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Abstract— This paper reports on methods for incorporating
camera calibration uncertainty into a two-view sparse bundle
adjustment (SBA) framework. The co-registration of two images
is useful in mobile robotics for determining motion over time.
These camera measurements can constrain a robot’s relative
poses so that the trajectory and map can be estimated in a
technique known as simultaneous localization and mapping
(SLAM). Here, we comment on the importance of propagating
uncertainty in both feature extraction and camera calibration
in visual pose-graph SLAM. We derive an improved pose co-
variance estimate that leverages the Unscented Transform, and
compare its performance to previous methods in both simulated
and experimental trials. The two experiments reported here
involve data from a camera mounted on a KUKA robotic arm
(where a precise ground-truth trajectory is available) and a
Hovering Autonomous Underwater Vehicle (HAUV) for large-
scale autonomous ship hull inspection.

I. INTRODUCTION

The spatial relationship between two images of the same
scene, taken from different poses, must be estimated to
leverage the camera as a viable sensor for real-time, high-
precision simultaneous localization and mapping (SLAM).
The problem of extracting 3D pose and structure given
only an image sequence is a problem widely referred to as
structure-from-motion (SFM). Estimating the structure of a
scene and motion of cameras given only an image sequence
can be done with an iterative technique called sparse bundle
adjustment (SBA) [1]. By minimizing the reprojection error
using sparse optimization techniques, SBA quickly solves
for the relative-pose between camera frames together with a
sparse 3D model of the scene with either known or unknown
camera internal parameters. The egomotion of the camera as
determined by SBA is commonly used in SLAM to constrain
the trajectory of a robot [2]–[5]. Moreover, to achieve good
qualitative and quantitative results in SLAM, the covariance
of the spatial constraints must also be accurately determined.
Accurate covariance estimation techniques for camera con-
straints using keyframe-based SBA is the focus of our work.

SLAM can be represented as a pose-graph optimization
problem [6]–[8]. A pose-graph representation encodes the
poses of a robot together with spatial constraints between
poses, as depicted in Fig. 1. These constraints are typically
assumed to be Gaussian with some mean and covariance.
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Fig. 1. Simple example of pose-graph visual SLAM with camera
constraints, c, odometry constraints, u, and pose nodes, x0 . . .xt. Each
constraint is composed of a mean measurement and covariance estimate.
Corresponding visual features (not shown) are fed into a pairwise bundle
adjustment framework to compute the camera constraints.

Under this assumption, the posterior trajectory and map can
be optimized with nonlinear optimization techniques in a
back-end SLAM framework, such as incremental smoothing
and mapping (iSAM) [9] or Tree-based netwORk Optimizer
(TORO) [10]. SLAM back-ends are frequently tasked with
recovering marginal posterior confidence regions of each
pose in the optimized trajectory. Overconfidence and under-
confidence are of particular concern in mobile robotics—
overconfidence leads to navigating hazardous areas danger-
ously [11], while under-confidence can lead to poor perfor-
mance in data association [12]. This can be corrected when
using accurate covariances for pose-graph constraints.

A. Related Work

Because high-quality cameras are relatively affordable and
data-rich compared to other sensors like LIDAR, there has
been significant research involving the use of cameras on
robotic platforms. In some instances, cameras act to augment
or even replace odometry sensors like wheel encoders or
inertial measurement units (IMUs) altogether [13], [14].

There have been many efforts to model SBA under
the presence of uncertainty in feature points and camera
calibration values. When the camera calibration is known,
Hartley and Zisserman [15] solve sparse bundle adjustment
as a nonlinear least square problem using the Levenberg-
Marquardt (LM) algorithm. This method computes first-
order covariance estimates assuming Gaussian pixel noise,
which is either estimated or tuned by the user. However,
in general bundle adjustment, calibration parameters can be
included as variables to be optimized and there has been
some effort to evaluate the effect of these in the pose
estimation. Grossman and Santes [16] derived an estimate
of the pose, 3D structure, and internal parameters by ap-
plying a first-order Taylor expansion of the reprojection
error. They consider maximum likelihood estimation (MLE)
and maximum a posteriori (MAP) estimation of the camera
motion, and examined the effect of intrinsic parameters on



the uncertainty of the estimated motion. However, they do
not consider lens distortion uncertainty, nor do they consider
the case of reconstruction from only two keyframes. In [17],
[18] the effect of the calibration matrix uncertainty on the
estimated motion and structure was examined. In an effort to
evaluate the influence of a poor calibration to the resulting
motion, they computed the first-order covariance matrix and
showed that the uncertainty propagation is also affected by
the geometry of the scene and motion of the cameras.

