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Abstract— This paper reports on a model-assisted bundle
adjustment framework in which visually-derived features are
fused with an underlying three-dimensional (3D) mesh provided
a priori. By using an approach inspired by the expectation-
maximization (EM) class of algorithms, we introduce a hidden
binary label for each visual feature that indicates if that feature
is considered part of the nominal model, or if the feature
corresponds to 3D structure that is absent from this model.
Therefore, in addition to improved estimates of the feature
locations, we can also label the features based on their deviation
from the model. We show that this method is a special case of
the Gaussian max-mixtures framework, which can be efficiently
incorporated into state-of-the-art graph-based simultaneous
localization and mapping (SLAM) solvers. We provide field
tests taken from the Bluefin Robotics Hovering Autonomous
Underwater Vehicle (HAUV) surveying the SS Curtiss.

I. INTRODUCTION

Bundle adjustment (BA) is a special case of the
simultaneous localization and mapping (SLAM) problem;
it is an estimation problem whose unknowns consist of
camera poses and the positions of visual features. This is
a widespread technique used throughout computer vision
and mobile robotics, due mainly to the low cost and high
reconstruction quality of digital cameras [1–3].

A major drawback in the use of optical cameras in robotic
perception is their susceptibility to environmental noise and
poor lighting conditions. Researchers have previously pro-
posed modifications to BA that leverage three-dimensional
(3D) models of the scene (provided a priori) to mitigate
these challenges. This practice is sometimes referred to
as model-asissted bundle adjustment. The reconstruction of
human faces has been a particularly prevalent application
domain, however these techniques have certain shortcomings
that are ill-suited for their application in large-scale robotic
surveillance. For instance, mobile robots typically survey
areas that are much larger than themselves, unlike the relative
sizes of a camera and human faces. In addition, the images
captured by robots operating in the field will likely contain
3D structure that is not accounted for in the prior model.

Using underwater optical imaging for 3D reconstruction
is extremely challenging and would benefit from model-
assisted methods. In particular, back-scatter is a well-
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Fig. 1. (a) DVL ranges, shown in blue, allow us to localize to the prior
model of the ship being inspected, shown in gray. In (b) and (c), visual
features that are hypothesized to lie on the nominal surface of the prior
model are shown in green. Features that correspond to 3D structure that
is absent from the model are shown in red. In this example, red features
correspond to biogrowth emanating from docking blocks along the hull’s
centerline, in (d).

known issue that researchers must consider when deploying
autonomous underwater vehicles (AUVs) that are equipped
with optical cameras [4, 5]. Despite these challenges, the
benefits of model-assisted BA have yet to be explored in
a large scale underwater setting. In addition, the previously
employed facial reconstruction methods do not easily tran-
sition to this domain. The focus of this paper is therefore
to introduce a large scale model-assisted BA framework and
evaluate it in the challenging domain of in situ underwater
ship hull inspection using optical cameras.

For this paper, we leverage a large-scale 3D computer
aided design (CAD) model of the ship that is then au-
tonomously surveyed with a camera-equipped robot, as
shown in Fig. 1. The contributions of the work are as follows:

• We propose an expectation-maximization (EM) algo-
rithm that assigns hard binary labels to each visual
feature and solves for the optimal 3D locations of
cameras and features accordingly. This approach is
therefore capable of identifying 3D structure that is
absent from the prior model.



• We show that this algorithm is a special case of the
Gaussian max-mixture framework, which was originally
intended for robust least-squares optimization in graph-
based SLAM [6].

• To our best knowledge, this is the largest real-world
model-assisted BA evaluation, both in physical scale
and number of images.

II. RELATED WORK

Model-assisted visual reconstruction methods were par-
ticularly popular during the late 1990’s and early 2000’s,
especially in the domain of human face reconstruction [7–
11]. Works by Fua [7] and Kang and Jones [8] are similar
to traditional BA: a least-squares minimization over repro-
jection error. However, they introduce regularization terms
that essentially enforce triangulated points lying close to the
model’s surface. Shan et al. [9] introduce an optimization
problem over a set of model parameters—rather than a
regularization over features—that allow the generic face
model to more closely match the geometry of the subject’s
face. Fidaleo and Medioni [11] noted that these methods are
rarely able to integrate 3D structure present in the subject that
is absent from the model (such as facial hair and piercings).
Instead, their approach used a prior model strictly for pose
estimation, but the reconstruction of the face was entirely
data-driven.

