range. Since depth is measured with bounded er-
ror, we are able to project ranges into the 2D horizontal plane and use the resulting pseudo ranges
within our estimation framework (Appendix B.2). We used a fixed OWTT measurement uncer-
tainty since the relative depth between each vehicle’s acoustic transducer was small and relatively
constant.

Vehicles broadcast navigation messages roughly once per minute according to a fixed TDMA
schedule. The proposed composition/decomposition allowed a coarse quantization (factors were
rounded to 1 cm). Each navigation packet (i.e., set of links L) required a single 64 B frame of
either a Micro-modem Rate 1 or Rate 2 data packet. The previously detailed OSM (Chapter 2)
minimally requires two 64 B frames, leading to a 50% reduction. The full message specification is
detailed in Appendix C.

We employed our k-last prior factor selection strategy during real-time experiments (for k = 2).
In post-process, we computed the prior factors that would have been broadcast with our k-best
strategy.

We also implemented the algorithm proposed by Paull et al. (2014) for comparison. Their
algorithm similarly broadcasts each new TOL pose as a composed factor. There are two large dif-
ferences in our approach: (i) they transmit prior factors directly from the full local chain separately,
i.e., they must broadcast each prior link in addition to TOL links, and (ii), they also broadcast re-
ceived range factors and their corresponding TOA links. The second difference effectively allows
for bidirectional ranging at the cost of packets that grow linearly in the size of the network (a TOA
pose is broadcast for each vehicle in the network). During the three vehicle post-process eval-
uation, their algorithm broadcast more links requiring greater bandwidth (4 composed odometry
factors, 2 range factors, and a prior factor compared to 3 composed odometry factors and 2 prior
factors for ours).
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Figure 3.5 Local graph reconstruction quality for k-last, k-best, and Paull et al. (2014) for various reception rates
averaged over 100 trials for six local chains. Note log scale on ordinate axis.
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(a) Mean difference in pose between target and reconstructed.
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(b) KLD between target distribution and reconstructed.

3.4.1 Local graph reconstruction

Here we demonstrate the quality of the local chain reconstruction under varying channel condi-
tions. We ran three trials ranging from 60− 90 min to collect navigation observations and broad-
cast event times for each of our two AUVs resulting in six local chains. During the trials, each
AUV had intermittent access to GPS during brief surface intervals. In post-process, we computed
and sampled the set of navigation packets at different reception rates and reconstructed the local
chain. For each reception rate, we artificially sampled different sets of received messages 100
times. We then compared the reconstructed local chain to the target chain (the marginal full chain
over received TOL pose nodes). Fig. 3.5 compares the local chain reconstruction for prior factor
selection methods, k-last and k-best, as well as the method proposed by Paull et al. (2014).

The k-best selection strategy outperforms k-last for both mean reconstruction error and KLD
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Table 3.1 Acoustic communication reception rates between pairs of vehicles across all trials.

Trial 1 Trial 2 Trial 3
AUV-A↔ AUV-B 57.0% 62.9% 37.6%
AUV-A↔ Topside 82.8% 74.9% 52.9%
AUV-B↔ Topside 84.8% 78.3% 86.6%

by a factor of two or three in most trials. At 100% reception rate (no dropped packets) the full
approximate chain was reconstructed and is therefore equivalent for k-best and k-last. Moreover,
the full approximate chain closely represents the full local chain. While k-best outperforms k-last,
k-last has a computational advantage incurring essentially no cost to choose the last several priors.

Our proposed algorithm improves upon Paull et al.’s method by several orders of magnitude
in most trials. Our method is able to include more prior information into the broadcast links, and
therefore leads to a better reconstruction.

As mentioned in Section 3.3.1, composition is equivalent to marginalization. Therefore, when
no priors are present in the local chain, all compared algorithms are exactly equal to the target
distribution (up to quantization errors).

3.4.2 Cooperative localization

We executed three multiple vehicle trials to demonstrate the ability of our algorithm to provide
useful navigation information to an AUV. We varied the number of vehicles and AUV access to
GPS in each trial to demonstrate a variety of practical applications. Acoustic reception rates varied
between 37–86% up to 500 m relative range as summarized in Table 3.1. Results are summarized
in Fig. 3.6. Fig. 3.2 reports each distributed algorithm’s ability to produce the centralized uncer-
tainty estimate onboard AUV-B. Although we only show results for AUV-B, note that all vehicles
compute a local reconstruction of the centralized estimator.

Trial 1

AUV-A and AUV-B performed overlapping orthogonal lawnmower surveys (see Fig. 3.6a). Both
vehicles had only dead-reckoned navigation available. Since there are no GPS priors, our local
graph reconstruction is equivalent to Paull et al. (2014). Moreover, the local chain reconstruction

Table 3.2 Average 1-σ uncertainty difference compared to the centralized estimator across all trials.

Trial 1 [ m] Trial 2 [ m] Trial 3 [ m]
Paull et al. (2014) 0.005 0.981 0.463
Proposed (k-last) 0.039 0.086 0.212
Proposed (k-best) 0.039 0.074 0.192
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Figure 3.6 Summary of field trials and performance comparison. (a–c) shows each vehicle trajectory. (d–f) plots
the smoothed uncertainty in each AUV-B pose computed as the fourth root of the determinant of the pose marginal
covariance. AUV-A access to GPS is indicated by green boxes.
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(a) Trial 1: relative paths (1.17 h),
no access to GPS.
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(b) Trial 2: relative paths (1.50 h),
AUV-A has access to GPS.
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(c) Trial 3: relative paths (1.55 h),
AUV-A, topside (not shown)
have GPS.
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(d) Trial 1: AUV-B’s uncertainty.
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(e) Trial 2: AUV-B’s uncertainty.
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(f) Trial 3: AUV-B’s uncertainty.
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(g) Trial 1: Difference in uncer-
tainty compared to centralized
estimator.

0 1000 2000 3000 4000 5000 6000

mission time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

un
ce

rt
ai

nt
y

di
ff

er
en

ce
[m

]

(h) Trial 2: Difference in uncer-
tainty compared to centralized
estimator.
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(i) Trial 3: Difference in uncer-
tainty compared to centralized
estimator.

for all algorithms was exact. k-last and k-best produced the same solution since there are no priors
to rebroadcast. Since Paull et al. (2014) incorporated range constraints between both vehicles,
their algorithm computed a solution that more closely matches the centralized result (see Fig. 3.2).
Their algorithm did not exactly reproduce the centralized result because AUV-B did not receive
all range factors observed by AUV-A. Although we only used the local subset of range factors,
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we were still able to benefit from relative range observations and the difference compared to the
centralized estimator is small.

Trial 2

AUV-A executed a narrow diamond trajectory over AUV-B’s lawnmower survey. Both vehicles
had dead-reckoned navigation available, but AUV-A also intermittently received GPS during short
surface intervals (see Fig. 3.6b). Fig. 3.6e plots the pose uncertainty onboard AUV-B. Using our
proposed algorithm, AUV-B was able to accurately approximate AUV-A’s pose-graph, including
the many prior factors. k-best here performed slightly better than k-last because of its ability
to more accurately reproduce AUV-A’s local chain. Although Paull et al. (2014) were able to
incorporate range information in both directions, our reconstruction of AUV-A was more accurate,
leading to a more confident estimate. Due to the diminishing returns of information provided by
the range observations, our algorithm was able to closely reproduce the centralized solution despite
only using a subset of the range observations.