Uncertainty in lens distortion models is typically not
accounted for in visual SLAM research because images are
usually preprocessed with distortion removal filters before
performing SBA. Though there is some work for pairwise
appearance-based matching of visual features in the pres-
ence of radial distortion [19], there is little work being
done for incorporating lens distortion uncertainty in pairwise
egomotion estimation. When the camera calibration is poor,
common practice would be to inflate the feature covariance
to add additional uncertainty to camera measurements. Our
work aims to provide accurate and efficient estimation of
relative-pose covariance by modeling feature uncertainty,
intrinsic calibration parameter uncertainty, and lens distortion
uncertainty.

B. Outline

In §II we begin with a derivation of a first-order co-
variance estimate that extends previous methods by taking
into account uncertainty in the lens distortion parameters.
From this derivation, an improved estimate leveraging the
Unscented Transform (UT) can be developed. In §III we
evaluate the different covariance estimates by comparing
each one to a Monte-Carlo distribution inferred from many
trials of SBA. In §IV, we apply these techniques to two real-
world experimental platforms: a industrial KUKA 7-axis arm
and a Hovering Autonomous Underwater Vehicle (HAUV)
for autonomous hull inspection. The KUKA arm experiment
provides a precise, drift-free ground-truth in a small-scale
visual SLAM experiment, while the HAUV provides a large-
scale dataset on which to test our methods. Finally, in §V
we discuss our results and offer some concluding remarks.

II. UNCERTAINTY ANALYSIS OF SPARSE BUNDLE
ADJUSTMENT

A. Probabilistic Model

The projection of points from a 3D scene onto an im-
age plane is commonly modeled by a camera with a set
of internal parameters comprised of focal lengths, fx and
fy , center of projection, cx and cy , and radial distortion
coefficients k1, k2, k3, p1, and p2. The distortion model
used for our work is taken from Brown’s model described
in [20]. Though the MAP-based estimators from [16], [17],
[21] subject these internal parameters to optimization, we
treat them as fixed and not subject to change after the
one-time initial calibration. This ensures that for every 3D
reconstruction estimated from pairwise images, the camera
calibration values are the same. This approach is convenient
for pose-graphs like the one shown in Fig. 1 because every

camera constraint, c, is estimated from the same set of
calibration parameters.

For two-view 3D reconstruction, the features in a 3D scene
are projected onto the 2D image of each camera. These
locations are denoted by ui1, i = 1 . . . N for camera 1 and
ui2, i = 1 . . . N for camera 2. By stacking these locations
in a vector, we define the stacked vector, Xu ∈ R4N ,
containing the feature locations in both cameras. Since our
work treats camera 1 and 2 as two camera poses induced by
motion, the calibration values for the two cameras are the
same. We define the camera calibration values, Xc ∈ R9,
as Xc = [fx, fy, cx, cy, k1, k2, k3, p1, p2]. We combine
these two vectors into a single measurement vector X =
[X>u ,X

>
c ]> ∈ R4N+9. We assume this measurement vector

to be Gaussian with mean and covariance as in

X ∼ N
([
µXu

µXc

]
,

[
ΣXu 0

0 ΣXc

])
. (1)

B. Camera Projection Models

1) Feature Correspondence from Essential Matrix: When
projecting a general (non-planar) 3D scene onto an image
plane, the projective camera matrices K[I|0] and K[R|t] for
cameras 1 and 2, respectively, project a scene point Pi

to an undistorted location on each image plane. Thus, the
pose of camera 1 is at the origin and the pose of camera
2 is described by the transformation [R|t]. After applying
the function r( · ) that dehomogenizes the projected point
and applies radial distortion, we have the predicted feature
measurements for both cameras:[

ûi1

ûi2

]
=

[
r(K[I|0]Pi)
r(K[R|t]Pi)

]
, (2)

where K is the camera internal matrix. K and r( · ) are both
parametrized by the elements in Xc.

