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Abstract—This paper reports an algorithm for the registration
of images with low overlap and low visual feature density—
a typical characteristic of down-looking underwater imagery.
Our algorithm exploits locally accurate temporal motion-priors
and pairwise image correspondences to aggregate semi-rigid sets
of sequential images. These sets are then used to search for
visual correspondences across sets instead of between individual
pairs of images. By simultaneously searching over multiple
views, we increase the physical area seen by more than one
image, effectively increasing the “field of view” of the image
correspondence search. This increases the probability that the
area viewed by both sets will contain enough visual features
to register the sets. Our algorithm systematically reduces the
uncertainty in the motion prior between the two sets resulting in
a refined motion prior that is used to geometrically constrain the
correspondence search between sets. This geometric constraint
allows us to confidently identify local correspondences that
would not be possible globally, further increasing our ability to
register images in feature poor environments. We present results
using a real-world ship hull inspection data set collected by an
autonomous underwater vehicle.

I. INTRODUCTION

Visually augmented navigation relies on the ability to find
correspondences between images taken at different times in
order to register the images and produce a constraint on vehicle
motion. Unfortunately, underwater image capture is severely
inhibited by the high attenuation of light in water and the need
to conserve energy with strobed lighting. Because of these
factors most underwater imagery is collected with a small field
of view (FOV) (e.g., typically 45◦ FOV at < 3–5 m altitude
from subject) and low spatial overlap between images (e.g.,
< 15%). In many unstructured underwater environments there
may not be a sufficient number of visual features within the
small region of overlap between individual pairs of images to
reliably register them. This often occurs in areas of uniform
texture such as patches of sand, mud or rock, and man made
materials such as metal or concrete.

In this paper we present an algorithm that addresses the
problems of low image overlap and low visual feature density
by exploiting locally accurate temporal motion-priors and
pairwise image correspondences to aggregate together semi-
rigid sets of sequential images. We then search for visual
correspondences between these sets instead of between indi-
vidual pairs of images. By searching over multi-image sets

we increase the physical size of the scene visible in more
than one view, effectively increasing the “field of view” of
the correspondence search. This increase in the area of image
overlap increases the probability that the scene viewed by both
sets will contain enough visual features to produce a constraint
on the camera’s motion. This provides a great advantage
for feature matching in environments with a low density of
interesting visual features. An example of a feature poor region
is that of a ship hull as shown in Fig. 1. Between any pair
of images there are at most four feature correspondences
identified, too few for reliable pairwise registration. However,
in aggregate across the two three-image sets there are a
total of 10 correspondences, still few, but enough to attempt
image registration. This illustrates why the proposed multi-
view algorithm is successful—it is often able to aggregate
together a sufficient number of correspondences even when
the number of correspondences for any given pair of images
is too few for pairwise registration.

Fig. 1. Sample pair of image sets illustrating the utility of the multi-view
correspondence search. The correspondences between images are marked
with colored dots. A total of 10 correspondences are found between both
image sets; however, between any pair of images there are at most 4
correspondences, too few to register. This illustrates why the proposed multi-
view algorithm is successful: it is often able to aggregate together a sufficient
number of correspondences even when the number of correspondences for
any given pair of images is too few for pairwise registration.

It is important to emphasize that, though we present results
for a mostly-planar ship hull data set, our algorithm makes
no assumptions that the images in an aggregate set are related
by a homography. Instead, our algorithm uses a multi-view
geometry constraint and does not assume that the environment



(a) Reference image. (b) PCCS with a strong
motion prior.

(c) PCCS with a weak
motion prior.

Fig. 2. An example of pose-constrained correspondence search (PCCS):
(a) the first image with four sample feature points, (b) the 99.9% confidence
ellipses where the corresponding features should lie based on a strong motion
prior, (c) the 99.9% confidence ellipses from a weak motion prior. With a
strong prior the reduction in the physical space where correspondences may
be found greatly relaxes the requirements on the appearance-based feature
matching as a feature only needs to be matched locally within the ellipse as
opposed to globally over the whole image. However, as seen in (c), a weak
motion prior will not adequately constrain the feature search.

is planar, makes no homography-based approximations, and is
equally valid for planar and fully 3D environments.

