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Abstract— This paper reports on a method for an au-
tonomous underwater vehicle to perform real-time visual si-
multaneous localization and mapping (SLAM) on large ship
hulls over multiple sessions. Along with a monocular camera,
our method uses a piecewise-planar model to explicitly optimize
the ship hull surface in our factor-graph framework, and
anchor nodes to co-register multiple surveys. To enable real-
time performance for long-term SLAM, we use the recent
Generic Linear Constraints (GLC) framework to sparsify our
factor-graph. This paper analyzes how our single-session SLAM
techniques can be used in the GLC framework, and describes
a particle filter reacquisition algorithm so that an underwater
session can be automatically re-localized to a previously built
SLAM graph. We provide real-world experimental results
involving automated ship hull inspection, and show that our lo-
calization filter out-performs Fast Appearance-Based Mapping
(FAB-MAP), a popular place-recognition system. Using our
approach, we can automatically align surveys that were taken
days, months, and even years apart.

I. INTRODUCTION

Ship hull inspection for mine detection, structural assess-
ment, and routine maintenance using an autonomous under-
water robot remains a challenging research problem. This
task involves deploying an unmanned underwater robot to
map and inspect large underwater structures in-situ [1]–[3].
Automating this behavior is preferable to deploying expert
human divers or trained mammals. Furthermore, drydocking
the vessel to assess structural damage is much more time-
consuming and expensive than using a robot.

A number of underwater robots have been used to perform
ship hull inspection, ranging from free-floating robots [4]
to robots that maintain constant physical contact with the
hull [5]. This work is concerned with the Hovering Au-
tonomous Underwater Vehicle (HAUV) developed by Bluefin
Robotics, which uses a Doppler velocity log (DVL) for hull-
relative navigation (odometry) and supports both camera
and sonar sensors [6]. These sensors act to correct the
unbounded navigation error from the DVL in a technique
known as simultaneous localization and mapping (SLAM).
The HAUV, along with examples of the vessels used in our
field trials, are depicted in Fig. 2.

The SLAM system used on the Bluefin HAUV has evolved
an from offline filtering-based approach with manual data
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(a) USS Saratoga graph

Fig. 1. GLC-sparsified graph of the underwater portion of the USS Saratoga
with eight SLAM sessions that span approximately four months. Green lines
represent GLCs, and yellow lines denote piecewise-planar factors from [13].
Gray panels are the planar features that model the ship hull as piecewise-
planar.

association [7], to a real-time factor-graph system that sup-
ports both sonar and monocular camera measurements [8],
[9] using the incremental smoothing and mapping (iSAM)
algorithm [10]–[12] as the back-end. Despite real-time per-
formance, the work from [8], [9] only supports single-session
surveys; when the robot starts a new survey minutes or days
later, the navigation is reset and all the information from the
previous dive is no longer used for navigation correction.
The goal of this work is to extend the HAUV visual SLAM
system to support automated registration with previous maps
and to marginalize redundant or unnecessary nodes from the
factor-graph once the sessions are aligned into a common
reference frame, as overviewed in Fig. 1.

A. Related Work

Graph-based SLAM solvers are limited by computational
complexity in many long-term SLAM applications. As a
robot explores an area and localizes to its map, pose nodes
are continually added to the graph. Therefore, optimizing
a graph of modest spatial extent becomes intractable if the
duration of the robot’s exploration becomes sufficiently large.
A number of proposed methods attempt to address this
problem, with a recent emphasis on measurement compo-
sition for full-rank factors, such as laser scan matching or
odometry [14]–[16]. However, these methods fail for factor-
graphs containing low-rank measurements, such as those
produced by a monocular camera.

Recently, [17], [18] developed a generic method for
variable node-marginalization in factor-graph-based SLAM
called Generic Linear Constraints (GLC). Unlike previous
methods, the GLC-based approach is able to marginalize
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Fig. 2. The two vessels reported in this work are the USS Saratoga, shown in (a) and the SS Curtiss, shown in (b). The HAUV and important sensors
are shown in (c), along with a underwater light that provides a source of illumination. In (d), we show the relative size of the robot compared to a typical
ship. In this figure, the camera footprint is shown in red.

nodes with low-rank factors in the elimination clique. This
is a critical requirement for the HAUV because low-rank
factors from either a monocular camera or an imaging sonar
are the primary means of correcting navigation error.