2) Feature Correspondence from Plane-Induced Homog-
raphy: For two images of a planar scene, homographies
relate undistorted features in camera 1 to undistorted features
in camera 2 through the plane-induced homography matrix,
H. Taking radial distortion into account, the relation between
features in camera 1 and camera 2 is given by:

ûi2 = r
(
H r−1

(
ûi1
))
, (3)

where H = K
(

R + tn>

d

)
K−1 is the plane-induced homog-

raphy. The plane itself, π = [n, d]>, consists of the normal,
n, and perpendicular distance from the camera to the ground
plane, d. Like the essential matrix model, K and r are both
parametrized by the elements of Xc.

C. Two-view Bundle Adjustment

In general, bundle adjustment minimizes the weighted
squared error of measurements and those predicted by some
nonlinear projection model, f , as in

Θ̂ = argmin
Θ
‖X− f(Θ)‖2ΣX

, (4)

where ‖ · ‖2Σ denotes the squared Mahalanobis distance ac-
cording to the covariance Σ. Θ is a vector of M unknown



parameters containing the relative-pose and 3D structure.
This optimization problem forms the MLE of Θ, assuming
the measurements, X, are corrupted by additive Gaussian
noise. If the measurements are taken from two cameras,
and if the Jacobian of f with respect to Θ is sparse, this
optimization problem is known as two-view SBA.

For the camera projection models described in §II-B, we
adapt this optimization so that f( · ) is parametrized by
calibration values in Xc as follows:

Θ̂ = argmin
Θ
‖Xu − f(Θ; Xc)‖2ΣXu

. (5)

1) Essential Matrix and SBA: For the essential matrix
model, f( · ) is the stacked projected points given by (2).
Thus, the parameter vector consists of the 5-degree of
freedom (DOF) relative-pose and sparse 3D scene points, Pi.
The relative-pose from camera 2 to camera 1 is modeled as
the azimuth, α21, and elevation, β21, of the baseline direction
of motion, and the relative Euler orientations, φ21, θ21, ψ21,
i.e.,

z21 =
[
α21 β21 φ21 θ21 ψ21

]>
.

If the baseline direction of motion is assumed to be unit
length, then R and t used in (2) can be easily extracted
from z21. Thus, for the essential matrix model, our parameter
vector is Θ> = [z21,P

i . . .PN ].
2) Plane-Induced Homography and SBA: For the

homography-based projection model, f( · ) is the stacked
projected points given by (3). In this case, the parameter
vector simply consists of the relative-pose, z21, world plane,
π, and the predicted distorted 2D feature locations in camera
1’s image plane: Θ> = [z21, π, û

11, . . . , ûN1].

D. Derivation of First-Order Covariance Estimate

The Levenberg-Marquardt (LM) algorithm solves opti-
mization problems in the form of (4) by linearizing f( · )
around the current estimate of Θ, applying a damped Gauss-
Newton iteration to update Θ, and repeating the process
until convergence. Applying this to (5) and using Haralick’s
framework from [22], we have a scalar-valued cost function
that can be written as

F (X,Θ) = ‖Xu − JΘ‖2ΣXu
, (6)

where J = ∂f
∂Θ is the Jacobian of f( · ) (which is

parametrized by Xc). Then, to first-order,

ΣΘ =

(
∂g

∂Θ

)−1
∂g

∂X

> [
ΣXu

0
0 ΣXc

]
∂g

∂X

(
∂g

∂Θ

)−1

, (7)

where g(X,Θ) = ∂F
∂Θ . Applying this technique to (6) we

have
g(X,Θ) = 2J>Σ−1

Xu
JΘ− 2J>Σ−1

Xu
Xu,

with partials

∂g

∂Θ
= 2J>Σ−1

Xu
J,

∂g

∂X
=

[
∂g

∂Xu
∂g
∂Xc

]
=

[
−2Σ−1

Xu
J

A

]
,

where A ∈ R9×M is a dense matrix with no easily computed
closed-form expression. Thus, we compute A using numeri-
cal differentiation. After substituting these values into (7), it
is not difficult to simplify the covariance estimate to

ΣΘ =
(
J>Σ−1

Xu
J
)−1

+BΣXc
B>

= ΣHZ + ΣFwd (8)

where B = 1
2

(
J>Σ−1

Xu
J
)−1

A>. This covariance estimate
may be thought of as the addition of the classic first-order
backward propagation of feature covariance, ΣHZ, from Hart-
ley/Zisserman [15] and a forward propagation of calibration
covariance, ΣFwd. For the remainder of this paper, we will
refer to (8) as Haralick’s method.