A. Background

It has been well established in the computer vision literature
that epipolar geometry can be used to constrain the search
space for feature correspondence [1]. Previous work by the
authors [2] demonstrated that, on a robotic platform, the dead-
reckoned (DR) pose prior between calibrated cameras and
gross scene depth can be used to instantiate the epipolar
geometry between frames and constrain correspondence es-
tablishment between a pair of images (Fig. 2).

This geometric constraint reduces the physical search space
for a feature, which in turn reduces the required appearance-
based uniqueness of the feature. This allows one to make
confident matches locally that would not be possible glob-
ally, increasing the number of correspondences found. As an
example, consider a small pebble on a sandy seafloor. If we
were to attempt to locate that pebble in another image we most
likely would not be able to, as there are many similar features
on the seafloor. However, if we knew with a high degree of
certainty that the pebble should exist only in a small region of
the other image, then we would greatly increase the chances
of identifying the same pebble in the other image.

In feature poor regions, this geometrically constrained
search can provide a large advantage by allowing us to identify
more subtle or repetitive visual features—for example, on an
instrumented vehicle platform, this prior is typically available
between sequential poses where the DR navigation is accurate.
On the other hand, when the motion prior uncertainty is
very large, this method no longer provides any advantage
as the geometric constraints grow beyond the field of view
(Fig. 2(c)). Hence, while the motion prior between temporally-
sequential images within an image set will be strong, the
motion prior across temporally-disjoint image sets may not
be, greatly reducing (if not nullifying) the gains provided by
the geometric constraint.

(a) First image set with feature points.

(b) PCCS constraints from an inaccurate motion prior.

(c) PCCS constraints from an accurate motion prior.

Fig. 3. Depiction of the discrete search used to refine the motion prior
between sets. The first set is shown in (a) with four sample feature points
for each image (circles). The geometric constraints (ellipses) shown in (b)
are produced by an inaccurate estimate of the motion prior. We can see that
none of the true correspondences, marked with small circles, lie within the
correct geometric constraint ellipse. However, using a better estimate of the
motion prior, (c), we find that all of the true correspondences now lie in their
respective geometric constraint. A correspondence search using the motion
prior in (b) would produce very few correspondences as its 99% confidence
bound excludes all of the true matches. However, a search using the prior
in (c) produce a very high number of matches. This response allows us to
identify which discrete hypothesis, extracted from the original uncertainty in
the motion prior, is closest to the true motion.

B. Methodology

In this paper, we propose a multi-hypothesis discrete search
method to reduce the uncertainty in the motion prior between
two sets. The discrete search divides the uncertainty in the
initial motion prior into discrete hypotheses and then searches
for the number of visual correspondences available for each
hypothesis. For hypotheses that do not agree with the true
motion between sets, there will be fewer putative visual
correspondences. However, for hypotheses that agree closely
with the true motion, we will see a very sharp increase in the
number of correspondences found as the true correspondences
will all fall within the geometric constraint. By repeating this
process we can greatly reduce the uncertainty in the motion
prior between sets, allowing us to geometrically constrain the
visual correspondence search between sets. An example of this
process is depicted in Fig. 3.

As advocated in [3] our proposed method for correspon-
dence search first constrains the search region and then
performs an appearance based search therein. This is in
contrast with techniques, such as random sample consensus
(RANSAC) [4], which first find appearance-based matches
globally and then enforce geometric consistency. However,



unlike [3], where hypotheses are generated by sequentially
searching feature by feature, we generate hypothesis by dis-
cretizing the highly uncertain dimensions of the pose prior.
This allows us to start a search even when the pose prior
uncertainty is initially very high.

