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Abstract

This paper reports on a model-assisted bundle adjustment (BA) framework in

which visually-derived features are fused with an underlying three-dimensional

(3D) mesh provided a priori. By using an approach inspired by the expectation-

maximization (EM) class of algorithms, we introduce a hidden binary label

for each visual feature that indicates if that feature is considered part of the

nominal model, or if the feature corresponds to 3D structure that is absent

from the model. Therefore, in addition to improved estimates of the feature

locations, we can identify visual features that correspond to foreign structure on

the ship hull. We show that this framework is a special case of the Gaussian max-

mixtures framework, which can be efficiently incorporated into state-of-the-art

graph-based simultaneous localization and mapping (SLAM) solvers.

In addition, the precision of our bundle adjustment framework allows

the identification of structural deviations between 3D structure inferred from

bundle-adjusted camera imagery and the prior model. These structural devia-

tions are clustered into shapes, which allow us to fuse camera-derived structure

back into the 3D mesh. This augmented model can be used within a 3D pho-

tomosaicing pipeline, providing a visually intuitive 3D reconstruction of the

ship hull. We evaluate our pipeline using the Bluefin Robotics hovering au-
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tonomous underwater vehicle (HAUV) surveying the SS Curtiss, where a 3D

mesh derived from computer aided design (CAD) drawings serves as the prior

model. In addition to more consistent visual reconstructions, we can update the

prior mesh with 3D information corresponding to underwater structure, such

as biofouling or manually-placed cylindrical shapes with known dimensions.

Keywords: SLAM, AUVs, underwater inspection, mapping, visualization

1. Introduction

Bundle Adjustment (BA) is a special case of the simultaneous localization

and mapping (SLAM) problem; it is an estimation problem whose unknowns

consist of camera poses and the positions of visually-observed features. Thus,

BA is a reconstruction technique that seeks to estimate the three-dimensional

(3D) structure of the scene and the egomotion of the camera. It is a widespread

technique used throughout computer vision and mobile robotics, due mainly

to the low cost and high reconstruction quality of digital cameras [2, 10, 17]. A

major drawback of using optical cameras in field robotics is the susceptibility

to environmental noise and varying lighting conditions [15]. Despite these

challenges, the main benefit of vision-based 3D reconstruction is high spatial

resolution and cost savings as compared to laser and acoustic-based sensing.

To mitigate the challenges of vision-based 3D reconstruction, researchers

have previously proposed modifications to BA that leverage 3D models of the

scene (provided a priori). This practice is sometimes referred to as model-assisted

bundle adjustment. The reconstruction of human faces has been a particularly

prevalent application domain, however these techniques have certain shortcom-

ings that are ill-suited for their application in large-scale robotic surveillance.

For instance, mobile robots typically survey areas that are much larger than

themselves, unlike the relative sizes of a camera and human faces. In addition,

the scene will almost surely consist of 3D structure that is absent from the

provided model.
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Underwater environments are especially challenging for optical imaging

and 3D reconstruction. In particular, a phenomenon known as back-scatter is an

issue that researchers must consider when deploying autonomous underwater

vehicles (AUVs) that are equipped with optical cameras [19, 32, 4, 11]. Despite

these challenges, the benefits of the aforementioned model-assisted BA have

yet to be explored in a large scale underwater setting. The facial reconstruction

methods are designed for standard in-air imaging so these methods do not

easily transition to underwater environments.

To address these challenges, we have developed an improved model-assisted

BA framework that is easily applicable to underwater ship hull inspection,

as shown in Fig. 1. In addition, we have leveraged this BA framework in a

mapping pipeline that can identify foreign 3D structure and fuse it back into the

prior model, as shown in Fig. 2. The contributions of Section 2 are as follows:

• We propose a expectation-maximization (EM) algorithm that assigns hard

binary labels to each visual feature and solves for the optimal 3D locations

of cameras and features accordingly. This approach is therefore capable of

identifying 3D structure that is absent from the prior model.

• We show that this algorithm is a special case of the Gaussian max-mixture

framework, which was originally intended for handling non-Gaussian

error models in graphical SLAM [47].