E. Extension to Unscented Transform

There are some concerns for using Haralick’s method
for relative-pose uncertainty. First, the elements of A must
be individually computed, which is computationally costly
when numerically differentiating Brown’s distortion model.
Further, because A’s elements are second-order derivatives,
the error from finite differencing can be large and the
differentiation step size needs to be tuned depending on
the scene and relative-pose. Finally, linearization error from
differentiating the nonlinear lens distortion model can be a
significant source of inaccuracy in the covariance estimate.

The form of (8) suggests that instead the Unscented
Transform can be used to model the forward propagation
of calibration uncertainty, rather than linearizing the cam-
era projection models from §II-B [23]. Essentially, we are
replacing the BΣXcB> term from (8) with one computed
from the UT by approximating the distribution of camera
calibration values with 2×9+1 = 19 sigma points, X i (with
corresponding weights Wi). By doing so, this method avoids
error created by linearizing the camera projection models
from §II-B. Our proposed estimate takes the form

ΣΘ = ΣHZ + ΣUT. (9)

Like (8), this partitions the relative-pose covariance into two
additive terms: a first-order backward propagation of feature
covariance, ΣHZ, and a UT-based model of the forward-
propagation of camera uncertainty, ΣUT. This method is
described in more detail in Algorithm 1.

In the following, we empirically verify our extension to the
UT using our simulation and experimentation frameworks.
In particular, as ΣXu

→ 0, it is clear that the first-order
propagation of uncertainty, ΣFwd, closely approximates a UT-
based approximation, ΣUT.

III. SIMULATED TRIALS

A. Overview

In our simulation shown in Fig. 2, we fix the two cameras
in a single relative-pose that is representative of the typical
baseline distance and orientation of two keyframes from the
robots we use in experimentation. Sparse ground-truth 3D
scene points are also generated, and projected into the image
planes of the two cameras. Finally, five hundred realizations



Algorithm 1 Proposed covariance estimate for two-view SBA
1: Input: Feature locations Xu, camera calibration values Xc,

initial guess Θ0, covariance matrices ΣXu ,ΣXc

2: Θ̂← SBA(f,Xu,ΣXu ,Xc,Θ0)
3: J← ∂f

∂Θ
|Θ=Θ̂

4: ΣHZ ←
(
J>Σ−1

Xu
J
)−1

5: (X 1, . . . ,X 19,W)← UNSCENTEDXFM(Xc,ΣXc )
6: for i = 1 : 19 do
7: Yi ← SBA(f,Xu,ΣXu ,X i, Θ̂)
8: end for
9: ȳ←

∑p
i=1 WiYi

10: ΣUT =
∑p

i=1 Wi (Yi − ȳ) (Yi − ȳ)>

11: Output: ΣHZ + ΣUT
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Fig. 2. The virtual scene used for estimating relative-pose with SBA is
representative of the robots and cameras used in §IV. For non-planar scenes,
shown in (a), we used the essential matrix model from §II-C.1. When the
scene is planar, as in (b), we used the plane-induced homography model
from §II-C.2.

of the measurement vector, X, were generated from (1) and
fed into a SBA estimator, yielding five hundred independent
estimates of the parameter vector, Θ. From these estimates,
a Monte-Carlo distribution on the estimated parameter vector
was inferred. This process was done for both the essential
matrix model and plane-induced homography models pre-
sented in §II-B.1 and §II-B.2.

The scene points in the measurement vector where cor-
rupted with unity pixel variance, and the calibration values,
though synthetic, were taken such that the calibration quality
was quite good by real-world standards. The relationship
between feature and calibration uncertainty and its effect on
the covariance estimates will be shown in more detail in
Fig. 5.