Though the proposed algorithm is generically applicable in
any unstructured or underwater environment, our particular
motivating application for this work is autonomous ship hull
inspection [5, 6]. During autonomous ship hull inspection
an autonomous underwater vehicle (AUV) must accurately
navigate along a ship’s hull searching for damage or foreign
objects. The collected images will almost invariably be of a
flat, solid colored surface with very few remarkable features
(Fig. 1). By increasing the effective field of view of the search,
we increase the chances of finding a sufficient number of
visual features to produce a constraint on the robot’s pose.

It is important to note that the algorithm presented in this
paper exists in the context of trajectory-oriented simultaneous
localization and mapping (SLAM) [7] using vision as the
primary sensing modality. In trajectory-oriented SLAM the
robot maintains an estimate of its previous poses, referred to
as the state estimate. Therefore, at a given time step, k, the
estimated mean, µ, and covariance, Σ, for the current and all
previous poses is available:

µ =


µpk
µpk−1

...
µp1

 Σ =


Σpkpk Σpkpk−1

. . . Σpkp1
Σpk−1pk Σpk−1pk−1

. . . Σpk−1p1
...

...
. . .

...
Σp1pk Σp1pk−1

. . . Σp1p1


where each pose, pi, is a 6 degree of freedom (DOF) vector
consisting of x, y, z translation and roll, r, pitch, p, and
heading, h, attitude. Each pose is associated with the image
collected at that location. Therefore, registering images pro-
vides a constraint on the motion of the AUV between the
locations were the images were collected. In summary, the
goal of trajectory-oriented visual SLAM is to produce the
best estimate of the current and previous robot poses through
the robot’s DR navigation sensors and image registration. For
a thorough overview of image registration and the related
geometry we refer the reader to [8] and for an overview of
SLAM we recommend [7, 9]. We also note that, although
our algorithm does not depend on the particular selection of
visual feature detector and descriptor, we have used the scale
invariant feature transform (SIFT) [10] in our testing and to
generate the figures in this paper.

The remainder of this paper is outlined as follows. In
Section II we describe how prior information on the motion
between two views can be used to geometrically constrain the
visual correspondence search and in Section III we describe
how these geometric constraints can be propagated through
a set of images. In Section IV we describe how the initial
uncertainty in the inter-set transform can be reduced using a
discrete search and in Section V how the final pose constraint
between sets can be estimated using bundle adjustment. In
Section VI we present the results of the proposed algorithm

as applied to a real-world ship hull inspection data set. Finally,
in Section VII we offer some concluding remarks.

II. POSE-CONSTRAINED CORRESPONDENCE SEARCH

As previously mentioned in [2], it was shown that a-
priori pose information can be used to provide a probabilistic
geometric constraint on pixel locations where correspondences
might be found between a pair of images. Pose-constrained
correspondence search (PCCS) allows us to spatially restrict
the search region in an image when establishing putative cor-
respondences thereby reducing the required visual uniqueness
of a feature. In other words, PCCS allows us to confidently
identify correspondences that would not be possible using
global appearance-based information only—since visual fea-
ture uniqueness no longer needs to be globally identifiable
over the whole image, but rather it only needs to be locally
identifiable within the geometrically constrained region.

In order to express the PCCS geometric constraint we start
with two projective cameras with projection matrices defined
as P = K[I |0] and P′ = K[R | t], where R and t represent the
rotation and translation between the two cameras and K is the
camera calibration matrix [8]. If the distance from the camera
to the scene point, Z, is known then the non-homogeneous
point transfer mapping [2] can be used to project a point in the
image coordinates of the first image into the image coordinates
of the second:

u′ =
H∞u + Kt/Z

H3>
∞ u + tz/Z

(1)

where H∞ = KRK−1 (often referred to as the infinite homog-
raphy), H3>

∞ refers to the third row of H∞, and tz is the third
element of t.