• To our best knowledge, our datasets provide the largest evaluation of a

fielded robot performing model-assisted BA, both in physical scale and

number of images.

In addition, in Section 3 we explore mapping techniques that fuse the model-

assisted bundle-adjusted structure (in addition to texture, similar to our method

presented in [48]) back into the low-fidelity prior mesh. In this paper, we are

interested in identifying structural differences detected from the underwater

camera. We build upon this previous work by annotating a prior model with
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Figure 1: (a) DVL ranges, shown in blue, allow us to localize to the prior model of the ship being
inspected, shown in gray. In (b) and (c), visual features that are hypothesized to lie on the nominal
surface of the prior model are shown in green. Features that correspond to 3D structure that is
absent from the model are shown in red. In this example, red features correspond to tubular
biogrowth emanating from docking blocks along the hull’s centerline, in (d).

SLAM-derived structure. We show experimental results taken from the Bluefin

Robotics hovering autonomous underwater vehicle (HAUV) platform for auto-

mated ship hull inspection [29]. The contributions of Section 3 allow our AUV

to:

• Label visually-derived 3D shapes based on their deviation from the nomi-

nal a priori mesh.
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Figure 2: In addition to an improved BA framework, we propose a mapping technique that can
identify 3D shapes in the imagery (bottom) and fuse these back into a low-fidelity prior model
derived from CAD drawings (top). The color of each feature encodes the structural deviation from
the CAD model. An outline of clusters of these features is shown in red, computed using DBSCAN.

• Augment the nominal mesh with visually-derived 3D information, pro-

ducing a high-fidelity map.

1.1. Related Work: Model-assisted BA

Model-assisted visual reconstruction methods were particularly popular

during the late 1990’s and early 2000’s, particularly in the domain of human

face reconstruction [24, 35, 55, 14, 23]. Works by Fua [24] and Kang and Jones

[35] are similar to traditional BA: a least-squares minimization over reprojection

error. However, they introduce regularization terms that essentially enforce

triangulated points lying close to the model’s surface. Shan et al. [55] introduce

an optimization problem over a set of model parameters—rather than a reg-
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ularization over features—that allows the generic face model to more closely

match the geometry of the subject’s face. Fidaleo and Medioni [23] noted that

these methods are rarely able to integrate 3D structure present in the subject

that is absent from the model (such as facial hair and piercings). Instead, their

approach used a prior model strictly for pose estimation, but the reconstruction

of the face was entirely data-driven.

The primary application domain of these methods is in the reconstruction of

human faces, however they have largely been overshadowed by modern, highly

accurate, dense reconstruction methods that use either commodity depth cam-

eras [45, 63], patch-based multiview stereopsis using high-quality imagery [25],

or photometric stereo reconstruction techniques [37, 52]. These more recent

methods have shown impressive reconstructions of both small-scale objects

(human faces), and large scale objects (indoor environments and outdoor struc-

tures).

Recently, however, model-assisted methods have seen some re-emergence in

particularly challenging areas of mobile robotics, such as the work by Geva et al.

[26] in which an unmanned aerial vehicle (UAV) surveys a remote area. They

used digital terrain models (DTMs) to regularize the position of 3D features

observed from the camera mounted on the UAV, in a very similar fashion to

the work in [24, 35]. These DTMs are freely available from the Shuttle Radar

Topography project [22], and act as the prior model used in their approach.