Additionally, the HAUV SLAM system makes use of pla-
nar patches as nodes in the graph using the piecewise-planar
model from [13]. Effectively, this method provides an explicit
representation of the ship hull surface in the factor graph, and
produces accurate and efficient maps using only a sparse
3D point cloud (such as one produced by the underwater
DVL navigation sensor). This distinguishes the work from
others that use planar primitives in SLAM, such as [19], [20],
which make use of data-rich 3D laser scanners in structured
environments, like office buildings. Furthermore, our method
is not overly reliant on prior knowledge of the ship hull
curvature.

Finally, to support multi-session SLAM we require a
place-recognition system to align the current survey to a past
graph. Appearance-only methods such as [21], [22] utilize
a bag-of-words representation for visual feature descriptors,
where each descriptor is quantized to a word in the vocab-
ulary. It is common practice to use these place recognition
methods in a real-time SLAM front-end.

B. Outline

In §II, we describe how our SLAM system for the HAUV
can be adapted for the GLC framework, thus enabling long-
term mapping capabilities. In §II-A, we offer an overview of
the GLC method, which necessitates some modifications to
our previous work. In particular, §II-B describes updates to
our representation of planar nodes and factors. In §II-C, we
describe how relative pose-graphs containing anchor nodes
can also be used with GLC. In §II-D, we provide a practical
overview of the system’s behavior, and in §II-E we describe
a particle filter that we use to visually re-localize with respect
to past sessions. Finally, in §III, we experimentally validate

our approach using real-world data from the Bluefin HAUV,
and conclude with a discussion in §IV.

II. APPROACH

Our visual SLAM system has been successfully used
in single-session applications. Recent developments include
explicitly representing the ship hull in the visual SLAM pose
graph, and the use of anchor nodes for multi-session SLAM.
It is not immediately clear how to use these techniques in
the GLC framework, which provides capabilities for long-
term SLAM. This section provides an overview of this
sparsification method, and details how it can be used in our
recent work from [9], [13].

For the remainder of this section, let xij =
[xij , yij , zij , φij , θij , ψij ]

> be the 6-degree of freedom
(DOF) relative-pose of frame j as expressed in frame i,
where x, y, z are the Cartesian translation components, and
φij , θij , and ψij denote the roll (x-axis), pitch (y-axis), and
yaw (z-axis) Euler angles, respectively. Ri

j is the rotation
matrix that rotates vectors in j’s frame to vectors in i’s frame,
and tiij is the translation from i to j expressed in i’s frame.
Finally, g will refer to the global, or world-frame.

A. GLC-based Graph Sparsification

A detailed derivation and performance analysis of GLC
node marginalization and removal can be found in [17], [18].
GLC-based graph sparsification makes use of an n-ary factor
that captures the information induced by marginalization over
an elimination clique. In short, this n-ary factor is computed
by considering all the measurements contained in the Markov
blanket of the node that is to be marginalized. To handle
low-rank measurements, this method computes eigenvalue-
decomposition of the rank-q target information, Λt, which
forms as a generic observation model for the n-ary factor:

zglc = Gxc + w′, (1)



where w′ ∼ N (0, Iq×q), G = D1/2U>, and Λt = UDU>.
xc is the current linearization of nodes contained in the elim-
ination clique. Next, this newly-computed factor is sparsely
approximated using a Chow-Liu Tree (CLT) structure, which
then simply replaces the node’s original surrounding factors.

GLC supports node reparameterization into a local ref-
erence frame around xc when evaluating the observation
model from (1), which optionally avoids committing to a
world-frame linearization if the nodes are not well-optimized.
Rather, GLC supports a root-shift operation where all nodes
in the elimination are linearized about local relative-frame
transformations. This relative transformation arbitrarily picks
a single pose node in the elimination clique as the common
frame, or root, of these transformations. In this section, we
describe how to make our SLAM system compatible with
GLC’s ability for node reparameterization, which reduces
the effect of world-frame linearization error.

B. Global Parameterization of Planar Nodes

Let πik be the plane indexed by k, expressed in frame i.
As in [13], this plane corresponds to a node in our factor-
graph. However, we no longer assume that the node indexed
by k is expressed in the pose from which the plane was ob-
served. Here, we express this plane node in the global-frame,
g. Furthermore, we use a translational parameterization of
planar measurements rather than a direction-magnitude rep-
resentation. Therefore, πgk = [nxgk, n

y
gk, n

z
gk]>, where nxgk,

nygk, and nzgk are the x, y, and z components of the normal
vector to the plane k, expressed in the global-frame, g.