With exact knowledge of all parameters the two-view point
transfer mapping, (1), provides an exact mapping between
image coordinates. In the robot’s state estimate, however, R
and t are only known up to a degree of uncertainty captured
in the state covariance, Σ. Additionally, the scene depth (i.e.,
altitude) is instrumented with uncertainty. Therefore, instead
of exactly projecting a point through (1) we instead find a
first-order covariance ellipse in the second image’s coordinate
frame where we expect the point to lie based upon Σ.

To start we define our parameter vector, γ, as

γ = [t,Θ, Z, u, v]> (2)

where Θ represents the roll, pitch, and yaw Euler angles com-
prising R. The parameter vector mean, µγ , and covariance,
Σγ , are given by

µγ =


µt

µΘ

Z
u
v

 Σγ =


Σtt ΣtΘ 0 0 0
ΣΘt ΣΘΘ 0 0 0

0 0 σ2
Z 0 0

0 0 0 1 0
0 0 0 0 1

.
Here, the mean and covariance estimates of Θ and t are
extracted from the current state estimate, Z and σZ represent
the scene depth parameters as measured in the first camera’s
frame, and (u, v) describe the feature location in pixels in the



first image. In defining Σγ we employ the standard assumption
that features are extracted with isotropic, independent, unit
variance noise [8] when defining the Σuv sub-block. To obtain
a first-order estimate of the uncertainty in the point transfer
mapping between the images we compute

µu′ ≈ (1)
∣∣
µγ

(3)

Σu′ ≈ JΣγJ> (4)

where µu′ is the predicted point location of u in Ij , Σu′

its first-order covariance, and J = ∂u′

∂γ is the point transfer
Jacobian.

We use this knowledge to restrict our correspondence search
using a Mahalanobis distance test:(

u′ − µu′
)>

Σ−1u′

(
u′ − µu′

)
< k2 (5)

where the threshold k2 follows a χ2
2 distribution. Knowing

the distribution of the threshold k2 we can set it such that
we obtain a set level of confidence in our estimate of the
location of the point in the second image. In the remainder of
this paper k2 is set such that we are 99.9% confident the true
correspondence lies within the projected ellipse.

An example of PCCS is shown in Fig. 2 where 2(a) shows
the original points in the first image and 2(b) and 2(c) show
the 99.9% confidence elliptical search regions based upon the
uncertainty in the parameter vector γ. In 2(b) a strong motion
prior greatly reduces the search space, while in 2(c) a weak
prior does little to reduce the search space.

III. PROPAGATING POSE CONSTRAINTS BETWEEN SETS

Section II described how prior information on the camera
motion between two images can be used to geometrically
constrain visual feature correspondences between two images.
We will now describe how we can propagate the camera
motion and its uncertainty through aggregate sets of images
to constrain the correspondence search between image sets.

Fig. 4 illustrates the problem with two sample image sets,
S1 and S2, each with three images [A B C] and [A′ B′ C ′],
respectively. The intra-set transforms (between images within
a set) are known with low uncertainty because the images
are collected sequentially in time with little accumulated DR
error (represented with thick black lines in Fig. 4). In order
to constrain the robot’s motion we want to find the inter-set
transform (between set origins), RS1S2

tS1S2
, represented with

a dashed red line. Because a large amount of time may have
elapsed between the collection of S1 and S2, our knowledge
of the inter-set transform may be very uncertain. Note that
within the inter-set transform only the error in x and y grows
unbounded with time. Depth z, roll r, pitch p and heading h
are all easily instrumented with bounded error on most AUVs.

In order to produce a constraint between the two sets, we
want to predict the locations of the feature points of S1 in
S2 using the intra-set and inter-set transforms. We seek to
to produce a constraint only on the single transform between
set origins and not between the multiple transforms between
the individual set images. Therefore, we propagate pairwise

Fig. 4. Illustration of the inter-set matching problem with two sample image
sets, S1 and S2, each with three images [AB C] and [A′ B′ C′], respectively.
The intra-set transforms (between images within a set) are known with low
uncertainty and are represented with thick black lines. We want to find the
inter-set transform, RS1S2 tS1S2 , represented with a dashed red line. The
points P1 and P2 represent feature points in the first set while P ′