B. Evaluation

Once the optimal parameter vector Θ̂ was estimated, the 5-
DOF pose covariance estimates were computed and evaluated
using: (i) a Monte-Carlo (ground-truth) covariance inferred
from the 500 independent realizations of egomotion esti-
mates, (ii) Hartley and Zisserman’s backward-propagation
of feature covariance, ΣHZ from (8), (iii) Haralick’s method,
ΣHZ + ΣFwd (8), and (iv) our proposed method, ΣHZ + ΣUT
(9). A qualitative comparison of these covariance estimates
is shown in Fig. 3. Though ΣFwd is a slightly better approx-
imation than ΣUT for this plot, this comparison neglects the
off diagonal terms in the full 5×5 covariance matrix. Those
interested in a full comparison of the covariance estimates
should consult Fig. 4.
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Fig. 3. Marginal 2-dimensional confidence region for the azimuth and
elevation of the baseline direction of motion estimated from the simulated
scene in Fig. 2. For these plots, the projected 3D scene points were corrupted
with unity pixel variance. In red is the Monte-Carlo covariance inferred
from the black dots, which are independent estimates of the relative-pose.
The covariance estimates which take calibration uncertainty into account
approximate the size and orientation of the Monte-Carlo ellipse much more
closely than from the Hartley/Zisserman estimate. Because (8) and (9)
share the same ΣHZ term, this demonstrates that ΣFwd and ΣUT are indeed
fulfilling a similar role in the overall covariance estimate.
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Fig. 4. Fraction of SBA-derived relative-poses contained in each of the
covariance estimates’ 5-dimensional 1, 2, and 3-σ probability contours
(red, green, and blue, respectively). Horizontal dotted lines denote Monte-
Carlo probability contours. These plots were generated from the same
covariance estimates whose 2-dimensional marginal ellipses are shown in
Fig. 3. Clearly, our proposed estimate tends to be more representative of
the Monte-Carlo probability contours.

The covariances were quantitatively evaluated by counting
the number of samples from the true distribution (black dots
in Fig. 3) that lie within the 1, 2, and 3-σ probability con-
tours for each of the different covariance estimates (Fig. 4).
Ideally, this fraction is approximately equal to the fraction of
samples contained in the Monte-Carlo probability contours.
For our proposed estimate, the probability contours approxi-
mate the Monte-Carlo covariance significantly better than the
Hartley/Zisserman and Haralick covariance estimates. These
results are described in Fig. 4.

C. Discussion

From these simulation results, we can develop simple
criteria to model when it is important to model calibra-
tion uncertainty for visual SLAM. To do this, we examine
the relative size of Hartley/Zisserman’s covariance estimate,
ΣHZ, with one that takes calibration uncertainty into account,
ΣHZ + ΣUT. We model the change in overall size of the
covariance estimates by first computing the characteristic
lengths of the matrices (taken to be the 2nth root of the de-
terminant). For a 5-DOF pose measurement, the covariance’s
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Fig. 5. Relative sizes of Hartley/Zisserman and proposed covariances for varying levels of feature noise and calibration uncertainty. From this figure,
the question of whether or not to model camera calibration uncertainty can be considered as a function of feature noise and calibration uncertainty. Green
regions denote regimes where it is not necessary, yellow denotes situations where it is important, and orange denotes situations where it is critically
important. In the regions outlined in blue are typical camera calibration values. The calibration uncertainty used in the simulation results from Figs. 3
and 4 are shown at the bottom of these regions. We also experimentally consider two cases: a KUKA arm with very low feature detection error, and an
underwater robot that uses SIFT. The thickness for the line labeled “HAUV” encodes the pdf of the feature variance over many images, showing that the
majority of feature variances fall in the region where modeling calibration uncertainty is not necessary.

characteristic length will be the 10th root of the determinant,
which will have units of radians. We then take the ratio of
characteristic lengths,

10

√
det(ΣHZ)

det(ΣHZ + ΣUT)
,

to express what percentage of relative-pose uncertainty is
captured by modeling just feature noise versus modeling
feature noise plus calibration uncertainty. This value is
plotted against feature noise and calibration uncertainty in
Fig. 5, holding the scene and relative-pose fixed.

It is important to note that Fig. 5 will change with relative-
pose, the scene itself, and the location of corresponding
features on the image plane. It is infeasible to general-
ize this information for every application, however, similar
simulation analysis can be performed on an application-
specific basis. For our purposes, the simulation environment
is representative of the kinds of imagery we see on the
KUKA 7-axis arm and HAUV experiments, to be shown in
§IV.