This global parameterization of planes allows us to define
a root-shift operation as required for the GLC framework
summarized in §II-A. To simplify the notation, we define
two operators, � and �, that operate on a 6-DOF pose and
3-DOF plane.

Let xij � πik = πjk = djknjk, where

njk = Rj
i

(
πik

‖πik‖

)
djk = ti>ij njk.

We also define the � operator, where xij �πjk = πik. This
can be expressed in terms of the � operator by

xij � πjk = 	xij � πjk,

where 	 is the pose-inversion operation defined in [23].
1) Planar root-shift operation: The root-shift operation

needed to prevent world-frame linearization for planar nodes
is simply the � operator. Given a pose xgi in the global-
frame, and a plane πgj in the global-frame, the plane node
as expressed in frame i is xgi � πgj .

2) Factor potentials used for planar measurements: A
binary factor potential of the form

Ψ(xgi,πgl; zπil
,Σzπil

) = ‖zπil
− (xgi � πgl) ‖2Σzπil

(2)

is used when the DVL sensor determines a good planar
fit of a sliding time-window of 3D points. The covariance
matrix, Σzπil

, is determined by first-order approximation of

(a) Factor-graph with anchor nodes

(b) Factor-graph with global reference frame, g

Fig. 3. Each figure shows a factor-graph topology for a simple SLAM
example involving two sessions, A and B. In (a), the graph encodes the
distribution from (4), where each session has an associated anchor node.
When converted to a global representation, as in (5), all of the measurements
contained in and between the two sessions are preserved. The only discarded
factors are the full-state prior factors in session B and on the anchor node
xga. These prior factors have little probabilistic importance and function
primarily to keep the SLAM information matrix non-singular.

a function that fits a plane from the 3D points, which are
assumed to be corrupted by Gaussian noise.

The piecewise-factor potential from [13] is now a ternary
factor over a pose node and two planar nodes. It is given by
the expression

Ω(xgj ,πgk,πgl;xgi,W
πjl

ij ) =

‖ (xgj � πgk)− (xgj � πgl) ‖Wπjl
ij
. (3)

This factor potential differs from [13] in that the pose node
value, xgi, is no longer needed to compute the non-weighted
residual error because planes k and l are expressed in a com-
mon reference frame. However, it is still needed to compute a
weight matrix, W

πjl

ij , based on the characteristic curvature of
the ship hull. This weight matrix, along with an explanation
of the characteristic curvature model, is described in detail
in [13].

C. Global Multi-session SLAM from Anchor Nodes

For a robot or multiple robots performing multi-session
SLAM, a pose-graph containing anchor nodes is a popular
method and is described in [24]. The important advantages
of anchor nodes over global multi-session SLAM are i) faster
convergence of the nonlinear least-squares optimizier, and ii)
multiple sessions can optimize their pose graphs before any
measurements between the relative pose-graphs are observed.

For a two-session case consisting of sessions A and B, the



pose-graph encodes a distribution of the form

p(X | ZA, ZB, ZAB, PA, PB, Pga) =

p(xga,xa1A ,xa2A , . . . ,xaNA ,

xgb,xb1B ,xb2B , . . . ,xbMB | ZA, ZB, ZAB, PA, PB, Pga),
(4)

where xga is an anchor node representing the 6-DOF trans-
formation from the global-frame, g, to the reference frame
a of session A. xaiA is the 6-DOF relative pose from frame
a to frame i of session A. X denotes the set of variable
nodes in the factor graph (i.e., the unknowns). ZA and ZB

denote the sensor and odometry measurements contained in
sessions A and B, respectively, and ZAB denotes the sensor
measurements between nodes in sessions A and B. PA and
PB denote full-state priors in sessions A and B, and Pga

denotes the full-state prior on the anchor node, xga. Finally,
N and M are the number of nodes in sessions A and B,
respectively, not including the anchor node (Fig. 3).

This distribution from (4) is somewhat inconvenient be-
cause in order to place the nodes into a common frame (when
visualizing the distribution, for instance, or when computing
the expected information gain of a measurement between two
nodes), a sparse nonlinear function, f , must be applied to the
distribution:

µf(X) =



xga ⊕ xa1A

...
xga ⊕ xaNA

xgb ⊕ xb1B

...
xgb ⊕ xaMB


,

where ⊕ is defined in [23] as the “head-to-tail” operation.
The covariance of the resulting distribution is computed to
first order as

Σf(X) = JfΣXJ>f .