Trial 3

A topside vehicle with constant GPS access supported AUV-A (with intermittent GPS) and AUV-
B (see Fig. 3.6c). The factor graph produced here is illustrated in Fig. 3.1. AUV-A followed a large
diamond over AUV-B’s lawnmower survey while the topside vehicle drifted above the survey area.
In this case, the centralized estimator used ranges between all three vehicles. Our method only used
ranges between the local platform and the other vehicles. Paull et al. (2014), however, included
ranges in both directions and could also use ranges between other vehicles, but only if the TOL
and TOA poses in each local chain had been received. Once again, our reconstruction of AUV-A’s
chain is more informative. As shown in Fig. 3.2, we have received the bulk of the benefit in terms
of uncertainty reduction from the local set of range observations and achieved a smaller estimate
uncertainty lower than Paull et al. (2014).

Summary

In all field trials, the presented factor composition method produces an accurate representation
of the centralized estimator. Moreover, both k-best and k-last methods produced a consistent
estimate—they were never more confident than the centralized estimator. By applying an approx-
imate marginalization procedure, we can broadcast a small yet informative set of factors. The
results also demonstrate that the local set of range observations is capable of bounding uncertainty
growth.
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Figure 3.7 Comparison of reconstructed local chains by Paull et al. (b) and our method (c) as if the data transmitted at
the second TOL, xj , was not received. Arrows away from the chain indicate TOLs, arrows toward the chain indicate
TOAs.

(a) True local chain, Clocal, over all poses.

(b) Local chain reconstructed by Paull et al. including a
range observed by the other vehicle at a TOA pose.

(c) Approximate local chain, Capprox, reconstructed by our
method, k-last, with k ≥ 1.

3.5 Discussion

Our proposed algorithm is similar in some respects to that independently introduced by Paull et al.
(2014), however, we believe there are many beneficial differences illustrated in Fig. 3.7. The most
marked improvement in our algorithm is its ability to broadcast a local chain by using an accurate
approximation that includes a more informative set of prior factors. The compact approximate
chain contains fewer links to broadcast. While we currently only incorporate ranges measured
locally, this allows for a fixed bandwidth data packet, regardless of the size of the vehicle network.
We can use the additional bandwidth to rebroadcast previous informative links and for other prac-
tical purposes (e.g., command, control, vehicle health). Paull et al. (2014) are able to incorporate
inter-vehicle ranges, but only when the receiving vehicle has received all involved poses. Both
methods do not support cascaded communication topologies (one vehicle supports another, which
in turn supports another). Finally, the local subset of range observations is sufficient for accurate
navigation in many practical situations (as evidenced in Section 3.4).

3.6 Chapter Summary

Accurate localization extends the capacity of AUVs to perform ocean science. OWTT underwa-
ter cooperative localization promises improved navigation for AUVs over larger area and time
scales without additional infrastructure. We exploit the structure of the composition operation over
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odometry factors and an accurate approximation of the local chain (factor graph) to share locally
observed sensor data across a fragile communication channel. That is, any pose node in the chain
can be represented with its composed odometry link. We then use the collection of received chains
and observed relative pose measurements to compute an improved navigation solution. The pro-
posed method scales to many vehicles in that each vehicle in the network can simultaneously act
as server and client. Compared to the previous server-client architecture introduced in Chapter 2,
the proposed method is more tolerant to communication failure as a recovery mechanism is not
required.

Our proposed method can also find application in the broader robotics community where lim-
ited communication is an operational factor, e.g., search and rescue. Avenues for future work
include extending our chain approximation method to include information received from other ve-
hicles. This would allow better localization performance in certain communication topologies, for
example, cascaded networks.
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Chapter 4

Planning for Cooperative Localization

In this chapter, we assume that a distributed estimation framework for server-client localization
(such as those developed in Chapter 2 and Chapter 3) is available and examine how the quality of
the client estimate varies with the vehicle network geometry1. We then use this to plan a server
vehicle path for cooperative localization. We assume that the client mission plan, i.e., desired
trajectory, is available at planning time. Our goal is to compute a practical server trajectory that
minimizes the predicted client uncertainty through OWTT support.

Within OWTT cooperative localization there is an inherent trade-off between communication
fidelity and localization accuracy—increasing horizontal relative range diminishes the probabil-
ity of successful communication, but improves horizontal position estimation, as illustrated in
Fig. 4.1. Therefore, planning serves to benefit from modeling the communication channel. Belief
space planning represents a principled approach to balancing standard path-planning objectives
(e.g., minimum distance) with motion, sensing, and, in this chapter, communication uncertainty.
Resulting paths seek information in order to reduce state uncertainty and successfully meet a task-
specific objective.

Belief space planning solves a more general POMDP problem by making a linear Gaussian as-
sumption. Most belief space planning approaches, however, ignore that sensor measurements may
not be obtained, for example, because of a lossy communication channel. We introduce a model
of the underwater acoustic communication channel into belief space planning that allows a trajec-
tory optimization algorithm to find server paths that provide useful navigation information and are
also likely to demonstrate successful communication (and hence provide informative relative range
observations).

This chapter provides the following contributions:

• We propose a belief space planning framework for server-client cooperative localization with

1Portions of this work have previously appeared in (Walls and Eustice, 2014b; Walls et al., 2015a).
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Figure 4.1 Cooperative localization example: a server vehicle ‘A’ or ‘B’ can provide a relative range constraint (white
arrows) to the client vehicle (yellow). ‘A’ is more likely to make the range observation as evidenced by the channel
gradient (darker means higher probability of making a measurement). ‘B’, however, provides more information in the
horizontal plane (as indicated by the thicker arrow). Our proposed planning framework balances these objectives.

a known client mission plan.

• We exploit a modified observation likelihood function that allows us to model randomness
in obtaining measurements. We then employ this modified observation function to model
the underwater acoustic channel.

• We propose an optimization algorithm for computing locally optimal receding-horizon con-
trol actions or path parameters that represent practical AUV trajectories.

Additionally, we provide a channel model that is representative of data collected during AUV field
trials. We then use the channel model to demonstrate our planning framework in several simulated
scenarios.

4.1 Related Work

Path planning problems typically seek a feasible path from start to goal positions within a con-
figuration space. When state is not known deterministically, planning can be formalized within a
POMDP framework (Kaelbling et al., 1998). In this case, objective functions are defined over the
space of potential distributions over state, called the belief space. Planning methods must cope
with uncertainty in motion, sensing, and the surrounding environment. Due to the high dimension-
ality of the belief spaces of real-world problems, solutions to POMDP instances must typically be
approximated.

Several prior approaches to belief space planning (Prentice and Roy, 2009; Agha-mohammadi
et al., 2014; Bry and Roy, 2011) attempted to solve belief space planning problems with sampling-
based planners. They addressed uncertainty in sensing, motion, or both. These methods involve
constructing candidate trajectories through the underlying state space by random sampling, then
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searching over candidate solutions. These algorithms find the best solution within the space of
candidate trajectories but do not explicitly optimize the trajectory.

Recently, optimization motion planning has been applied to belief space planning (Platt et al.,
2010; van den Berg et al., 2012; Patil et al., 2014). This chapters builds off of these methods
in order to optimize over both open-loop control actions and parameterized trajectories. Several
methods (Platt et al., 2010; Patil et al., 2014) assume maximum-likelihood observations in order to
achieve rapid replanning. Van den Berg et al. (2012) drop the maximum-likelihood assumption at
the cost of greater computational expense, but planning is performed off-line and a control policy
is executed at run time.

The related area of active SLAM research has focused on computing paths that lead to lower
uncertainty maps. Stachniss et al. (2005) presented an early particle-based approach to make
informative decisions under uncertainty, integrating localization, mapping, and exploration. Sim
and Roy (2005) proposed a breadth-first search procedure for minimizing an A-optimal objective
on vehicle uncertainty. Recently, Indelman et al. (2015) merged optimization-based belief space
planning within active SLAM. These authors additionally model unknown observation events
(similar in spirit to the channel model presented here), but employ a simplification that results in a
deterministic state covariance.