IV. EXPERIMENTAL TRIALS

A. KUKA Robotic Arm Experiment

To obtain a ground-truth trajectory for the experimental tri-
als, an industrial-grade 7-Axis KUKA robotic arm (Fig. 6(a))
was used to move and trigger a digital camera pointed toward
a calibration target. The robot is able to place itself within a
millimeter of a commanded pose anywhere in its surrounding
work area—providing very accurate ground-truth for visual
SLAM experiments. The calibration target was used to solve
for the rigid-body transform (RBT) between the robotic arm
end-effector and the camera center of projection; it also
provided good features to perform SBA (Fig. 7). The quality

of the RBT was assessed by compounding it with the end-
effector pose and comparing the result to the camera pose
computed from calibration. The translational and rotational
errors were minuscule compared to the pose covariances
computed from a least squares SLAM backend so their effect
on this experiment was ignored.

The uncertainty of the feature detector was also known
with high precision, having a measured standard deviation of
0.237 pixels; we assumed it to be isotropic noise as in [24].
The covariance of the calibration values, ΣXc , was given
by performing camera calibration over 500 trials with 50
independently-chosen images per trial. The distribution of
the calibration values was reasonably Gaussian.

For the 5-dimensional relative-pose estimated from SBA,
ẑ21, the distribution of the squared Mahalanobis distances to
the true pose will ideally follow a chi-squared distribution
with 5 degrees of freedom,

‖ẑ21 − µz21
‖2Σẑ21

∼ χ2(5), (10)

(a) KUKA 7-axis arm (b) Bluefin HAUV

Fig. 6. The robots used for testing the accuracy of various covariance
estimates. (a) The industrial-grade 7-axis robotic arm provides precise
ground-truth in small-scale visual SLAM experiment. (b) For large-scale
visual SLAM, we use data from a HAUV for autonomous hull inspection.



−0.6
−0.5

−0.4
−0.3

−0.2
−0.1

0

−0.1

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0.5

x(m)

y(m)

Ground Truth
Dead−reckoning
Pose−graph SLAM

Start

End

z(m)

Non-sequential
camera constraint

(a) SLAM trajectory

M
ah
al
no
bi
s
D
is
ta
nc
e

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

Haralick
Hartley/Zisserman
Proposed

1.99 x 106

2.50 x 104

1.25

99% Confidence
Cutoff

Node Index
(b) Mahalanobis error
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Fig. 7. A CCD camera was affixed to the 7-Axis robot end-effector, shown
in Fig. 6(a). The target allowed us to solve for both the RBT from the robot
frame to the camera frame and the feature noise, ΣXu . An asymmetric
circles pattern was used as in [25].

where µz21
is the ground-truth relative-pose, and Σẑ21

is the
upper 5×5 block of the estimate of ΣΘ, which is determined
from either Hartley/Zisserman, Haralick’s method, or our
proposed method.

By computing (10) over many pairs of images taken from
the KUKA arm, we are able to verify greatly improved accu-
racy when taking into account camera calibration uncertainty.
As shown in Table I, the distribution of (10) when using our
covariance estimate resembles a chi-squared distribution with
5 degrees of freedom more closely because it has a much
smaller Kullback-Leibler Divergence (KLD). When discard-
ing the calibration uncertainty, the covariance estimate is
much too overconfident and its lack of resemblance to the
chi-squared distribution is extreme. This behavior is observed

TABLE I
KUKA DATASET: DISTRIBUTION OF NORMALIZED ERROR TO GROUND

TRUTH FOR 28,280 IMAGE PAIRS FOR DIFFERENT COVARIANCE

ESTIMATES

KLD of Normalized Error from χ2(5)

Covariance estimate Essential Matrix Homography

Hartley/Zisserman
(ΣΘ = ΣHZ) 93.172 66.075

Haralick’s Method
(ΣΘ = ΣHZ+ΣFwd) 1.036 0.898

Proposed Method
(ΣΘ = ΣHZ + ΣUT) 0.251 0.142

for both the essential matrix and homography registration
models.