Extending this analysis to more than two sessions is trivial.
It is also straightforward when X contains plane nodes. In
this case, the sparse nonlinear function f contains the �
operator discussed in §II-B.

The GLC reparameterization framework assumes that all
nodes are in a common frame. To convert the distribution
from (4), we first discard the two anchor nodes. Next, we
discard the full-state priors for nodes in session B and the
anchor node in session A, leaving us with the distribution

p(X ′ | ZA, ZB, ZAB, PA) =

p(xg1A
,xg2A

. . . ,xgNA
,

xg1B
,xg2B

. . . ,xgMB
| ZA, ZB, ZAB, PA). (5)

In this way, none of the sensor measurements are discarded
when converting the relative pose-graphs to the global-frame.
In practice, we perform this operation immediately after
the robot completes a survey, and before performing offline
GLC-sparsification.

(a) Sparse graph loaded (factors not rendered)

(b) Unaligned pose-graph

(c) Initial alignment to sparse graph

(d) Complete survey and refine alignment

Fig. 4. Depiction of multi-session SLAM using the techniques provided
in §II. The red region in (c) denotes the point of map reacquisition, where
the robot determines a rough initial alignment to the graph from (a). We
refine this alignment in real-time using the same techniques as our single-
session system from previous work.

D. Operational Overview of Multi-session SLAM

The methods discussed in §II-A, §II-B, and §II-C are key
components of our SLAM system. To illustrate how these
techniques are used in a operational setting, we provide an
outline of a multi-session survey as follows:

• Load past sessions as a sparsified factor graph,
• Deploy the HAUV and start building a separate, un-

aligned pose-graph,
• Localize to the past session with an initial guess of the

alignment,
• Refine alignment using monocular camera measure-

ments and piecewise-planar constraints anchor nodes.

These steps are illustrated in Fig. 4.

E. Particle Filtering Reacquisition to Sparsified Graph

This section describes how we accomplish the initial
alignment step mentioned in §II-D. Once a graph has been
sparsified using GLC, we use a particle filter to estimate
a distribution of likely poses in the reference frame of the
past session. Our particle filter is based on a classic Monte-
Carlo localization framework. We use odometry, depth, pitch,
and roll measurements published to our SLAM back-end to
propagate particles to their next state.



(a) Unoccupied free space around outer hull

(b) Initial particle distribution

(c) Final particle distribution

Fig. 5. Particle filter reacquisition into a previous session SLAM graph. We improve the performance of our particle filter by computing a simple
occupancy grid, shown in (a), based upon the planar features of the sparsified graph. We uniformly distribute particles, shown as red dots in (b), over the
free space of the outer hull. After just two planar measurements, the distribution of particles provides a relatively small set of possible candidate keyframes
to search for loop closures (c).

1) Weighting particles from planar measurements: To
weight the particles as new plane measurements are ob-
served, we use a method similar to the computation of
potentials used in our factor-graph, described in §II-B. When
a plane-fitting measurement, zπik

from (2), is received from
the particle filter, it finds the nearest neighboring pose node
i according to

i = argmin
i∈IΠ

‖tggpi
− tggi‖,

where IΠ is the set of pose indices in the GLC-sparsified
graph that have a corresponding plane. Finding the minimum
over all IΠ is quite slow for large graphs, so this operation
is approximated using a k-dimensional (KD)-tree from a
heavily-optimized library [25].

Next, we take i′ to be the index of the plane that is
observed from pose i. Finally, we set the weight, wpi

, by
computing the difference between the observed and expected
planar measurement:

wpi = ‖zπpik
− (xgi � xgi′) ‖2Σii′

.

To get the initial distribution of particles, we compute a
simple binary 3D occupancy grid from the GLC-sparsified
graph, and remove any particles that are assigned to occupied
cells. For each cell, if it lies outside the nearest pose-plane
pair, that cell is marked as “not occupied.” Otherwise, the
cell is marked as “occupied.” An example free space grid
for the USS Saratoga is shown in Fig. 5(a).