The multiple vehicle coordination problem is well studied (Kumar et al., 2004), however, navi-
gation for localization remains an open challenge. Martinez and Bullo (2006) proposed a heuristic
coordination algorithm for target-tracking with a range-only sensor. Charrow et al. (2014) sim-
ilarly presented a target-localization control policy using range-only sensors. The most relevant
approaches to the underwater range-only localization were presented by German et al. (2012), Tan
et al. (2014), and Bahr et al. (2012). These prior works, however, do not include motion and sens-
ing uncertainty and, in some cases, consider only discrete action spaces. Moreover, no prior work
has modeled the communication channel, although several authors have imposed a heuristic maxi-
mum communication range, e.g., Tan et al. (2014). We propose a principled method to incorporate
channel behavior during planning.

4.2 Belief Space Planning

The general planning problem we address in this chapter is an instance of a POMDP, since both
sensing and motion are stochastic. We first state our problem instance within a Gaussian be-
lief space (Section 4.2.1) and derive the belief evolution (Section 4.2.2). Then, we modify the
belief representation to handle nondeterministic observation events (Section 4.2.3). Finally, we
develop a planning framework that leverages this modified belief representation (Section 4.2.4 and
Section 4.2.5).
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4.2.1 Gaussian Belief Space Planning

Consider a system with state xk at time step k. The state transition model captures uncertainty in
executing an action,

xk+1 = f(xk,uk,wk), (4.1)

where uk is the control input, and wk ∼ p(wk|xk,uk) is an independent noise disturbance with
known density, assumed here to be zero-mean Gaussian with covariance matrix Mk. This transition
model equivalently encodes the transition distribution p(xk+1|xk,uk) = N

(
f(xk,uk, 0),Mk

)
.

Observations are also random variables and modeled as

zk = h(xk,vk), (4.2)

where vk ∼ p(vk|xk) is an independent noise perturbation with known density. We assume that the
observation noise is additive and drawn from a zero-mean Gaussian distribution with covariance
matrix Nk. The observation model is then represented by the likelihood function p(zk|xk) =

N
(
h(xk, 0),Nk

)
.

The belief bk is the posterior distribution over state given all observations and control inputs
up to time k, i.e.,

bk = p(xk|Z1:k,U1:k−1), (4.3)

where Z1:k = {zi}ki=1 is the set of observations and U1:k−1 = {ui}k−1
i=1 is the set of all control

inputs. In Section 4.2.3, we modify the observation and belief definitions to include unknown
observation events.

In this work, we consider a general quadratic cost function comprised of the sum of a terminal
cost and stage costs over the beliefs and controls through time-horizon L

min
B1:L,U1:L−1

E

[
b>LQLbL +

L−1∑
k=1

b>k Qkbk + u>k Rkuk

]
, (4.4)

where B1:L = {bk}Lk=1 is the set of belief states that satisfy the relationship in (4.3), and the
expectation is taken with respect to the random observations, Z1:L. The cost weight matrices Qk

and Rk are positive semi-definite and positive definite, respectively. Quadratic (or approximately
quadratic) cost functions are commonly employed in belief space planning problems for the relative
ease with which they can be minimized.

Computing the optimal solution to a cost function over belief states is generally intractable
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because of the high dimensionality of the space of all beliefs. Under the assumption of additive
Gaussian noise and locally linear models, however, a belief is then approximately Gaussian and
can be parameterized by the state mean x̂k and vectorized covariance matrix Σk,

bk =
[
x̂>k , vec(Σk)

>
]>
. (4.5)

Note that the vec( · ) operation exploits the symmetry in Σk. This Gaussian parameterization en-
ables tractable optimization.

Our strategy closely follows previous methods for deriving an analytical belief evolution and
optimizing within that framework (He et al., 2011; van den Berg et al., 2012). We proceed in
two steps. First, we derive the belief dynamics, which define the belief transition distribution
p(bk+1|bk,uk). Second, we use the predictive belief dynamics to minimize a cost function over
beliefs and controls (4.4). Our approach differs from the aforementioned works with the introduc-
tion of a channel model and uses an alternative optimization framework that allows simple and
practical parametric trajectories to be considered.

4.2.2 Belief Dynamics

The belief dynamics detail the evolution of beliefs given a control sequence. For discrete control
spaces, we could enumerate all possible sequences. However, brute force enumeration may be
intractable for even moderate horizon lengths. For continuous control spaces, enumeration is not
possible. Below we show that we can analytically compute the distribution over beliefs.

A belief bk represents the posterior distribution over state. The belief dynamics are computed
via a recursive Bayes filter

bk+1 = p(xk+1|Z1:k+1,U1:k) (4.6)

= ηp(zk+1|xk+1) p(xk+1|xk,uk,Z1:k)︸ ︷︷ ︸
b̄k+1

,

where b̄k+1 is the predicted belief given bk and uk and η is a normalization constant.
The belief dynamics can be computed in closed form within an EKF under the assumption of

Gaussian noise models and approximately locally linear transition and observation functions. The
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EKF update given the current belief follows

x̂k+1 = f(x̂k,uk, 0) + K
(
zk+1 − h

(
f(x̂k,uk, 0), 0

))
(4.7)

Σk+1 = (I−KH)Σ̄ (4.8)

F =
∂

∂x
f(x̂k,uk, 0)

H =
∂

∂x
h(f(x̂k,uk, 0), 0))

Σ̄ = FΣkF
> + Mk

K = Σ̄H>(HΣ̄H> + Nk)
−1.

The mean update (4.7) is random in z, while the covariance update (4.8) is deterministic. More-
over, the distribution over the belief mean is Gaussian since z is Gaussian. The distribution over
beliefs—the belief dynamics—can therefore be represented by a Gaussian process

bk+1 = g(bk,uk) + W(bk,uk)wk (4.9)

g(bk,uk) =

[
f(x̂k,uk, 0)

vec(Σ̄−KHΣ̄)

]

W(bk,uk) =

[√
KHΣ̄

0

]
,

where wk ∼ N
(
0, I
)

and
√ · is a suitable matrix square-root factor. The sequence of distributions

over beliefs computed through the belief dynamics is illustrated in Fig. 4.2a.

4.2.3 Belief Dynamics with Uncertain Channel State

Prior belief space planning methods (as above) assume that the set of future observation events is
known. Whether an observation is made or not, however, is often not known before execution time.
For example, the set of range observations that occur in an underwater acoustic network depends
on the (unknown) set of successful acoustic transmissions.

To address this, we introduce a binary channel state variable, γk ∼ Bernoulli(λk), which mod-
els the event that an observation is received at the kth time index. Sinopoli et al. (2004) introduced
an equivalent model for studying convergence properties of the EKF error covariance in sensor
networks with fading channels. We modify the observation model (4.2) by conditioning on the
channel state variable ‘switch’

p(zk|xk, γk) = N
(
h(xk, 0), γkNk + (1− γk)σ2I

)
, (4.10)
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Figure 4.2 Illustration of belief dynamics. (a) represents standard Gaussian belief dynamics, resulting in a distribution
over possible mean states. Covariance in this case is deterministic. (b) depicts the belief dynamics evolution including
an unknown channel state—the belief state branches for every possible channel state. Given the sequence of channel
states, the belief dynamics are equivalent to (a). (c) shows our approximation of (b), which can be tractably computed.

(a) Linear Gaussian belief dynamics. Red illustrates distribution over
belief mean states.

(b) Linear Gaussian belief dynamics with a channel state. The belief
branches based on channel state.