The high-precision ground-truth from the 7-Axis KUKA
robotic arm also allowed us to accurately analyze the per-
formance of small-scale visual SLAM. One such trajectory
is shown in Fig. 8(a), which consists of 45 nodes with 127
camera constraints. Three pose-graphs were created for the
three covariance estimation techniques: Hartley/Zisserman,
Haralick, and our proposed method from §II-E. Odome-
try was generated by corrupting the ground-truth relative-
poses with Gaussian noise. Each pose-graph was solved
using the iSAM backend, which computed the posterior
covariances used for computing the Mahalanobis distance
of the posterior mean to the ground-truth [26]. Using both
the Hartley/Zisserman and Haralick covariance estimates, the
posterior did not capture the ground-truth within a reasonable
confidence region. The proposed method, on the other hand,



Fig. 9. Our method to estimate SIFT detection error covariance is an
approximation of [28]. For typical underwater imagery of ship hulls, our
approximation is sufficient. The feature points, denoted with blue marks,
have exact covariance estimates in yellow and our approximation in red.

produced confidence intervals that capture the ground-truth
with reasonable probability as shown in Fig. 8.

B. HAUV Experiment

We applied the methods in this paper to determine the
effect of modeling calibration uncertainty for a HAUV
(Fig. 6(b)) performing visually-augmented SLAM on a 183
m-long container ship for autonomous hull inspection. The
robot uses monocular camera imagery in a SBA framework
to provide sequential measurements and loop-closures to
iSAM. A visual overview of the vehicle and the survey is
shown in Fig. 10(a).

Feature correspondence in this application uses the SIFT
[27] descriptor for its performance in appearance-based
matching in underwater images, and because methods exist
which estimate the covariance of a SIFT feature point
location [28]. For this work, we simplify [28] using an
approximation of that estimate so that the covariance of the
ith feature, ΣXui

, is given by

ΣXui
= σ2

i I2×2,

where σi is the scale of the ith feature and I2×2 is the
2×2 identity matrix. As shown in Fig. 9, the approximation
is acceptable for the underwater imagery captured by the
HAUV.

By constructing a pose-graph for each type of camera
covariance estimate discussed in this paper, we were able to
assess basic qualitative and quantitative performance of each
method for visual SLAM on the HAUV. We used four dif-
ferent covariance estimates for these camera constraints: (i)
Hartley/Zisserman with feature covariance taken to be iden-
tity, (ii) Hartley/Zisserman with an inflated feature covariance
(5 times unity pixel variance), (iii) Hartley/Zisserman with
feature covariance taken from our approximation of the
method discussed in [28], and (iv) our UT-based method
that uses the feature covariance from (iii), but also takes
into account calibration uncertainty. Haralick’s method was
not included in this section because its performance was far
too slow for large datasets, particularly for keyframe pairs
with many corresponding visual features.

TABLE II
HAUV NORMALIZED CHI-SQUARED ERROR FOR A VARIOUS

COVARIANCE ESTIMATION TECHNIQUES (1.0 IS IDEAL)

Covariance estimate Normalized chi-square error

ΣHZ w/ univariate i.i.d. feature noise 12.864
ΣHZ w/ inflated i.i.d. feature noise 2.477
ΣHZ w/ SIFT covariance estimate 1.743
ΣHZ + ΣUT w/ SIFT, calibration 1.336

As shown in Table II, incorporating camera calibration
uncertainty in two-view SBA can offer better chi-squared
error results. In particular, the normalized chi-squared error is
closer to the expected value of 1.0 when using our technique.
However, from a qualitative standpoint, the results are very
similar to modeling SIFT covariance only, which agrees with
our simulation conclusion, shown earlier in Fig. 5.

V. CONCLUSION

This work presented and experimentally evaluated a
method for partitioning the covariance estimate of two-view
relative-pose into two additive terms: a first-order backward
propagation of feature covariance and a UT that does a
forward-propagation of camera uncertainty. This proposed
technique has superior accuracy to other methods that rely
on differentiating nonlinear transformations. This technique
offers improved SBA-derived relative-pose covariances at the
cost of extra computation. We establish a simple relationship
between feature noise and calibration uncertainty as a basis
for determining whether this extra effort is necessary in pose-
graph visual SLAM.

We showed two visual SLAM experiments with varying
regimes of feature detection accuracy: a camera-equipped
KUKA arm using aid of a fiducial marker for feature detec-
tion, and a HAUV that uses SIFT to detect visual features on
a ship hull. We experimentally verified that modeling camera
calibration uncertainty is necessary for such situations where
the feature detection error is small. On the other hand, using
this technique for the HAUV only offers minor improvements
in the chi-squared error and qualitative accuracy of the
posterior trajectory.
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