2) Keyframe Matching with SIFT and RANSAC: If after
resampling, the distribution of particles physically overlaps
with a sufficiently small set of candidate images associated
with the GLC-sparsified graph, we do a brute-force search
over this set to find the best match. This procedure is
described in Algorithm 1. The final step, FINDBESTMATCH,
uses a graphics processing unit (GPU) for scale-invariant
feature transform (SIFT) descriptor extraction and matching,
and finally rejects outliers by using a eight-point random

sample consensus (RANSAC) algorithm to fit a fundamental
matrix between the current keyframe and a candidate image
extracted from the set. The keyframe with the most inliers
above a threshold is selected to be the best match. For
our application, we conservatively choose a threshold of 16
inliers to avoid false positives. If no matches are found,
the search is repeated when the robot moves approximately
three meters from the point at which the previous search
was attempted. For our application, the FINDBESTMATCH
step may fail when the robot is viewing non-salient imagery
such as above-water metalic surfaces with intense sunlight
reflection, or underwater portions of the hull with few visual
features.

Algorithm 1 Match current keyframe to candidate keyframes
based on particle distribution

1: Input: N samples from particle distribution, current keyframe
k, set of all pose indices in GLC-sparsified graph with corre-
sponding keyframe IK

2: S← ∅
3: for pi ∈ {p1 . . . pN} do
4: S← S∩ NEIGHESTNEIGHBOR(pi, IK ) . Uses kd-tree
5: end for
6: Output: FINDBESTMATCH(k, S) . Uses GPU

Algorithm 2 Match current keyframe to feasible keyframes from
place-recognition system

1: Input: Set of all keyframes, K, in GLC-sparsified graph,
current keyframe k, belief threshold τ , ship-specific vocabulary,
V

2: S← FAB-MAPV2(k, K, V, τ )
3: Output: FINDBESTMATCH(k, S) . Uses GPU

III. EXPERIMENTAL TRIALS

This section describes experimental trials with the HAUV
performing automated inspections on the USS Saratoga and



(a) USS Saratoga, periscope-to-periscope

(b) SS Curtiss, underwater-to-underwater

(c) SS Curtiss, underwater-to-periscope

Fig. 6. Examples of matching keyframes from different SLAM sessions
that our algorithm automatically detects. White horizontal lines denote
matching SIFT keypoints. In (a), a match between two images of the
superstructure, captured by the periscope camera is shown. In (b), we
detected two corresponding biogrowth patterns using the underwater camera.
In (a) and (b), the matches are easy for a human to identity, but in (c), the
pair is a difficult case for a human.

SS Curtiss vessels depicted in Fig. 2. The vehicle has two
cameras: an underwater camera, which is actuated to always
point nadir to the ship hull, and the periscope camera, which
is rigidly attached to the top of the vehicle so as to capture
images of the superstructure when the vehicle is at the
surface.

The HAUV executes one of the following types of mis-
sions:

• Surface survey using only periscope camera,
• Underwater survey using underwater imaging,
• Underwater survey using periscope imaging,
• Underwater survey with periodic surfacings for

periscope.

While the current mission executes, it is localized to a GLC-
sparsified graph using Algorithm 1, which is seeded by the
output of our particle filter. Examples of matches using this
approach are shown in Fig. 6.

To baseline the performance of our particle filter, we use
an open-source implementation of Fast Appearance-Based
Mapping (FAB-MAP) version 2.0 [26] as an appearance-
only method for place recognition, which represents each
keyframe as a visual bag-of-words (BoW) using a vocabulary
that is learned offline. FAB-MAP provides the Bayesian
probability that a candidate image is taken from the same
place as another image in the test set, or represents a new
place. If a match is detected with significant probability, a
threshold is used to determine if the SLAM front-end should

(a) USS Saratoga (b) SS Curtiss

Fig. 7. Graph complexity over multiple sessions for the USS Saratoga,
in (a), and the SS Curtiss, in (b). The number of nodes and factors grows
approximately linearly for the full case, but the growth rate of the sparsified
graph is bounded. For the USS Saratoga, sessions 1 through 7 occur
within a week of each other, but session 8 occurs four months later. For
the SS Curtiss, session 5 occurs approximately two years after sessions 1
through 4.

accept the match. This threshold is typically set very high
to avoid false-positives, but we use a very low threshold of
0.0001 for our application to ensure that FAB-MAP returns
as many candidates as possible. These candidates are robustly
verified using RANSAC in the final step of Algorithm 2. We
assume a uniform motion model and enforce no smoothing
on the observation likelihoods in order to keep FAB-MAP’s
recall as high as possible, with little regard for false positive
rate. Furthermore, we learn a separate SIFT vocabulary and
CLT over the distribution of codewords for each vessel.