(c) Approximate linear Gaussian belief dynamics with a channel
state. Blue represents a distribution over covariance.

where we take the limit as σ2 → ∞. If the observation is received (γk = 1), the revised model is
exactly (4.2). When the observation is not received (γk = 0), the observation has infinite uncer-
tainty or, equivalently, zero information. Note that the observation model is again represented by
a Gaussian distribution.

The belief now represents the posterior distribution over state given all channel states in addi-
tion to observations and control inputs

bk = p(xk|Γ1:k,Z1:k,U1:k−1), (4.11)

where Γ1:k = {γi}ki=1. By leveraging the Markov property of the state transition model, the belief

80



dynamics can be computed with a recursive Bayes filter

bk+1 = p(xk+1|Γ1:k+1,Z1:k+1,U1:k) (4.12)

= ηp(zk+1|xk+1, γk+1)p(xk+1|xk,uk,Γ1:k,Z1:k),

where η is a normalization constant and we assume that the set of channel states is independent of
the state, i.e., p(γi|xi) = p(γi). While the channel state may certainly depend on the underlying
state, we have assumed independence to simplify the belief dynamics and so that the belief is not
informed by whether an observation is received or not—the channel model is only used at planning
time and is uninformative during execution.

We track the evolution of belief states (4.12) with an EKF. We evaluate the state prediction and
measurement update in the limit by substituting the observation model (4.10) into the Bayes filter
(4.12) and taking the limit as σ2 → ∞. The EKF update given the current belief closely follows
the standard EKF update

x̂k+1 = f(x̂k,uk, 0) + γK
(
z− h

(
f(x̂k,uk, 0), 0

))
(4.13)

Σk+1 = (I− γKH)Σ̄ (4.14)

F =
∂

∂x
f(x̂k,uk, 0)

H =
∂

∂x
h(f(x̂k,uk, 0), 0))

Σ̄ = FΣkF
> + Mk

K = Σ̄H>(HΣ̄H> + Nk)
−1,

where we have dropped the subscripts on zk+1 and γk+1 for brevity. Sinopoli et al. (2004) present
the equivalent update, although derived by first constructing the joint distribution over predicted
state and observation and then conditioning on the observation. Within the update equations, the
channel state variable multiplies the Kalman gain, resulting in an intuitive behavior—the standard
Kalman update when the measurement is present, and an uncorrected process prediction otherwise.

The belief dynamics defined within the EKF update are random in the current observation
and channel state, z and γ, respectively. For tractable planning, we approximate the belief state
transition with a Gaussian transition model

bk+1 = g(bk,uk) + W(bk,uk)wk, (4.15)

where wk ∼ N
(
0, I
)
. Since γ is not Gaussian, we compute the above expression by moment
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matching, i.e., the first two moments of (4.15) are set to that of (4.13)–(4.14),

g(bk,uk) = E[bk+1] = E

[
x̂k+1

vec(Σk+1)

]
(4.16)

=

[
f(x̂k,uk, 0)

vec(Σ̄− λKHΣ̄)

]

W(bk,uk) =
√

Var[bk+1] =

√√√√Var

[
x̂k+1

vec(Σk+1)

]
(4.17)

=

[√
λKHΣ̄ √

λ(1− λ)vv>

]
v = vec(KHΣ̄),

where E[γ] = λ. The evolution of beliefs is illustrated in Fig. 4.2b and Fig. 4.2c.
The belief dynamics formulation derived in Section 4.2.2 follows a similar form, although

does not consider random observation events. Without the channel state variable, the portion of
the belief state vector corresponding to the state covariance matrix is deterministic, i.e., no random
variables appear in the EKF covariance update when observation events are known. Here, the
covariance depends on γ, and is therefore random. When an observation is guaranteed to be
obtained, however, λ = 1 and (4.15) is equivalent to (4.9).

The belief dynamics (4.15) represent the predictive transition of a belief state with random
observation events. Kim and Eustice (2013) and Indelman et al. (2015) both considered the related
problem of planning with unknown loop-closure events within active SLAM. Both parameterize
Gaussian beliefs in the information (inverse covariance) form for which the measurement update is
a simple additive step. Indelman et al. (2015) (approximately) marginalize over γ in the posterior,
as opposed to taking the expectation with respect to γ, resulting in a deterministic information
(covariance) matrix. It is also worth noting that the belief dynamics are not invariant to belief
parameterization. In the information form, as in (Kim and Eustice, 2013; Indelman et al., 2015),
the measurement information is scaled by λ, whereas, here, the Kalman gain is scaled instead.

4.2.4 Belief Space Optimization Motion Planning

We use the belief dynamics defined in (4.15) to compute a locally optimal solution to the cost
function defined by (4.4). Previously, van den Berg et al. (2012) solved a similar objective using
dynamic programming to obtain a control policy mapping belief state to control action. Approach-
ing the optimization as a batch process instead allows us to easily optimize over path parame-
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Algorithm 5 Belief space trajectory optimization.

Require: b1, Ū
(0) {initial belief and nominal control}

1: while not converged do
2: b̄

(i)
k+1,Ak,Bk,Wk = execute(b̄

(i)
k , ū

(i)
k ) for all k

3: G, J,W = construct system({b̄k,Ak,Bk,Wk})
4: δU∗ = solve objective(Q,R,G, J,W)

5: Ū
(i+1)

= line search(Ū
(i)
, δU∗)

6: end while
7: return Ū

(i)

ters assuming a known path-following controller—desirable for planning practical trajectories for
AUVs.

The cost function (4.4) can be expressed in batch as a function of the stacked vectors of beliefs
and controls

min
B,U

E
[
B>QB + U>RU

]
, (4.18)

where we have dropped the subscripts on B1:L and U1:L−1, Q = diag(Q1, . . . ,QL), and R =

diag(R1, . . . ,RL−1). We take a sequential approach—compute the set of beliefs as a function of
control actions, substitute into the objective function, and solve for the minimizing set of control
inputs.

We first linearize each belief transition around a nominal trajectory B̄1:L and control sequence
Ū1:L−1

δbk+1 ≈ Akδbk + Bkδuk + Wkwk, (4.19)

where δbk = bk − b̄k, δuk = uk − ūk, and Ak and Bk are the Jacobians of g(bk,uk) with respect
to bk and uk, respectively. Note that B̄1:L is obtained by executing g( · ) along the nominal control
trajectory given b1. We also linearize W(bk,uk) such that the ith column can be written

W
(i)
k ≈ F

(i)
k δbk + G

(i)
k δuk + W̄

(i)
k (4.20)

and W̄
(i)
k = W(i)(b̄k, ūk). Note that Wk is a function of the channel model with parameter λk. In

Section 4.4 we discuss the form of λk, which depends on the state. During planning, we evaluate
λk about the nominal trajectory.
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We can write the stacked vectors of belief state and control deviations as

δB = [δb>1 , . . . , δb
>
L ]> (4.21)

δU = [δu>1 , . . . , δu
>
L−1]>. (4.22)

The batch belief dynamics are then expressed by concatenating (4.19) over the time horizon

δB = AδB + BδU + Ww

δB = (I− A)−1B︸ ︷︷ ︸
G

δU + (I− A)−1W︸ ︷︷ ︸
J

w, (4.23)

where w is the stacked vector of noise perturbations wk and the stacked Jacobians are defined

A =


0

A1 0

0
. . . . . .

0 AL−1 0

 (4.24)

B =


0

B1 0

0
. . . . . .

0 BL−1

 (4.25)

W =


0

W1 0

0
. . . . . .

0 WL−1

 . (4.26)

We substitute the batch belief dynamics (4.23) into the cost function (4.18) and evaluate the
expectation to obtain

min
δU

[
(GδU + B̄)>Q(GδU + B̄) + (δU + Ū)>R(δU + Ū) + tr(J>QJ)

]
= min

δU

[
(GδU + B̄)>Q(GδU + B̄) + (δU + Ū)>R(δU + Ū)

+
∑

i

(
(F(i)G + G(i))δU + W̄(i))>(I− A)−>Q(I− A)−1

(
(F(i)G + G(i))δU + W̄(i))

]
.