The primary application domain of these methods is in the
reconstruction of human faces, however they have largely
been overshadowed by modern, highly accurate, dense re-
construction methods that use either commodity depth cam-
eras [12, 13] or patch-based multiview stereopsis using
high-quality imagery [14]. These more recent methods have
shown impressive reconstructions of both small-scale objects
(human faces), and large scale objects (indoor environments
and outdoor structures).

Recently, however, model-assisted methods have seen
some re-emergence in particularly challenging areas of mo-
bile robotics, such as the work by Geva et al. [15] in which
an unmanned aerial vehicle (UAV) surveys a remote area.
They used digital terrain models (DTMs) to regularize the
position of 3D features observed from the camera mounted
on the UAV, in a very similar fashion to the work in [7, 8].
These DTMs are freely available from the Shuttle Radar To-
pography project [16], and act as the prior model used in their
approach. This approach is most similar to ours, however we
differentiate our approach in three important ways: (i) our
approach is capable of incorporating visual information that
is absent from the nominal a priori model by assigning a
hidden binary random variable for each visual feature; (ii) we
use an orthogonal signed distance, rather than raycasting, to
evaluate a feature’s surface constraint likelihood; and (iii) we
evaluate our approach on a dataset with several orders of
magnitude more bundle-adjusted keyframes.

III. NOTATION

We denote the set of all unknowns, X, as consisting of
Np poses, the relative transformation to the model frame,

and Nl landmarks,

X = {xg1 . . .xgNp︸ ︷︷ ︸
robot poses

, xgM︸︷︷︸
model pose

, l1 . . . lNl︸ ︷︷ ︸
visual landmarks (features)

},

where xij denotes the 6-degree of freedom (DOF) relative
pose between frames i and j. The common, or global frame,
is denoted as g. Visually-derived features, denoted as li, are
the 3D positions of features as expressed in the global frame.
Finally, M denotes a triangular mesh consisting of a set of
vertices, edges between vertices, and triangular faces.

Note that X may consist of additional variables, such as
extrinsic parameters of the robot sensors. We leave these
values out for the sake of clarity.

Let Z denote the set of all measurements, which consists
of all odometry measurements, priors, surface range mea-
surements (e.g., from an active range scanner), visual feature
detections, and surface constraints (which will be described
in §IV-B),

Z = {Zodo,Zprior,Zrange,Zfeat,Zsurf}.
We assume all measurements except Zsurf are independently
corrupted by zero-mean Gaussian noise, so therefore the
distributions of these observations given X are conditionally
Gaussian. Note that our approach is applicable even if Zodo,
Zprior, and Zrange are not available, however we include them
due their necessity in underwater ship hull inspection.

We assign a hidden binary latent variable to each visual
feature,

Λ = {λ1 . . . λNl
}, λi ∈ {0, 1},

where a value of one encodes that a visually-derived feature
lies on the nominal surface of the prior model. A value of
zero encodes that the visually-derived feature corresponds to
physical structural that is absent from the prior model.

IV. APPROACH

A. Formulation as Expectation-Maximization

The goal of our work is to estimate X using a simplified
variant of the EM algorithm, known as hard EM [? ]:

1) Initialize X
2) Repeat the following until p(Z,Λ|X) converges:

a) Λ∗ = argmax
Λ

p(Z,Λ|X)

b) X∗ = argmax
X

p(Z,Λ∗|X)

Similar to previous work, we introduce a set of prior
measurements, Zsurf, that regularize the positions of 3D
visual features so that they lie on the surface of M. We
expand the likelihood function using Bayes’ rule and note
that the odometry, prior, and feature detection observations
are independent of the feature labels (and conditionally
independent of each other):

p(Z,Λ|X) = p(Z|Λ,X)p(Λ|X)