A. Graph Complexity Over Time

For selecting which nodes should be marginalized, we
primarily use a simple criteria that selects spatially redundant
nodes. Our results suggest that the proposed visual saliency
score from [9] also acts as a good criteria for sparsifying a
visual SLAM graph. This local saliency score measures the
entropy of the distribution of words in the BoW representa-
tion in each keyframe. It is a measure of how feature-rich
the image is, which acts as a strong indication of a front-
end’s chances of successfully estimating a monocular camera
measurement using that image. The results of this method
are shown in Fig. 7, where the graph complexity is plotted
over each successive session. Using the CLT approximation
during graph sparsification is critical for maintaining real-
time performance, and is constructed in such a way that the
Kullback-Leibler Divergence (KLD) from the unsparsified
graph’s distribution is minimized.

We find that the visual saliency criteria performs well on
the SS Curtiss data, where the ship has local clusters of
salient regions, but has little affect on the USS Saratoga,
which is more uniformly salient. This is visually apparent
in Fig. 9, to be shown.

B. Comparison to Bag-of-Words Place Recognition

Based upon our experiments, FAB-MAP’s performance is
acceptable when matching images of the ship’s above-water
superstructure, like the ones shown in Fig. 6(a) or Fig. 8, top
row. For these images, our particle filter returns a comparable
amount of keyframes. However, for the underwater images



Fig. 8. Two representative attempts at aligning the current survey into
past sessions using FAB-MAP and our particle filter. Corresponding image
regions, where identified, are highlighted. We allow FAB-MAP to return as
many candidates as possible by setting the loop-closure probability threshold
low. The number of candidate matches identified by our particle filter is also
large, but matching them is fast because each keyframe only takes roughly
70 ms when using a consumer-grade GPU. FAB-MAP performs comparably
to our method for periscope images (top row) but fails using underwater
images (bottom row), where it consistently assigns the “new place” label.

TABLE I
TIME TO LOCALIZE TO PAST GLC GRAPH

Time until alignment (sec)

Session FAB-MAP Particle Filter Search

USS Saratoga 2013 Session 7,
starting from surface 7.1 5.2

USS Saratoga 2013 Session 7,
starting underwater 143.2 20.6

SS Curtiss 2011 Session 4,
underwater-only N/A 15.3

in our application, FAB-MAP performs poorly, and we were
not able to successfully identify a underwater loop-closure
in any of our experiments, even with a very low loop-closure
probability threshold. In these cases, FAB-MAP typically
returns only a few candidate loop-closures. These two typical
cases are shown visually in Fig. 8. We do not provide
precision-recall curves because we use FAB-MAP and our
particle-filter for a one-time-only localization step, not as a
persistent component of a SLAM front-end. Furthermore, we
do not have ground-truth and therefore no way of accurately
counting false negatives.

Where our method excels over FAB-MAP is the ability
re-localize into a previous session while underwater. We
consider three scenarios: i) starting the survey with the
robot at the surface, ii) starting submerged, and iii) a survey
conducted entirely underwater. The results summarized in
Table I are follows: both methods are comparable when
at the surface (first row), but FAB-MAP is unable to re-
localize while starting underwater, and only when the robot
surfaces can it find a good match (second row). For an
entirely underwater survey (third row), FAB-MAP is unable
to localize. As a whole, our system, which is specifically
engineered for the sensor payload of the HAUV, can more
quickly and more robustly localize to our long-term SLAM
graphs.

IV. CONCLUSION

We provided an overview of how to adapt our visual
SLAM algorithm for long-term use on large ship hulls. We
use the GLC framework to remove redundant or unneeded
nodes from a factor graph. Doing so involves supporting
a node reparameterization (root-shift) operation to avoid
unnecessary error induced by world-frame linearization. Fur-
thermore, we described a particle filtering algorithm that can
use planar surface measurements to narrow a search space
over past images that match the current image.

We showed results from our localization algorithm au-
tomatically aligning SLAM sessions separated in time by
days, months, and years. Once sessions were aligned to a
past graph, the result was sparsified and the process was
repeated. Using simple sparsification criteria, we show that
the complexity of our factor graphs remain bounded over the
long-term.
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