This approach is most similar to ours, however we differentiate our approach

in three important ways: (i) our approach is capable of incorporating visual

information that is absent from the nominal a priori model by assigning a

hidden binary random variable for each visual feature; (ii) we use an orthogonal

signed distance, rather than raycasting, to evaluate a feature’s surface constraint

likelihood; (iii) we evaluate our approach on a dataset with several orders of

magnitude more bundle-adjusted keyframes.
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1.2. Related Work: Underwater Visual Mapping

Early work in ship hull inspection includes the use of long-baseline naviga-

tion, where a robot localizes to a ship hull using manually-deployed acoustic

pingers [61]. More recently, researchers have instead used underwater visual

perception and SLAM techniques, rather than acoustic localization beacons, for

AUV navigation. A survey of underwater visual sensing modalities was pro-

vided by [7]. Some examples of field robots that use visual perception include

work by Negahdaripour and Firoozfam [44], in which they used a stereo camera

rig on a remotely operated vehicle (ROV) to inspect the underwater portion of

a ship hull. Visual mapping of underwater infrastructure was also explored

by Ridao et al. [50] using an AUV with a calibrated underwater monocular

vision system. In addition to mapping tasks, several researchers have explored

automated object identification (such as corrosion or underwater mines) using

both visual sensors [8] and acoustic sensors [6].

The computer vision and graphics community have studied fusing opti-

cal range measurements to form a reconstruction of a 3D surface for several

decades [27, 16, 36]. The seminal work by Curless and Levoy [16] used running

averages to fuse range measurements into an implicit surface. This simple

approach is still used in state-of-the-art surface reconstruction and pose tracking

algorithms using a commodity depth camera [45, 63]. We differentiate our

work in three ways. First, we assume the availability of a nominal mesh of the

surface being constructed and that the camera pose with respect to this mesh

is unknown. Second, we assume that the object can only be observed at a very

close distance—i.e., the observations are locally planar and so using iterative

closest point (ICP) (or its variants) to estimate relative poses between keyframes

is ill-constrained [65, 13, 54]. Third, we do not assume the availability of dense

depth images during the pose estimation stage. Though we use a stereo camera

for some of our experimental analysis (from which a dense disparity map can be

easily converted to a dense depth image), we instead use sparse feature-based

registration so that this approach is also applicable to monocular (bearing-only)

cameras.
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Figure 3: Flowchart of the model-assisted mapping pipeline.

1.3. Outline

This paper is organized into two major components: a model-assisted BA

framework discussed in Section 2 and a underwater visual mapping pipeline

discussed in Section 3. In Fig. 3, we provide a flowchart of our processing

pipeline and show that the output of model-assisted BA serves as the input

to model-assisted mapping. In Section 2, we describe the mathematical model

for a robust model-assisted optimization framework, and we show that the

approach is a special case of the Gaussian max-mixture models from Olson and

Agarwal [47]. In Section 3, we describe a mapping framework that fuses the BA

result back into the prior model in the form of triangulated 3D shapes derived

from a clustering algorithm. Results and discussion are provided in Section 4.

In Section 5 we offer some concluding remarks.

1.4. Sensor Payload

The HAUV acts as the experimental platform for the methods proposed

in this paper. An illustration of the HAUV’s sensor configuration is shown in

Fig. 4. The light-emitting diode (LED) light, underwater stereo camera, Dual

frequency IDentification SONar (DIDSON) imaging sonar, and Doppler velocity

log (DVL) are mounted on a sensor tray at the front of the vehicle, while the

periscope camera is placed on top. In this configuration, the robot can easily

capture either below-water (stereo or monocular) or above-water (monocular

periscope) images.
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Figure 4: Overview of the HAUV sensor configuration.

Table 1: Payload characteristics of the HAUV
Prosilica GC1380 12-bit digital stills, fixed-focus, monochrome, 1 Megapixel

Periscope Camera Monocular Prosilica GC1380 in water-proof housing
Underwater Camera

(monocular, pre-2013) Monocular Prosilica GC1380 in water-proof housing

Underwater Camera
(stereo, post-2013)

Two Prosilica GC1380s in separate water-proof bottles, linked
via Fast Ethernet

Lighting 520 nm (green) LED
IMU Honeywell HG1700

Depth Keller pressure sensor
DVL RDI 1200 kHz Workhorse; also provides four range beams

Imaging Sonar Sound Metrics 1.8 MHz DIDSON
Communication Fiber-optic Ethernet cable

Thrusting Five rotor-wound thrusters
Battery 1.5 kWh lithium-ion

Dry Weight 79 kg
Dimensions 1 m× 1 m× 0.45 m

During a mission, the sensor tray is servoed such that both the DVL and

camera point nadir to the hull while the robot keeps a fixed distance. In late

2013, we upgraded the underwater monocular camera to a stereo configuration.