= p(Zodo,Zprior,Zrange,Zfeat|X)p(Zsurf|Λ,X)p(Λ|X). (1)

If we assume that p(λi|X) is uninformative (i.e., labels
are equally likely to lie on or off the surface), then we



Fig. 2. Overview of the surface constraint using a simple triangular mesh
M consisting of two triangles. The constraint converts the distance to the
closest face, dsi , to a signed distance (depending on if the feature is inside
or outside the triangular face).

can express the likelihood as proportional to a simpler
expression:

p(Z,Λ|X) ∝ p(Zodo,Zprior,Zrange,Zfeat|X)p(Zsurf|Λ,X)

Therefore, step (2a) in the hard EM algorithm simplifies to

argmax
Λ

p(Z,Λ|X) = argmax
Λ

p(Zsurf|Λ,X), (2)

where p(Zsurf|Λ,X) is described in §IV-B. In addition,
step (2b) simplifies to

argmax
X

p(Z,Λ|X) =

argmax
X

p(Zodo,Zprior,Zrange,Zfeat|X)p(Zsurf|Λ,X), (3)

which is equivalent to a least-squares optimization problem
when the measurements are corrupted by additive Gaussian
noise.

B. Modeling the Surface Constraint

Consider the set of all surface constraints Zsurf =
{zs1 . . . zsNl

}. We model the conditional distribution of these
constraints as follows:

p(zsi |λi,X) =

{
N (h (xgM, li) , σ

2
0), λi = 0

N
(
h (xgM, li) , σ

2
1

)
, λi = 1

, (4)

where h( · ) computes the orthogonal signed distance of the
ith feature to the model. The values σ2

0 and σ2
1 denote

the variance of the surface constraint when λi is 0 or 1,
respectively. Intuitively, these variances are chosen such that
σ2
1 � σ2

0 , i.e., features that lie close to the model surface
are more tightly pulled toward it, while features that lie away
from the model are free to vary with approximately zero cost.
To constrain visual features to lie on the surface, we assign
zsi = 0 for all of the features. If we desired the surfaces to
tend toward lying inside or outside the surface by distance
d, we would assign zsi to −d or d, respectively.

The orthogonal signed distance function h( · ) is a nonlin-
ear function of the pose of the model and the position of the
visual feature:

h (xgM, li) =
(HgMli − p)

>
n√

n>n
,

where HgM is an affine transformation matrix that transforms
points in the global frame to points in the model frame.

Intuitively, h( · ) returns the orthogonal signed distance of a
visual feature li to the surface of the closest triangular face
in M. This triangle is characterized by any point, p, that
lies on the surface of the triangle, and its surface normal, n.
This calculation is illustrated in Fig. 2.

C. Relation to Gaussian Max-Mixtures

In this section, we show how the previous formulation is a
special case of Gaussian max-mixtures framework proposed
by Olson and Agarwal [6]. This was mainly introduced in
the area of robust SLAM backends as a probabilistically-
motivated approach to rejecting incorrect loop closures [6,
17? , 18] and detecting wheel slippage in ground robots [6].
More recently, it has been applied in learning robust models
for consumer-grade global positioning system (GPS) mea-
surements that can reject outliers [19].

First, we note that the surface constraint likelihood
p(zsi |X) is a Gaussian sum-mixture due to marginalizing
λi and therefore not Gaussian. Even so, we can write the
conditional distribution of the unknowns given the measure-
ments as

log p(X|Z) ∝ log
∏
i

p(zi|X), (5)

where zi denotes the ith measurement; either an odometry,
prior, range, feature, or surface constraint. By maximizing
this distribution, we arrive at a maximum a posteriori (MAP)
estimate for X, as shown by [20].

Though the labels, Λ, are absent from (5), we can approx-
imate the sum-mixture surface constraint likelihood using
the similar max-mixture distribution proposed by Olson and
Agarwal [6]. The likelihood then takes the form

p(zsi |X) = η max
λi

p(zsi |λi,X). (6)

The logarithm can be brought inside the product from (5),
and again inside the max operator from (6). This distribution
can therefore be thought of as a binary Gaussian max-mixture
with equal weights for each component of the mixture.