1 and P ′
2

represent their corresponding feature in the second set. The ellipses in the
second set represent the 99.9% confidence region were we expect the points
corresponding to P1 and P2 to exist given our estimate of the inter-set and
intra-set transforms. Note that within the inter-set transform only the error in
x and y grows unbounded with time. Depth z, roll r, pitch p and heading h
are all easily instrumented with bounded error on most AUVs.

connections between S1 and S2 through the set origin images.
Given n images per set we have n2 pairwise connections
between an image in S1 and an image in S2. Using the Smith,
Self and Cheeseman notation [11] we propagate the transform
between an image in S1, Ii, and an image in S2, Ij , as

XIiIj = XIiS1
⊕XS1S2

⊕XS2Ij (6)

where ⊕ is the head-to-tail operator. Note that for image pairs
where Ii, Ij , or both are the origins of their respective sets
the XIiS1

and XS2Ij transforms will be identity. Similarly, the
covariance of the transformation is propagated as

ΣXIiS2
XIiS2

= J⊕IiS2

[
ΣXIiS1

XIiS1
0

0 ΣXS1S2
XS1S2

]
J⊕>IiS2

(7)

ΣXIi,Ij
XIi,Ij

= J⊕IiIj

[
ΣXIiS2

XIiS2
0

0 ΣXS2Ij
XS2Ij

]
J⊕>IiIj (8)

where J⊕IiS2
and J⊕IiIj are the Jacobians of the first and second

head-to-tail operations, respectively.
With this method we can find XIiIj and ΣXIiIj

XIiIj
for

any i ∈ S1 and j ∈ S2 allowing us to perform PCCS between
any pair of images in the sets.

IV. DISCRETE HYPOTHESIS SEARCH TO REDUCE
INTER-SET UNCERTAINTY

If the initial uncertainty in the inter-set transform is too
large, then we will not be able to adequately constrain the



location of possible features correspondences in the other set
similar to that depicted in Fig. 2(c). Therefore, we wish to
reduce the uncertainty in the motion prior between sets using
a discrete hypothesis search (Fig. 3). We note that in most
AUVs only the translation in x and y is instrumented with
unbounded error. Depth, z, and attitude, r, p, and h, are all
typically instrumented with bounded error. Therefore, when
performing the discrete search we only need to search over x
and y.

Given our current mean estimate of x and y, µx,y , and their
covariance, Σx,y , we seek to find a more accurate estimate,
µ̂x,y and Σ̂x,y . This process is illustrated in Fig. 5. In 5(a) we
start with the state estimate mean µx,y equal to the refined
mean µ̂x,y and divide the translation uncertainty, Σx,y , into
four hypotheses along its principle axes. Mathematically this
division is performed as follows. First, we define the set pair
state vector, γ, as

γ = [s1, s2, x, y, ζ]> (9)

where the first and second intra-set transforms are represented
by s1 and s2, respectively, and the inter-set transform is broken
up into the unbounded components x and y and the bounded
depth and attitude parameters, ζ = [z, r, p, h]. Next, we force
the x and y components of the transform between Si and Sj
to be independent from the other pose parameters by forcing
their correlations to zero:

Σ =


Σs1,s1 Σs1,s2 0 0 Σs1,ζ
Σs2,s1 Σs2,s2 0 0 Σs2,ζ

0 0 σ2
x σx,y 0

0 0 σx,y σ2
y 0

Σζ,s1 Σζ,s2 0 0 Σζ,ζ

. (10)

We then perform a eigenvalue decomposition on the covari-
ance of x and y to find the principal axes:

Σx,y =

[
σ2
x σx,y

σx,y σ2
y

]
=
[
V1 V2

] [σ2
1 0

0 σ2
2

] [
V1 V2

]−1
,

(11)
where V1 and V2 are the eigenvectors and σ2

1 and σ2
2 are the

eigenvalues of Σx,y . The four divisions (the refined motion
prior hypotheses) of the original covariance can then be found
with