The periscope camera, on the other hand, is fixed with a static angle allowing the

robot to image superstructure to localize previous missions, as shown in [49].

The specifics of the sensor suite are tabulated in Table 1 and reported by

Hover et al. [30]. The inertial measurement unit (IMU), DVL velocities, and

depth sensors are used for dead-reckoning (DR), and the cameras, sonar, and

DVL ranges are used for perceptual information. In Fig. 5, we provide typical

examples of both above-water (periscope) and underwater imagery.
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(a) Periscope camera (b) Underwater camera

Figure 5: Sample periscope and underwater imagery.

2. Model-assisted Bundle Adjustment

2.1. Notation

We denote the set of all unknowns, X, as consisting ofNp poses, xg1 . . .xgNp
,

the relative transformation to the model frame, xgM, andNl landmarks, l1 . . . lNl

X = {xg1 . . .xgNp︸ ︷︷ ︸
robot poses

, xgM︸︷︷︸
model pose

, l1 . . . lNl︸ ︷︷ ︸
visual landmarks (features)

},

where xij denotes the 6-degree-of-freedom (DOF) relative-pose between frames

i and j. The common, or global frame, is denoted as g. Visually-derived features,

denoted as li, are the 3D positions of features as expressed in the global frame.

Finally,Mprior denotes a prior triangular mesh consisting of a set of vertices,

edges between vertices, and triangular faces.

Note that X may consist of additional variables, such as extrinsic parameters

of the robot sensors. We omit these values now for the sake of clarity, however

we re-introduce them in Section 2.6.

Let Z denote the set of all measurements, which consists of all odometry

measurements, priors, surface range measurements (e.g., from an active range

scanner), visual feature detections, and surface constraints (which will be de-

scribed in Section 2.3),

Z = {Zodo,Zprior,Zrange,Zfeat,Zsurf}.
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We assign a hidden binary feature label to each visual feature,

Λ = {λ1 . . . λNl
}, λi ∈ {0, 1},

where a value of one encodes that a visually-derived feature lies on the nominal

surface of Mprior. A value of zero encodes that the visually-derived feature

corresponds to physical structural that is absent fromMprior.

2.2. Formulation as Expectation-Maximization

The goal of our work is to estimate X using a simplified variant of the EM

algorithm, known as hard EM:

1. Initialize X

2. Repeat the following until p(Z,Λ|X) converges:

(a) Λ∗ = argmax
Λ

p(Z,Λ|X)

(b) X∗ = argmax
X

p(Z,Λ∗|X)

Similar to previous work, we introduce a set of prior measurements, Zsurf,

that regularize the positions of 3D visual features so that they lie on the surface

ofMprior. We expand the likelihood function using Bayes’ rule and note that

the odometry, prior, and feature detection observations are independent of the

feature labels (and conditionally independent of each other):

p(Z,Λ|X) = p(Z|Λ,X)p(Λ|X)

= p(Zodo,Zprior,Zrange,Zfeat|X)p(Zsurf|Λ,X)p(Λ|X). (1)

If we conservatively assume that p(λi|X) is uninformative, then we can

express the likelihood as proportional to a simpler expression:

p(Z,Λ|X) ∝ p(Zodo,Zprior,Zrange,Zfeat|X)p(Zsurf|Λ,X)

Therefore, Step 2(a) in the hard EM algorithm simplifies to

argmax
Λ

p(Z,Λ|X) = argmax
Λ

p(Zsurf|Λ,X), (2)
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where p(Zsurf|Λ,X) is described in Section 2.3. In addition, Step 2(b) simplifies

to

argmax
X

p(Z,Λ|X) =

argmax
X

p(Zodo,Zprior,Zrange,Zfeat|X)p(Zsurf|Λ,X), (3)

which is equivalent to a least-squares optimization problem when the measure-

ments are corrupted by additive Gaussian noise.