This conditional distribution essentially combines
steps (2a) and (2b) from the hard EM algorithm so that
the labels are determined whenever the likelihood term is
evaluated. The distribution from (6) is therefore equivalent
to a binary max-mixture of Gaussians with equal weights.
This conforms to our earlier formulation from §IV-A that
assigns equal prior probability to a surface lying on or off
the mesh’s surface. The only two parameters used in our
approach are therefore σ2

0 and σ2
1 from (4). We illustrate this

distribution in Fig. 3 using values that are representative of
the structure that we typically observe on ship hulls.

Note that the distribution from (6) contains an unknown
normalization constant, η, that ensures a valid probability
distribution. However, for the purposes of maximizing the
likelihood, computing the specific value of this scale factor is
not necessary [6]. Additionally, we represent the distribution
from (5) using a factor graph [20], as shown in Fig. 4. To
solve the corresponding least-squares problem, we use the
freely-available Ceres library [21].
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Fig. 3. Decision boundary for σ0 = 1 m, σ1 = 0.12 m overlayed on the
log probability (i.e., cost computed during optimization). If desired, features
could be biased toward the “inside” or “outside” of the model by assigning
a nonzero value to zsi to shift this curve left and right, respectively. For
our experiments, however, we assign zsi = 0 for all features.

Fig. 4. Representation of our method as a factor graph. The factor nodes
denoted with Zsurf denote the surface constraints, which represent binary
Gaussian max-mixtures distributions from §IV-C. These factors constrain
the pose of the prior model xgm and the location of visual features li.

D. Localizing to the prior model

Our approach, like all model-assisted BA frameworks,
requires a good initial guess of the alignment between the
camera trajectory and the prior model. This is typically done
using triangulated features from the camera imagery, but for
autonomous ship hull inspection there are many portions of
the ship where no features can be detected because the hull
is not visually salient [22, 23].

In our case, the underwater robot observed sparse range
measurements (that is, Zrange) using a Doppler velocity log
(DVL). These range returns are rigidly aligned to the prior
model using generalized iterative closest point (GICP) [24],
which serves as an initial guess (i.e., the prior factor con-
nected to node xgm in Fig. 4). Individual poses can be
further optimized using raycasting techniques to compute the
likelihood of Zrange and the surface constraint measurements
Zsurf from §IV-B. Note that dense connectivity to the variable
node representing xgm from Fig. 4. If this quantity was
assumed known (an unrealistic presumption for ship hull
inspection), the factors corresponding to Zrange and Zsurf
would be unary (instead of binary) and the graph would not
have any dense connectivity.

V. RESULTS

The field data used in our experimental evaluation is taken
from the Bluefin Robotics Hovering Autonomous Under-
water Vehicle (HAUV) surveying the SS Curtiss, shown
in Fig. 5. A 3D triangular mesh was derived from CAD
drawings, and serves as the prior model in our model-assisted

(a)

(b)

Ship Length 183 m
Ship Beam 27 m
Ship Draft 9.1 m
AUV trajectory length 0.963 km
Number of images 44,868
Number of DVL raycasts 96,944
Number of feature reprojections 974,144
Number of features 243,536

(c)

Fig. 5. The HAUV sensor payload is shown in (a). The vessel being
surveyed is the SS Curtiss, for which we have access to a CAD-derived 3D
mesh. The size of the dataset used in this paper is summarized in (c).

framework. In this section, we evaluate the performance of
three approaches when processing this single large dataset:

1) A naive BA framework where the measurements con-
sists of Zprior, Zodo, Zrange, and Zfeat. All surface con-
straints are disabled, i.e., λi = 0 for every feature.

2) The approach based on Geva et al. [15], which consists
of the measurements Zprior, Zodo, Zrange, and Zfeat, in
addition to surface constraints, Zsurf, such that λi = 1
for every feature.

3) The proposed algorithm discussed in §IV-A, imple-
mented using Gaussian max-mixtures, where each hid-
den label λi is assigned from (6).

We used the scale invariant feature transform (SIFT) feature
descriptor [25] to assign visual correspondence. The size of
the bundle adjustment problem is shown in Table 5(c).