This cost function is quadratic in the control update term, δU, and can therefore be minimized by
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taking the derivative of the cost and setting to zero

δU∗ = −D−1E, (4.27)

where

D = G>QG + R +
∑

i(F
(i)G + G(i))>C(F(i)G + G(i))

E = G>QδB +
∑

i(F
(i)G + G(i))>CW̄(i)

C = (I− A)−>Q(I− A)−1.

We leverage the sparsity structure of W(i) to efficiently compute the summation terms. Note that
the Hessian is positive definite by construction because of the cost weight matrices. The updated
control vector is computed by adding the update to the control at the current iteration

U(j+1) = U(j) + εδU∗, (4.28)

where ε defines the step length based on a simple back-tracking line search. The control update step
is repeated until a convergence criteria is satisfied. The full algorithm is outlined in Algorithm 5.

4.2.5 Parameterized Trajectory Optimization

In the previous section, we described a method to compute a sequence of open-loop control actions
over a finite horizon. He et al. (2011) proposed planning over macro actions (a collection of
sequential actions) to reduce planning complexity, and allow planning over a longer time horizon.
Planning over path parameters, similar to macro actions, has also been studied by both Sim et al.
(2004) and Kollar and Roy (2008). Here, we apply an optimization over parameterized paths for
planning.

For AUV field trials, we desire simple, practical trajectories in order to easily monitor vehi-
cle health and progress. To address this, we assume that each vehicle employs a feedback path-
following controller and optimize over parameters that define a trajectory. For example, a center
position and radius define a circular path. The control is then a (known) function of the estimated
vehicle state and path parameter vector θ. The state transition model (4.1) can be expressed given
the controller and parameter vector as

xk+1 = f(xk,uk(x̂k,θ),wk).

We iteratively update locally optimal path parameters in the same way control actions were
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computed. In this case, Jacobians are computed with respect to the path parameters instead of
control actions. Finally, we penalize parameter weights (instead of control) within the cost function
to ensure a positive definite Hessian. The number of parameters to specify a path is, in general,
much smaller than the number of control actions. Therefore, there is also significant computational
savings in optimizing over path parameters.

4.3 Planning for Cooperative Localization

Here, we detail the instantiation of the belief space planning algorithm developed in Section 4.2 to
plan a server trajectory to localize a client vehicle. We require that the nominal client trajectory and
path-following controller are available at planning time. We further assume that the client vehicle
is able to reconstruct the centralized server-client estimator, as with the OSM (Chapter 2), and that
communication latency is negligible.

The state space system is represented by the stacked server and client vehicle states xk =

[x>sk ,x
>
ck

]>. The state space dynamics of each vehicle are independent and written[
xsk+1

xck+1

]
=

[
fs
(
xsk ,usk ,wsk

)
fc
(
xck ,uck ,wck

)] , (4.29)

where usk represents the only decision variable control action within the planning problem since
uck is computed by the client’s path-following controller and a given mission plan.

Relative range constraints constitute a nonlinear observation over the server-client state

zrk =
∥∥∥xsk − xck

∥∥∥
2

+ wrk , (4.30)

where wrk ∼ N
(
0, σ2

k

)
. In general, range observations will be a 3D slant range measurement (see

Appendix B.2 for more details). Within a linear estimator, such as the EKF, range observations
add information in one direction: along the vector between the server and client vehicle positions.
For underwater navigation, depth is usually well instrumented, so we seek to minimize horizontal
position errors. Therefore, the range measurement utility is highest when the server and client ve-
hicles are far apart, i.e., the vector of added information is approximately parallel to the horizontal
plane.

In all experiments presented in this chapter, we use a cost function that penalizes control action
and client vehicle uncertainty. Unlike many planning problems, there is no desired terminal state
for the server. We can define a quadratic stage cost penalizing client uncertainty fitting the form of
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Figure 4.3 Reception rate data and channel state model. The histogram represents the frequency of successfully
received acoustic broadcasts. The channel model, λ, illustrates (4.31) tuned to the environment.
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the objective in (4.4):

tr(Σck) = m>bk

tr2(Σck) = b>k mm>bk

= b>k Qbk,

where m> is a row vector that sums the diagonal elements of the covariance matrix corresponding
to the client vehicle from the belief state.

4.4 Numerical Simulations

We first present an empirical channel model informed by reception statistics collected during AUV
field trials. We then validate our planning framework through several simulated scenarios where
we employ this channel model for planning.

4.4.1 Empirical Channel Model

In this section, we review how we compute the distribution over channel states p(γk = 1) =

λk. Physics-based and empirical models exist for studying communication error in underwater
channels. One such empirical channel model proposed by Stojanovic (2007) was used by Hollinger
et al. (2015) for studying multiple vehicle coordination. Within the model, the probability of
successful transmission is written as a function of the transmit frequency, power, and environmental
conditions. In this chapter, we are interested in showing how a channel model can be integrated
into the planning framework. As such, we employed a simplified model where the probability of
successful reception falls off as a sigmoid with the horizontal range, r =

∥∥∥xs − xc

∥∥∥
2
, between
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server and client

λk(r) = p(γk = 1)

=

[
1 + exp

{
1

τ
(r − r̄)

}]−1

, (4.31)

where r̄ is the range at which reception probability is 1
2

and τ is the length scale that defines the
rate at which reception decreases.

We manually fit the parameters of this simple model to data collected over the course of sev-
eral field trials. We fielded two Iver2 AUVs and a surface ship. Each vehicle was equipped with
a WHOI Micro-modem and co-processor board (Freitag et al., 2005b), 25 kHz BTech Acous-
tics 2RCL transducer, and a synchronous-clock reference. Each vehicle periodically transmitted
Micro-modem Rate 1 and 2 data packets which each consist of three 64 B PSK encoded data
frames. The vehicle hardware and software systems are reviewed in Appendix C.

Over the course of three trials, we collected over 3000 range observations. The trials were
conducted in shallow water (roughly 20 m) with all transducers suspended at approximately 10 m.
While the true inter-vehicle range is unknown, we estimated range from the filtered online vehicle
position estimates in post process. The inter-vehicle range did not exceed 400 m. Fig. 4.3 shows
the channel model (4.31) overlaid on a histogram of reception frequencies for varying relative
range, where the channel model matches the characteristic behavior of the true channel.

4.4.2 Simulation: Static Beacon Localization

Our first set of simulations helps illustrate the planning problem for a simple scenario—compute
a server trajectory to localize a static beacon. This is a special case of server-client localization
in which the client vehicle is fixed, and, hence, does not accrue any additional uncertainty over
time. This problem is akin to surveying LBL network beacons. Jakuba et al. (2008) recommend
that the topside ship circle the beacons at a fixed radius (up to water depth), providing a heuristic
to balance position information and communication.

We assume that the server vehicle follows a simple unicycle model. The server translates a
fixed distance, ∆, for each timestep with control defined by a change in heading, uk, perturbed by
zero-mean independent Gaussian noise wk. The server state is parameterized by its XY horizontal
position and heading θ: xsk+1

ysk+1

θsk+1

 =

xsk + ∆ cos(θsk + uk + wk)

ysk + ∆ sin(θsk + uk + wk)

θsk + uk + wk

 .
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Figure 4.4 Example planning for static beacon localization. Top row shows planned trajectories with the underlying
channel model using the baseline relative depth (color gradient in top row represents communication channel quality,
darker is better). Bottom row plots range information using the baseline channel model (color gradient in bottom row
represents range information, darker is better).