µ̂x,y =

{
µx,y ± 1

2V1
√
σ2
1k

2

µx,y ± 1
2V2
√
σ2
2k

2
(12)

where k2 is the desired χ2
2 confidence level as discussed in

Section II. The covariance for each of these four hypotheses
is

Σ̂x,y = Σx,y/4. (13)

Knowing the mean and covariance of the four hypotheses
we then perform PCCS for each one, counting the number
of putative visual feature correspondences found. In example
Fig. 5(a), the upper left hypothesis (red with stripes) is found
to produce the highest number of feature correspondences be-
tween the sets. We then repeat the process by again subdivid-
ing the hypothesis with the highest number of correspondences

(a) Iteration 1. (b) Iteration 2.

(c) Final refined estimate.

Fig. 5. Illustration of the discrete hypothesis search when x,y translational
variance is high. In the first iteration, (a), the original 99.9% confidence
ellipse is divided into hypotheses along its principle axes. The upper left
hypothesis, red with stripes, is found to produce the highest number of feature
correspondences and the estimate of x and y, µ̂x,y is moved to its center.
The process is repeated in the second iteration, (b). Finally, after crossing a
minimum covariance threshold or after seeing no further improvement in the
number of correspondences found, a final refined estimate is produced, (c).

as shown in 5(b). The process repeats until the number of
correspondences is no longer increasing, the magnitude of
Σ̂x,y is reduced below a threshold, or a maximum number
of iterations is reached. In 5(c) the refined covariance, Σ̂x,y ,
is sufficiently small and µ̂x,y is accepted as the refined mean
along with its maximal putative correspondence set of spatially
constrained matches between the images in S1 and S2.

V. ESTIMATING THE INTER-SET TRANSFORM

In this section we describe how we refine our estimate
of the inter-set transform, RS1,S2tS1,S2 , where RS1,S2 is the
rotation and tS1,S2 is the translation between the sets. Note
that we parametrize RS1,S2

tS1,S2
as a 6-vector, XS1,S2 =

[x, y, z, r, p, h], where x, y, z represent the translation and r,
p, h, are the Euler angles of the rotation. Our proposed method
is outlined in Algorithm 1.

Algorithm 1 Process Overview
1: Given Si, Sj , µ, and Σ
2: if LargeXY Uncertainty(Σx,y) then
3: (µ̂x,y, Σ̂x,y) = DiscreteSearch(µx,y,Σx,y)
4: else
5: µ̂x,y = µx,y
6: Σ̂x,y = Σx,y
7: end if
8: x = FindCorrespondences(µ̂x,y, Σ̂x,y, . . .)
9: X = Triangulate3DPoints(µ̂x,y, Σ̂x,y,x, . . .)

10: R̂tSi,Sj
= BundleAdjustment(µ̂x,y, Σ̂x,y,X,x, . . .)

Given two sets of sequential images that may overlap, Si
and Sj , the current state estimate, µ, and its covariance, Σ, we
first check if the initial uncertainty in the inter-set transform
exceeds a preset threshold. If it does we try to reduce the



uncertainty in the unbounded inter-set transform parameters
as described in Section IV.

Using the refined inter-set transform, µ̂x,y and Σ̂x,y , and the
intra-set transforms from the robot’s current state estimate,
we then find appearance-based feature correspondences, x,
between the images in S1 and S2 using the geometric con-
straints as described in Sections II and III. In the final step we
calculate a refined translation between sets, µ̂x,y and Σ̂x,y ,
using a robust bundle adjustment [12] optimization. Bundle
adjustment produces a maximum likelihood estimate (MLE)
of the camera motion and the 3D scene structure. From this
estimate of camera motion we can extract the MLE of the
inter-set transform, X̂S1S2

.
Even though geometric constraints are enforced during the

feature matching process, it is still possible that a small per-
centage of incorrect outlier correspondences will be present.
These outliers, though few, can have a detrimental impact on
the bundle adjustment if squared error is used as the criteria for
optimization. Therefore, we instead use the Huber m-estimator
[13] for the bundle adjustment optimization, which weighs
small errors using a squared measure but then reduces the
weight as the error increases, thereby reducing the effect of
outliers. Another common approach would be to use RANSAC
[4] prior to optimization in order to remove outliers. However,
the number of pairwise correspondences between any two
inter-set pairs may be too few to even attempt robustly fitting
a pairwise motion model (Fig. 1). Hence, this is why we elect
to use a robust m-estimator bundle adjustment framework.