A. 3D Reconstruction Evaluation

We provide a visualization of the reconstruction that
highlights the advantages of our approach in Fig. 6. These
plots show cross sections of the ship hull, from starboard-to-
port, to highlight the relevant portions of the visual features
and range returns from the DVL. In these figures, we see
some general trends. 1) In the reconstruction derived from
the naive approach, the visual features do not lie on the same
surface as the range returns from the DVL. The features
are underconstrained in the naive case because there is zero
information relating the pose of the prior model to the
position of the visual features. 2) Using the approach from
Geva et al. [15], the visual features lie on the same surface
as the DVL range returns, as expected. Because all features
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Fig. 6. Each column represents a different method, with each column showing the same representative cross section of the reconstruction. For the naive
approach shown in (a) through (c), there is zero information between the visual features and prior model resulting in an obvious misregistration with the
DVL. Using the method from Geva et al. [15] shown in (d) through (f), the features and DVL ranges are well-registered, but the docking block is visibly
“squished” into the surface. Our method, shown in (g) through (i), combines the favorable qualities of each method, aligning the visual features and DVL
returns while also preserving 3D structure that is absent from the prior model.

are constrainted to lie on the surface, the algorithm does not
capture 3D structure present on the actual ship hull that is not
present in the prior model (e.g., the docking blocks along the
bottom of the hull). 3) Our approach combines the benefits of
both approaches: the visual features and DVL-derived point
cloud lie on the same surface, and our visual reconstruction
yields 3D structure that would have been heavily regularized
using the approach from Geva et al. [15].

In addition, the camera used in this dataset is a calibrated
underwater stereo rig, so we use a stereo-derived depth image
of a docking block shown in Fig. 7 as an indication that the
3D structure preserved in Fig. 6(i) is correct. Indeed, the 3D
structure inferred from our proposed method is 0.10 m to
0.20 m closer to the camera than the rest of the scene. This
agrees with the depth image from Fig. 7.

Finally, we provide results that suggest the identification
of feature labels stabilizes after about ten iterations, as shown
in Fig. 8. Clearly, for this dataset, the vast majority of
features lie on the prior model, suggesting that the weights
in each mixture (or, equivalently, the last multiplicand in (1))
can be optionally tuned to reflect this trend, rather than
conservatively assigning equal weights.

Fig. 7. A dense stereo matching algorithm shows definite 3D structure
around the area of the hull highlighted in the bottom row of Fig. 6. Using
our proposed method, the object highlighted in the pink box is preserved
in the sparse reconstruction, shown in Fig. 6(i).

B. Computational Performance

We assessed the computational performance by performing
timed trials on a consumer-grade four-core 3.30 GHz proces-
sor. We report the timing results of each of the three methods
in Fig. 9. From this plot we draw two conclusions. 1) The
computational costs of our method impose total performance
loss of 22.3% compared to the naive approach (511 seconds
versus 418 seconds). 2) The computational costs of the
approach from Geva et al. [15] imposes a performance
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Fig. 9. Cost (a) and timing (b) comparison for each method evaluated
in §V. Our algorithm imposes some extra computation time compared to
the naive approach, but is still competitive. The naive, Geva et al. [15], and
proposed approaches converge in 26, 38, and 29 iterations, respectively.

loss of 50.0% compared to the naive approach. The latter
case is a result of the optimizer performing more iterations
until convergence. Intuitively, by forcing visual features that
protrude from the prior model to lie flush, the optimizer must
perform more iterations to satisfy the corresponding repro-
jection errors. Even though our method devotes additional
processing time when evaluating (6), this is overcome by
the added cost performing additional iterations.

VI. CONCLUSION

We proposed a model-assisted bundle adjustment frame-
work that assigns binary labels to each visual feature. Using
an EM algorithm with hard hidden variable assignments, we
iteratively update these variables along with the current state
estimate. We show that this algorithm is a special case of
the Gaussian max-mixtures framework from earlier work in
robust pose graph optimization. We compared our approach
to recent work in model-assisted methods, and showed our
algorithm has favorable properties when evaluated in the
context of autonomous ship hull inspection.
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