−100 −50 0 50 100

x [m]

−100

−50

0

50

100

y
[m

]

control
circle
beacon

(a) Baseline scenario with channel
model

−100 −50 0 50 100

x [m]

−100

−50

0

50

100

y
[m

]

(b) More restrictive communication
channel

−100 −50 0 50 100

x [m]

−100

−50

0

50

100

y
[m

]

(c) Less restrictive communication
channel

−100 −50 0 50 100

x [m]

−100

−50

0

50

100

y
[m

]

(d) Baseline with depth informa-
tion

−100 −50 0 50 100

x [m]

−100

−50

0

50

100

y
[m

]

(e) 10 m relative depth

−100 −50 0 50 100

x [m]

−100

−50

0

50

100

y
[m

]

(f) 1000 m relative depth

The beacon (client) state includes simply its XY position. Following each motion step, the server
vehicle observes its own position and orientation and the range to the beacon (depending on the
channel state).

We optimized over open-loop control actions and parameterized circular paths. For the opti-
mal control trajectories, the server vehicle was initialized in the same position for each trial. For
the parametric circular trajectories, the initial server pose is a function of the radius. Fig. 4.4 il-
lustrates planned server trajectories for varying channel model and relative depth parameters over
50 planning steps. This scenario illustrates the tradeoff between a good communication channel
or informative range observations. This tradeoff is endemic to all range-only cooperative under-
water planning. The top row in Fig. 4.4 demonstrates that our planning framework responds to
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varying channel parameters. The bottom row shows that information added by each range mea-
surement changes as a function of relative depth between the server and beacon. As the relative
depth increases, the server must move farther away in order to localize the beacon.

These simulations also help to illustrate the utility of parameterized trajectories, provided that
the parameters are well informed by experience. For this simplified scenario, the planned control
and parameterized circle paths do not differ significantly and agree with heuristic LBL localization
methods.

4.4.3 Simulation: Server-Client Localization

In the second set of simulated trials, we consider two mobile AUVs—a server and client—and
show that the planning framework scales to realistic problem sizes. Each vehicle’s state is parame-
terized by its XY horizontal position and heading θ. We assume a constant forward velocity so that
over a fixed time step, the change in position is ∆. The state dynamics follow a simplified bicycle
model with steering angle control input uk:xsk+1

ysk+1

θsk+1

 =

 xsk + (∆ + w∆k
) cos(θsk)

ysk + (∆ + w∆k
) sin(θsk)

θsk + α(∆ + w∆k
) tan(uk + wuk)

 ,
where α is the reciprocal ‘wheel-base’ length and w∆k

and wuk represent Gaussian noise perturba-
tions in the step length and control, respectively.

We are provided the client survey trajectory at planning time. The estimated survey time is
76 min and is represented by roughly 5000 state transitions. The relative vehicle depth is 100 m

and the channel model parameters are r̄ = 250 m and τ = 125 m. By optimizing over ‘diamond’
path parameters (center position, width, height), we reduce the complexity of the problem. Each
vehicle relies on a pure-pursuit path-following controller. Fig. 4.5 depicts the planned trajectory
for each vehicle.

We also compared the optimized path to a naı̈vely planned path, which we have employed in
several previous cooperative localization field trials. We set the parameters of the naı̈ve path to be
centered on the client survey area and span the length and width of the survey area. Table 4.1 sum-
marizes the performance of each path averaged over 100 simulated trials. Overall, the optimized
path receives more OWTTs per trial than the naı̈vely planned trajectory. Moreover, the client un-
certainty (indicated by the determinant and trace in the table) is far lower for the optimized path.
The optimized server path remains closer to the center of the client survey, and thus is able to more
reliably make OWTT observations.
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Figure 4.5 Optimized (red) and naı̈vely planned (green) server trajectories.
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Table 4.1 Average performance comparing an optimized path and a naı̈vely planned path over 100 simulated trials.

METHOD OWTTS RECEIVED |Σck | tr(Σck)

Proposed (optimized) 67.6 0.40 69.56

Naı̈vely planned 62.9 1.60 402.34

4.5 Chapter Summary

Cooperative underwater localization enables teams of vehicles to exploit range observations to im-
prove their navigation estimates. The quality of the estimate, however, depends on the relative
position of the vehicles. Therefore, planning relative paths can benefit online navigation perfor-
mance. We have presented a probabilistic channel model that represents randomness in observation
events. The channel model holds potential utility in other applications involving unknown mea-
surement acquisition. We then integrated the model into a belief space planning framework that
optimizes either open-loop control actions or path parameters in order to produce practical AUV
trajectories.
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Chapter 5

Conclusions and Future Work

AUVs extend the abilities of ocean researchers to observe the world in a way not previously
possible—at greater depths and over larger spatial and time scales. Accurate underwater local-
ization is a key competency for safe operation and to precisely geo-reference scientific data. Co-
operative localization has recently been enabled by more prevalent underwater communication
systems, but faces several design challenges in transitioning to the underwater domain.

Underwater cooperative localization provides an infrastructure-free means of accurate bounded-
error position estimation while subsea. The design of such systems must address how to share in-
formation consistently and how to communicate such information over a lossy and low-bandwidth
underwater acoustic communication channel. Prior to this thesis, estimator consistency had been
addressed by expanding the state representation to explicitly track correlated information, i.e., by
using delayed state or pose-graph models. While providing a solution to the problem of consis-
tency, a larger state representation did not necessarily lend itself to communication over a band-
width limited channel. Additionally, the estimate quality produced by range-only cooperative lo-
calization is strongly influenced by the network geometry. No previous literature has addressed
planning informative relative trajectories that considers both the quality of information and the
fidelity of the acoustic channel.

5.1 Contributions

The specific contributions of this thesis include:

• We proposed the OSM (Chapter 2) for cooperative server-client localization. The DEIF,
which noted that local platform information updates take a sparse form in a pose-graph
framework, served as the basis for this work. We showed that we could further exploit the
structure of the underlying pose-graph in order to broadcast the server information to the
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client. We also provided experimental evaluation for the first-ever real-time exact OWTT
cooperative localization.

• In Chapter 3, we presented an algorithm for peer-to-peer cooperative localization. We bor-
rowed ideas from the OSM in order to effectively share local information that scales to many
vehicles. While the OSM leveraged the structure of the MRF, here, we exploited the factor-
level structure of the local information. We showed that odometry factors can be composed
and then decomposed for efficient communication. We also applied approximate marginal-
ization to reduce the number of pose nodes that must be shared. We provided a comparative
experimental evaluation that validated our approach and showed improvement when com-
pared to a similar method.

• We proposed an motion planning algorithm for server-client localization that includes a
probabilistic channel model. The algorithm is based on prior work in belief space plan-
ning methods, which provide a solution to more general POMDPs. Solving the POMDP is
made tractable by applying linear Gaussian techniques. We model acoustic communication
success as a spatially-varying Bernoulli random variable, termed the channel state variable.
We modify the measurement observation model to include the channel state variable, and
then derive the corresponding EKF for such a model. The EKF propagation equations define
the so-called belief dynamics, which provides a predictive model of client state and uncer-
tainty given a server path. Finally, we optimize over server path parameters to obtain locally
optimally server paths.

5.2 Future Work

While this thesis has provided novel contributions toward underwater cooperative localization, we
recognize room for improvement. Further compelling areas of research are described below.

Cooperative Localization

• The methodologies reported in this thesis enable platforms to share their local navigation in-
formation. However, there is no mechanism for sharing information from the wider network,
which would be useful for cascaded communication topologies, for example. For cascaded
network topologies (or any tree topology), we propose approximate marginalization (as in
Chapter 3) to include parent information as an additional factor for children platforms.