2.3. Modeling the Surface Constraint

Consider the set of all surface constraints Zsurf = {zs1 . . . zsNl
}, we model

the conditional distribution of these constraints as Gaussian:

p(zsi |λi,X) =

N (h (xgM, li) , σ
2
0), λi = 0

N
(
h (xgM, li) , σ

2
1

)
, λi = 1

, (4)

where h( · ) computes the orthogonal signed distance of the ith feature to the

model. The values σ2
0 and σ2

1 denote the variance of the surface constraint

when λi is 0 or 1, respectively. Intuitively, these variances are chosen such

that σ2
1 � σ2

0 , i.e., features that lie close to the model surface are more tightly

pulled toward it, while features that lie away from the model are free to vary

with approximately zero cost. For certain applications, features may be biased

toward the exterior or interior of the prior model by setting zsi to some positive

or negative value, respectively. However, for our experiments, we assign zsi = 0

for all of the features so that the camera-derived 3D structure tends to coincide

with the surface of the prior model.

The orthogonal signed distance function h( · ) is a nonlinear function of the

pose of the model and the position of the visual feature:

h (xgM, li) =

(
HMg li − p

)>
n√

n>n
, (5)
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Figure 6: Overview of the surface constraint using a simple triangular mesh M consisting of
two triangles. The constraint converts the distance to the closest face, dsi , to a signed distance
(depending on if the feature is inside or outside the triangular face).

where HMg =
[M
g R |MtMg

]
is the transformation (orthonormal rotation matrix,

M
g R, followed by three-vector translation,MtMg) of points in the global frame

to points in the model frame and u = [u>1]> represents a vector expressed in

homogeneous coordinates.

Intuitively, h( · ) returns the orthogonal signed distance of a visual feature li

to the surface of the closest triangular face inM. This triangle is determined

by using a KD tree to return the closest vertex in the mesh, then arbitrarily

choosing a triangle that contains this vertex. When computing h( · ), this triangle

is characterized by any point, p, that lies on the surface of the triangle, and its

surface normal, n. This calculation is illustrated in Fig. 6.

2.4. Relation to Gaussian Max-Mixture Models

In this section, we show how the previous formulation is a special case

of Gaussian max-mixture models proposed by Olson and Agarwal [47]. This

approach was mainly introduced in the area of robust SLAM backends as a

probabilistically motivated approach to rejecting incorrect loop closures [47, 1,

59] and detecting wheel slippage in ground robots [47]. More recently, it has

been applied in learning robust models for consumer-grade global positioning

system (GPS) measurements that can reject outliers [43].
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Similar to [47], we note that the surface constraint likelihood p(zsi |X) is not

Gaussian because this density does not condition on λ. Even so, we can still

apply Bayes’ rule to the conditional distribution of the unknowns given the

measurements. By assuming an uninformative prior on X, we have:

log p(X|Z) ∝ log
∏
i

p(zi|X), (6)

where p(zi|X) denotes the ith factor potential that corresponds to an odometry,

prior, range, feature, or surface information (we describe these factors in greater

detail in Section 2.6). By maximizing this distribution, we arrive at a maximum

a posteriori (MAP) estimate for X, as shown by [18].

Though the labels, Λ, are absent from (6), we can adapt the Gaussian max-

mixture distribution proposed by Olson and Agarwal [47] to model the surface

constraint likelihood. In our case, the surface constraint likelihood then takes

the form

p(zsi |X) = η max
λi

p(zsi |λi,X). (7)

The logarithm can be brought inside the product from (6), and again inside the

max operator from (7). This distribution can therefore be thought of as a binary

Gaussian max-mixture with equal weights for each component of the mixture.