It is also important to note that in addition to the feature
correspondences found between sets we also include any
features previously found to be inliers during intra-set pair-
wise image registration. This provides additional information
for the bundle adjustment. Also, because the intra-set trans-
formations are known with much less uncertainty than the
inter-set transformation, we enforce a navigation prior during
optimization that penalizes the modification of the intra-set
transforms. This encourages the optimization to first modify
the more uncertain transform between sets before adjusting the
more precisely known transforms between images in a set.

We implement our navigation prior as described in [14]
where the navigation prior is simply an additional measure-
ment in the optimization parameter vector representing the
Mahalanobis distance between the estimated intra-set trans-
forms and their prior from the state estimate.

VI. EXPERIMENTAL RESULTS

In order to verify the proposed algorithm we tested it
over a real-world ship hull inspection dataset from the de-
commissioned aircraft carrier, USS Saratoga, collected at
AUVFest2008 in Newport, Rhode Island using the Bluefin
HAUV-2B [15] AUV. To do so, we used the output of the
pairwise visually augmented navigation (VAN) algorithm [2]
as a baseline for performance. We manually selected 324
image sets, varying in size from 3 to 5 images per set, and then
grouped the sets into 162 inter-set pairs in regions where the
pairwise algorithm was unable to find correspondence between

images, but where we expected there to be image overlap
based upon the trajectory of the robot. We then performed the
proposed multi-view method over the manually selected sets
to determine if it was possible to find links at these locations.
Fig. 6 shows the results.

The original trajectory, after pairwise image registration
is shown in 6(a). The cyan ellipses represent the trajectory
estimate of the robot’s motion and the gray links represent
image correspondences found using the pairwise method. The
12 green boxes highlight regions where the pairwise method
was unable to find any image correspondences. It was in
these regions that the test sets for this paper were manually
selected. The results of the set based registration are shown
in 6(b). In this figure green lines represent successful new
links, while red represents links that failed due to too few
correspondences being found. In this experiment we used a
minimum threshold of 10 inter-set correspondences. Finally,
magenta lines represent links that failed because the bundle
adjustment did not converge within 200 iterations of the
Levenberg Marquardt (LM) algorithm. The results of the
ship hull inspection dataset are summarized in Table I. Each
successful pair represents an additional new pose constraint
that the multi-view algorithm was able to provide. Overall the
algorithm was able to identify a pose constraint in 79.63%
of the proposed links. As previously mentioned, the image
sets were selected with sizes varying from 3 to 5 images per
set. The different sized image sets were distributed evenly
throughout the robot’s trajectory.

Comparing the links between image sets containing 3, 4,
and 5 views we see that as we increase the number of
images per set the number of successful links also increases.
However, the increase in the number of views per set also
results in an increase in the computational cost of inter-set
matching. Therefore, the choice of image set size is a trade
off between the improved probability of identifying a link, and
the computational cost.

An additional consideration when selecting the image set
size is the rate of accumulation of DR error. The ship hull in-
spection data set was collected using a highly accurate Doppler
velocity log (DVL) velocity sensor that accumulates very little
uncertainty over the set sizes used in our experiment. However,
for less accurate DR sensors the position uncertainty within
a set may grow to the point where adding additional images
no long improves set registration as the intra-set uncertainty
is too high to effectively constrain the visual correspondence
search. Therefore one must also consider the rate of intra-set
DR error when selecting the set size. In future work we plan to
formulate a framework for automatically selecting the image
set size based on the density of visual features in the scene,
the computational cost of additional images, and the rate of
accumulation of intra-set DR error.