• We have only focused on handling direct vehicle-to-vehicle range constraints as derived
from OWTT observation. Based on our factor-based localization framework, vehicles could
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potentially share additional loop-closure or other informative factors, e.g., from a visual
SLAM system.

• Roumeliotis and Rekleitis (2004) examined theoretical bounds on uncertainty growth within
cooperative networks as a function of network size. Their analysis places strong assumptions
on the sensors available to each vehicle and only considers unconstrained communication.
As future work, we propose extending their analysis to graph-based cooperative estimation
frameworks with unreliable communication as in Chapter 3. This analysis would indicate ex-
pected localization performance for underwater vehicle cooperative networks, which could
be useful for multi-vehicle survey design.

Planning for Localization

• Optimizing over path parameters is similar to using macro actions (He et al., 2011). It
would be interesting to explore a richer set of actions (only diamond trajectories employed
in Chapter 4) that could be sequentially combined, yet still easily computed.

• Our planning methodology addressed planning for a single server vehicle given a single
client trajectory. A possible avenue for future work would be to simultaneously consider
multiple server and client vehicles. Scaling to multiple vehicles is nontrivial since planning
algorithm complexity is super linear in the number of vehicles.

• Informative planning for range-only localization can be accomplished using heuristic plan-
ners, e.g., German et al. (2012) proposed following the centroid of the client’s remaining
survey area. These heuristic planners can perform quite well in practice by capturing the in-
tuitive notion that localization quality is tied to varying the relative angle between vehicles—
in order to bound uncertainty in all directions—and were designed, no doubt, from user ex-
perience. In the same vein, learning algorithms may be capable of selecting good support
trajectories given past performance. A learned behavior may have computational benefits
that enable rapid replanning or may scale to many vehicles.
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Appendix A

Probabilistic Graphical Models

The connection between solutions to linear systems and graphical models has been long studied
(Parter, 1961; Rose, 1972; Kschischang et al., 2001; Loeliger, 2004; Cowell et al., 2007) and helps
to reveal the underlying structure in the SLAM problem. Fig. 1.2 illustrates the connection between
the information matrix and the Markov random field (MRF) and the measurement Jacobian and the
factor graph. Understanding the relationship between the SLAM problem and graph representation
has led to the development of the current state-of-the-art.

Probabilistic graphical models capture conditional independence relationships within the joint
distribution over a set of random variables. The joint distribution is often more simply expressed
as a product over conditionally independent subsets. A random variable A is conditionally inde-
pendent of C given B, i.e., A ⊥⊥ C | B, if p(A | B,C) = p(A | B). Below, we provide a brief
overview of the two graphical models with Gaussian noise models referenced in this work.

A.1 Gaussian Markov Random Fields

An MRF is a multivariate random variable X = {x1, . . . ,xn} that can be represented by an undi-
rected graphical model G = (V,E) where V and E are the vertex (node) and edge sets, respec-
tively. Two unique nodes xi and xj for i, j ∈ V are adjacent if they share an edge, {i, j} ∈ E. The
neigbors of xi are the nodes with which xi is adjacent, i.e., N (i) = {xj|{i, j} ∈ E,∀j ∈ V }.

Figure A.1 Illustration of a Gaussian MRF. The information matrix Λ corresponds exactly to the adjacency matrix of
the graph.
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Graph edges encode conditional relationships within the distribution—a variable node is inde-
pendent of the rest of the graph given its neighbors,

p(xi|X) = p(xi|xj∈N (i),xj /∈N (i))

= p(xi|xj∈N (i)).

A special case of MRFs are graphs that admit a clique (complete subgraph) factorization, i.e., the
joint density can be factored

p(X) =
∏
C∈C

φC(XC), (A.1)

where φ( · ) is termed a factor potential.
A multivariate Gaussian distribution is parameterized by its mean and covariance, or, in the

natural form, by its information vector and matrix

X ∼ N
(
µ,Σ

)
= N−1

(
η,Λ

)
.

The information matrix, Λ, is exactly the adjacency matrix of G corresponding to the MRF. More
specifically, off-diagonal block entries of the information matrix are zero for pairs of vertices that
do not share an edge

{i, j} /∈ E =⇒ Λij = 0. (A.2)

This property is illustrated in Fig. A.1.

A.2 Factor Graphs

The factor graph is a bipartite graphical model consisting of variable nodes and factor nodes.
Within the SLAM problem, factors or constraints typically represent observations connecting un-
known pose or landmark variables. Like the MRF, the factor graph reveals the underlying factor-

Figure A.2 Illustration of a Gaussian graph. The measurement Jacobian A directly corresponds to the factor graph.
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ization of the joint distribution

p(X) ∝
∏
i

φi(Xi) (A.3)

where φi( · ) represents the the potential induced by the ith factor node over the set of variable
nodes, Xi.

The factor graph shares a direct correspondence with the measurement Jacobian—each factor
corresponds to block row within the measurement Jacobian.
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Appendix B

Vehicle and Observation Models

In this appendix, we review the 2D horizontal-plane odometry model used in the experiments
presented in this dissertation. We also describe and discuss the use of 2D pseudo range observations
derived from 3D slant range observations.

B.1 DVL Odometry Model

In this section, we outline the procedure to compute odometry updates given noisy DVL and head-
ing data. We employ a first-order covariance approximation as developed by Eustice et al. (2011).

The vehicle horizontal-plane odometry (displacement) in the world frame between time indices
i and j is computed

∆xij =

∫ tj

ti

R(ψ(t))u(t)dt, (B.1)

where u(t) = [u(t), v(t)]> is the vector body-frame velocity (surge and sway), ψ(t) is the vehicle
heading, and negligible roll and pitch is assumed. The body to world rotation matrix is defined

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
. (B.2)

We can approximate (B.1) given discrete heading and velocity samples by forward Euler numerical
integration

∆xij = ∆t
∑
k

R(ψk)uk, (B.3)

with sample index k and sample period ∆t.
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DVL velocity and heading observations are nondeterministic. We model the random noise
perturbations by independent additive zero-mean Gaussian noise

zuk
= uk + wuk , wuk ∼ N

(
0,Ruk

)
zψk

= ψk + wψk
, wψk

∼ N
(
0, σ2

ψk

)
.

The observed odometry is then computed as the summation of noisy heading and velocity mea-
surements

zij = ∆t
∑
k

R(zψk
)zuk

= ∆t
∑
k

R(ψk + wψk
)(uk + wuk

). (B.4)

To approximate odometry observation statistics, we first compute the first-order Taylor series
expansion of the rotation matrix in (B.4)

R(ψk + wψk
) ≈

[
cosψk − wψk

sinψk − sinψk − wψk
cosψk

sinψk + wψk
cosψk cosψk − wψk

sinψk

]

=

[
cosψk − sinψk

sinψk cosψk

]
︸ ︷︷ ︸

R(ψk)

−wψk

[
sinψk cosψk

− cosψk sinψk

]
︸ ︷︷ ︸

R′(ψk)

. (B.5)

We then substitute (B.5) into (B.4)

zij ≈ ∆t
∑
k

(R(ψk)− wψk
R′(ψk)) (uk + wuk

) . (B.6)

Finally, the approximate odometry observations statistics are determined

E[zij] = ∆t
∑
k

R(ψk)uk

= ∆xij (B.7)

Rij = E
[
(zij − E[zij])(zij − E[zij])

>]
= ∆t2

∑
k

(
R(ψk)Ruk

R(ψk)
> + σ2

ψk
R′(ψk)

(
uku

>
k + Ruk

)
R′(ψk)

>) (B.8)

where Rij is the approximate odometry noise covariance.
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Figure B.1 Posterior distribution over client state given a single range to a beacon at the origin and relative depth. The
horizontal range (green circle) is held constant while the relative depth is increased from left to right. Note that the
distribution becomes more uncertain (less informative) as relative depth increases.