This conditional distribution essentially combines Steps 2(a) and 2(b) from

the hard EM algorithm so that the labels are determined whenever the likeli-

hood term is evaluated. The distribution from (7) is therefore equivalent to a

binary max-mixture of Gaussians with equal weights. This conforms to our

earlier formulation from Section 2.2 that assigns equal prior probability to a

surface lying on or off the mesh’s surface. The only two parameters used in

our approach are therefore σ2
0 and σ2

1 from (4). We illustrate this distribution

in Fig. 7 using typical values for these parameters. These values are fixed, i.e.,

they are not at all dependent on the amount of structural deviation from the

nominal surface.
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Figure 7: Decision boundary for σ0 = 1 m, σ1 = 0.02 m overlayed on the log probability (i.e., cost
computed during optimization). The decision boundary represents approximately the minimum
size of foreign objects our system can identify. For these values of σ0 and σ1, the decision boundary
is at ±5 cm.

The choice of σ0 makes little difference, however σ1 must be tuned depend-

ing on the expected variation of small-scale matter that is attached along the

immediate surface of the hull. We have found for the ship hull inspection,

values between 1 cm and 5 cm provide acceptable results. However, we use

σi = 2 cm for the results in Section 4.

Note that the distribution from (7) contains an unknown normalization

constant, η, that ensures a valid probability distribution. However, for the

purposes of maximizing the likelihood, computing the specific value of this

scale factor is not necessary [47]. Additionally, we represent the distribution

from (6) using a factor graph [18], as shown in Fig. 8. To solve the corresponding

least-squares problem, we use the freely-available Ceres library [3].

2.5. Localizing to the Prior Model

Our approach, like all model-assisted BA frameworks, requires a good initial

guess of the alignment between the camera trajectory and the prior model.

This is typically done using triangulated features from the camera imagery,

but for autonomous ship hull inspection there are many portions of the ship

where no visual features can be detected because the hull is not uniformly

salient [39, 12, 40].
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Figure 8: Representation of our method as a factor graph. The factor nodes denoted with Zsurf
denote the surface constraints, which are implemented using binary Gaussian max-mixtures distri-
butions from Section 2.4. These factors constrain the pose of the prior model xgm and the location
of visual features li.

In our case, the underwater robot observed sparse range measurements

using a DVL, which are a by-product of underwater navigation with a Doppler

sonar [33, 42]. These range returns are rigidly aligned to the prior model using

generalized iterative closest point (GICP) [54], which serves as an initial guess

(i.e., the prior factor connected to node xgm in Fig. 8). In our case, one point

cloud consists of vertices in Mprior, while the other point cloud consists of

DVL range returns expressed in the global frame, which are SLAM-corrected in

real-time using the method described in [49]. Individual poses can be further

optimized using raycasting techniques to compute the likelihood of Zrange and

the surface constraint measurements Zsurf from Section 2.3.

In general, we cannot use the DVL for detecting foreign objects on the hull

for two reasons. First, particularly gelatinous or spongy species of biogrowth

my be acoustically transparent to the DVL beams [62]. Second, the range returns

are extremely sparse and thus do not provide reliably sufficient coverage of the

ship hull. However, in Fig. 15 we provide results where DVL beams intersect

with a solid, metallic foreign object. This is coincidental and not the general

use-case.
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2.6. Application to the HAUV

In Section 2.3 we described the general evaluation of the surface constraint

measurements, Zsurf. In this section we describe in detail the measurement mod-

els used on the HAUV and relate them to the factors illustrated in Fig. 8. Each

subsection will describe Zprior, Zodo, Zfeat, and Zrange in terms of the conditional

distributions of the observations given the unknowns. The covariance matrix

for each factor is assumed known, as is standard practice.

Each of these factor potentials assumes that the sensor observations are

corrupted by zero-mean additive Gaussian noise. Though this assumed model is

mathematically and computationally convenient, it has been shown to be invalid

for certain applications in underwater robotics [51, 57]. We note, however, that

our results do not exhibit characteristics often seen with force-fitting a Gaussian

noise model to non-Gaussian data, such as inconsistent 3D reconstructions and

high residual errors. We therefore conclude that, in our case, the Gaussian

assumption is valid.

As suggested earlier, we also include extrinsic sensor parameters in the

factor-graph formulation. In particular, we assume that the time-varying servo

angle that actuates the HAUV’s sensor tray is instrumented but uncertain.