In order to characterize the effects of the discrete hypothesis
search described in Section IV, we performed the multi-view
registration over the ship hull dataset with and without the dis-
crete search enabled. When the discrete search was not enabled
we simply used the current state estimate as the pose prior for



(a) Original VAN trajectory and camera-constraints.

(b) Additional links produced by our method.

Fig. 6. This figure depicts the results of our algorithm on a ship hull inspection dataset. In (a) the robot’s trajectory is estimated using the pairwise VAN
algorithm [2]. The cyan ellipses represent delayed-state robot poses and the gray lines represent pose constraints based on pairwise image registration. The
green boxes highlight regions where the pairwise algorithm was unable to find sufficient correspondences for a constraint in the pose graph but where we
expect there to be enough image overlap to find constraints. We manually selected 162 inter-set pairs from the green regions, varying in size from 3 to 5
images per set, and then used the proposed multi-view algorithm to attempt to find pose constraints between these sets. The results are shown in (b) where
green lines represent successful pose constraints while red represents constraints that failed due to too few correspondences found and magenta lines represent
constraints where the bundle adjustment failed to converge.

TABLE I
SUMMARY OF SHIP HULL DATASET DESCRIBING THE NUMBER OF LINKS

ATTEMPTED AND FOUND USING THE PROPOSED MULTI-VIEW ALGORITHM

Total 3 View 4 View 5 View

Attempted 162 54 54 54
Successful 129 41 43 45

Too Few Corrs. 24 11 7 6
No B.A. Convg. 9 2 4 3

% Successful 79.63% 75.93% 79.63% 83.33%

the PCCS. The number of additional correspondences found
with the discrete search enabled is plotted for each pair of sets
in Fig. 7. We can see from Fig. 7 that on average the discrete
search finds an additional 6.66 correspondences per set. This
is a significant number when our threshold for acceptance of
a pair is on the order of 10 to 20 correspondences.

As described in Section IV the discrete search will only try
to reduce the uncertainty in the initial inter-set transform if the
state estimate uncertainty exceeds a threshold. Therefore, in
Fig. 7, we have excluded the pairs where the algorithm found
the initial pose uncertainty sufficiently small and therefore did
not attempt to refine the pose prior.

Fig. 7. This figure compares the number of correspondences found for
each pair with and without the discrete search. For each pair of image
sets the difference between the number of correspondences found with the
discrete search and without is plotted. On average the discrete search finds
6.6 additional correspondences per set by reducing the uncertainty in the
PCCS prior.



VII. CONCLUSION

This paper reported an algorithm to exploit locally accu-
rate temporal motion priors to aggregate sets of sequential
images for multi-view correspondence search. Simultaneously
searching over multiple images increases the area of the visible
scene, thereby increasing the probability of finding a sufficient
number of visually interesting features in the overlapping
image regions. This allows us to identify additional image-
derived motion constraints that would otherwise be too weak
to recover (due to a lack of feature correspondence den-
sity) in a pairwise registration framework. We demonstrated
how our algorithm systematically reduces the uncertainty in
non-informative intra-set motion priors via a greedy discrete
search, and how the resulting refined motion prior can then
be used to geometrically constrain the selection of intra-set
putative correspondences. This geometric constraint allows
us to confidently identify local correspondences that would
otherwise not have been possible in a global matching sense—
furthering our ability to register images in feature poor en-
vironments. Using a real-world ship hull inspection dataset,
we showed how the multi-view algorithm discovered up to
83% more pose constraints than standard pairwise registration
methods in feature-poor areas.

In future work we hope to explore how our method can be
used for large loop closures in regions with a low density
of visual features. We also hope to develop algorithms to
automatically choose which sets of images to aggregate and
which possible pairs of candidate sets to propose for link
hypothesis. Finally, we also hope to explore the possibilities
of applying our algorithm on terrestrial datasets where visual
features are sparse or repetitive.
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