(a) Posterior distribution over state given 3D slant range and depth observations.

(b) Approximate posterior distribution over state given 2D pseudo range and depth observations.

B.2 OWTT Observation Model

Many estimation and planning frameworks for OWTT localization project 3D slant ranges into the
2D horizontal plane to obtain a set of pseudo ranges used with a fixed measurement covariance.
Here, we give a formulation for the pseudo range as a function of the measured slant range and
relative depth between the server and client and provide a first-order covariance approximation.
Fig. B.1 illustrates that increasing the relative depth between vehicles reduces the horizontal plane
information.

We model a slant range between 3D client and server states xc,xs ∈ R3 as

zslant =
∥∥∥xs − xc

∥∥∥
2

+ wslant (B.9)

where wslant ∼ N
(
0, σ2

slant

)
. We assume that we have access to a relative depth observation

zd = zs − zc + wd,

where zs and zc are the depth components of xs and xc, respectively, and wd ∼ N
(
0, σ2

d

)
. Slant
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Figure B.2 Pseudo range variance σ2
pseudo and information 1/σ2

pseudo for increasing depth to range ratio. As the relative
depth increases relative to the slant range, the variance increases corresponding to a decrease in information in the
horizontal plane.
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ranges are projected into the horizontal plane given the relative depth

zpseudo =
(
z2

slant − z2
d

)1/2

=
((
||xs − xc||2 + wslant

)2 −
(
zs − zc + wd

)2
)1/2

,

for zd < zslant. We can model zpseudo as a Gaussian random variable with variance approximated
through the first-order Taylor expansion, i.e.

σ2
pseudo =

z2
slantσ

2
slant + z2

dσ
2
d

z2
slant − z2

d

. (B.10)

The variance is not a simple weighted combination of the depth and slant range variances, nor
is it a fixed value. The variance explodes as zd → zslant, regardless of the depth and slant range
uncertainties. Linearized range observations add information along the vector between the server
and client positions. As zd → zslant, almost all information is added along the depth direction, and
little information is added in the horizontal plane. This relationship is illustrated in Fig. B.2.
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Appendix C

Field Equipment

C.1 PeRL Iver AUVs

The Perceptual Robotics Laboratory (PeRL) maintains two AUVs—modified Ocean-Server, Inc.
Iver2 AUVs, Iver28 and Iver31. Fig. C.1 showes a schematic overview of the custom Iver2 con-
figuration.

C.1.1 Hardware description

Each AUV includes a typical advanced dead-reckoning sensor suite as tabulated in Table C.1 and
reported in Brown et al. (2008, 2009). The AUVs measure body-frame velocities with a 600 kHz

RDI DVL, attitude with a Microstrain 3DM-GX25-AHRS, and depth with a Desert Star Systems
SSP-1 digital pressure sensor. Additionally, each vehicle is outfitted wit a WHOI Micro-modem
and co-processor board Freitag et al. (2005b) and 25 kHz BTech Acoustics 2RCL transducer.

To calibrate the Microstrain heading bias, we apply a nonlinear bias correction to the raw
magnetic compass reading θ,

δθ(θ) = A+B sin θ + C cos θ +D sin 2θ + E cos 2θ.

Table C.1 Iver Navigation sensors: Sampling frequency and noise characteristics

Iver Sensors State Variable Frequency Noise (1-σ)
Microstrain φ, θ, ψ 25 Hz 2◦

DVL ẋ, ẏ 3 Hz 5 cm/s
pressure depth z 2 Hz 10 cm
acoustic modem slant range every ∼30 sec 1 m
GPS x, y 1 Hz 3 m
LBL x, y every ∼30 sec 1 m
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Figure C.1 Schematic Iver2 configuration.

The bias correction is a simple sum of harmonic functions fit during a special calibration mission.

C.1.2 Software description

All vehicles run a robotic operating system, perls, developed by PeRL. The modular and ex-
tensible software architecture allows vehicles to log command, control, and sensor data real-time
and then later playback for new development and debugging. The operating system also contains
myriad tools for real-time visualization and control. Bingham et al. (2011) provide further details.

C.2 Synchronous-Clock Acoustic Communication

A pulse per second (PPS) pulse is used to trigger acoustic transmission events with the WHOI
Micro-modem (Freitag et al., 2005b). Subsea, a PPSBoard (Eustice et al., 2006b) provides a stable
precision clock signal, see Fig. C.2. This time reference allows the Micro-modem to measure the
TOA within 125 µs corresponding to 18.75 cm at 1500 m/s sound speed. The topside node uses a
GPS timeserver with timing accuracy better than 10 µs.

Several communication frameworks exist for multiple underwater vehicles operations. Stokey
et al. (2005) define the widely used compact control language (CCL) message set, which uses fixed
bit-fields to encode messages. Schneider and Schmidt (2010a) provides improved marshalling
capabilities with DCCL, which allows for dynamically configurable messages. Schneider and
Schmidt (2010b, 2012) wrap the marshalling capabilities of DCCL with a MAC library and lower
level modem drivers. Webster et al. (2009a) provide a framework specifically for OWTT navi-
gation. Finally, the CAPTURE framework couples the low-level modem control with a routing
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Figure C.2 The PPSBoard provides a stable clock reference while subsea. (Eustice et al., 2011)

Table C.2 WHOI Micro-modem data packets

Packet Burst rate Frames/packet Frame size Packet length
PSK R6 490 bps 6 32 B 2.95 s
PSK R5 5388 bps 8 256 B 3.04 s
PSK R4 1301 bps 2 256 B 3.15 s
PSK R3 1223 bps 2 256 B 3.35 s
PSK R2 520 bps 3 64 B 2.95 s
PSK R1 498 bps 3 64 B 3.08 s
FSK R0 80 bps 1 32 B 3.90 s

scheme (Murphy, 2012; Murphy et al., 2014).
All acoustic modem driver-level and MAC scheduling and data marshalling is handled by the

goby-acomms suite (Schneider and Schmidt, 2012) using DCCL messages with a custom in-
terface to the perls operating system. A simple fixed TDMA schedule was employed. Each
vehicle was scheduled to broadcast a data packet (either frequency-shift keying (FSK) or PSK, see
Table C.2), a mini packet (13 bit data packet), or query the LBL network.

The acoustic message specification for the OSM (Chapter 2) is detailed in Table C.3. Note that
server state is parameterized by its XY position, so that each origin state packet information vector
and matrix are of dimension four (marginal distribution over origin and newest TOL states). In
pracice, the server vehicle broadcasts additional origin state packets, so that each transmit event
includes at least two Micro-modem 64 B data frames.

Table C.3 OSM acoustic message specification

Message Field Range Precision Maximum Size
Depth 0− 300 m 1 12 bits
Origin state packet:
Information vector element −104 − 104 5 31 bits
Information matrix element −102 − 102 7 31 bits
Origin TOL index 0− 103 – 10 bits
New TOL index 0− 103 – 10 bits
Total 60 B
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Table C.4 Peer-to-peer acoustic message specification

Message Field Min value Max value Precision Maximum Size
Depth 0 m −100 m 1 10 bits
Per factor (2 factors per link):
TOL index 0 103 – 10 bits
Measurement vector element −103 103 1 15 bits
Covariance element 0 500 1 13 bits
Cross covariance element −500 500 1 14 bits
Total (3 links) 64 B

The acoustic message specification for broadcasting links for peer-to-peer navigation (Chapter 3)
is reviewed in Table C.4. A link is a two-tuple representing two factors: the odometry factor to
the previous link and a prior factor. Each factor has equal dimension. We were able to specify the
range and resolution of each factor so that three links could be broadcast within a single 64 B data
frame.
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