Similarly, the static servo-to-camera transform is also not precisely calibrated

and treated as uncertain. Therefore, we denote these unknowns as θvisi and

xscT , respectively, and include them as variable nodes in our factor-graph

implementation. These additional unknowns are illustrated in Fig. 9.

We used a graphical processing unit (GPU) implementation of the scale-

invariant feature transform (SIFT) feature descriptor to detect visual features

on the hull [41, 64]. We treat these features as landmarks in our BA pipeline

described above. Putative correspondences were established using a standard

appearance-based nearest neighbor search. This was implemented on a GPU

in the interest of computational performance. Data association between these

features and the prior model is simply a lookup to the nearest triangle in the

prior model, as described in Section 2.3.
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Figure 9: Illustration of the various reference frames at time i. The vehicle has a sensor tray that
houses both the DVL and vertically-oriented stereo rig. An onboard servo rotates the servo frame,
si, which in turn rotates the DVL and camera. The vehicle controls this angle so that these sensors
point approximately orthogonal to the ship hull surface. This angle is instrumented, but must be
treated as uncertain in our estimation framework due to the mechanical slop in the servo.

The prior model used in our application is a 3D triangular mesh that is

derived from computer aided design (CAD) drawings of the ship hull being

surveyed. This mesh can be read into memory and efficiently rendered on a

consumer-grade laptop.

2.6.1. Prior Factors

A full-state prior on all six degrees of freedom for a particular variable node,

xij , is given by the conditional distribution of the measurement zfullxij
:

p
(
zfullxij

∣∣∣xij) = N
(
xij ,Σzfull

xij

)
. (8)

The initial guess for the pose of the prior model, xgm, is determined using the

GICP algorithm for aligning two point clouds [54], as discussed in Section 2.5.

This GICP alignment is added as a prior factor on xgm with high variance

(Σzfull
xgm

= I6×6).

The onboard depth and IMU sensors allow us to directly observe a bounded-

error measurement of the vehicle’s depth, pitch, and roll. This observation,

denoted zzprxij
, has the following conditional distribution:

p
(
zzprxij

∣∣∣xij) = N
([
ziij , φij , θij

]>
,Σzzpr

xij

)
. (9)

For this factor, we chose Σzzpr
xij

to be diagonal corresponding to standard devia-

tions of 0.1 m, 0.1◦, and 0.1◦ for depth, pitch, and roll, respectively.
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Finally, we model the servo angle at time i as an uncertain observation as

discussed in Fig. 9. The corresponding observation model is simply:

p (zvisi | θvisi) = N
(
θvisi , σ

2
zsi

)
, (10)

where σzsi = 5◦.

2.6.2. Odometry Factors

Our factor-graph formulation models odometry measurements as a sequen-

tial relative-pose observation, zodo
i(i+1). The conditional distribution of this mea-

surement is

p
(
zodo
i(i+1)

∣∣∣xgi,xg(i+1)

)
= N

(
	xgi ⊕ xg(i+1),Σzodo

i(i+1)

)
, (11)

where ⊕ and 	 are pose composition operators following the conventions

of Smith et al. [56]. We model the covariance matrix, Σzodo
i(i+1)

, as a diagonal,

where the entries’ standard deviations are proportional to the time difference

between i and (i+ 1). The translational noise is proportional to a rate of 5 mm

per second and the rotational noise is proportional to a rate of 80◦ per hour.

2.6.3. Stereo Camera Factors

The observed pixel locations at time i corresponding to the kth feature are

denoted as zTik and zBik for the top and bottom cameras, respectively:

p

([
zTik
>

zBik
>]>∣∣∣∣xgvi ,xscT , θvisi , lk) = N

(
hc (xgvi ,xscT , θvisi , lk) , σ2

c I4×4
)
,

(12)

where we choose σc = 2 pixels. The observation model, hc, corresponds to

two pinhole cameras in a calibrated and rectified vertical stereo configuration

(from Fig. 9):

hc (xgvi ,xscT , θvisi , lk) =

KcT

[
cT
g R | cT tcT g

]
lk

KcB

[
cB
g R | cBtcBg

]
lk

 .
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In general,
[j
iR | jtji

]
denotes the transformation of a point from frame i

to frame j. In this case, it can represent the transformation of points from

the global frame, g, to the top camera, cT (i.e., the rotation and translation

of the composed pose (xgvi ⊕ xvisi ⊕ xscT ), where xvisi = [0, 0, 0, 0, θvisi , 0]>).

It also can describe the transformation of points in the global frame to the

bottom camera, cB (i.e., the rotation and translation of the composed pose

(xgvi ⊕ xvisi ⊕ xscT ⊕ xcT cB ), where xcT cB is the transformation from the top

camera frame to the bottom camera frame). This transformation is taken from

stereo camera calibration.

Note that our notation for hc ( · ) omits the dehomogenization of each camera

projection for the sake of clarity.

2.6.4. Monocular Camera Factors

In the event a stereo camera is not available, our framework can also use

a calibrated monocular camera. Similar to the above stereo camera factor

from (12), we have

p (zcik|xgvi ,xscT , θvisi , lk) = N
(
K
[
c
gR | ctcg

]
lk, σ

2
c I2×2

)
. (13)

Similar to (12), we omit the extra dehomogenization step for the sake of clarity.

2.6.5. DVL Raycast Factors

A critical component of our factor-graph formulation is factors modeling the

intersection of DVL beams to the prior mesh—doing so allows us to significantly

constrain both the unknown vehicle poses and servo angles. The conditional

distribution takes the form:

p (zrin |xgm,xgvi , θvisi) = N
(
hrn

(
xgm,xgvi , θvisi ;Mprior

)
, σ2
zrin

)
, (14)
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Figure 10: Illustration of ray-casting constraint. Given pose of the vehicle frame at time i, xgvi , the
servo angle, θvisi , the pose of the prior mesh frame, xgm, and the prior mesh,Mprior, the four DVL
range returns can be computed with an efficient octree-based ray-casting approach. At time i, the
four ranges are predicted as ri1 , ri2 , ri3 , and ri4 .

where hrn corresponds to raycasting the nth beam for a DVL in a four-beam

Janus configuration [9]. This observation model is illustrated in Fig. 10. Since

the prior mesh may consist of hundreds of thousands of triangles, we use an

efficient octree-based raycast implementation [53]. In addition, when evaluating

the Gaussian distribution from (12) and (14) we apply a Huber M-estimator to

the squared loss term to automatically reject outliers [31].

We assume that the uncertainty of DVL range returns is constant regardless

of range because the HAUV maintains a fixed standoff when inspecting ship

hulls. The standoff typically varies between 1 m and 2 m, and we have found

that in this range the DVL is corrupted by relatively small noise. We therefore

choose σzrin = 3 mm.

2.7. Frontend Details

The focus of this paper is on the optimization backend so we purposefully

omit some details of the visual frontend that establishes feature correspondences

between keyframes. However, the approach we use is quite standard: a random

sample consensus (RANSAC)-based algorithm to reject outliers established
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during putative feature descriptor matching. In the case of a stereo camera,

we use a standard triangulated point-cloud alignment technique to ensure

inlier feature matches are consistent (in a Euclidean sense) under a 6-DOF rigid

transformation [46, 5].

For a monocular camera, we fit an essential matrix and measure the RANSAC

fitness score using Sampson (i.e., epipolar) distance. We opt for the essential

matrix model because it generalizes to scenes that are not locally planar, unlike

a plane-induced homography-based model [60, 38].

The features used in our BA pipeline are only SIFT visual features. We do

not extract any features on the prior model because we assume the prior model

is locally featureless. Indeed, for a CAD-derived model of a large ship hull, we

find that small-scale manmade features such as weld lines, intake ports, frame

numbers, etc. are absent.

In our case, data association between visual features is assigned each it-

eration by performing a lookup to the nearest triangle in the prior model, as

described in Section 2.3. This depends on a good initial guess of the alignment

between the SLAM coordinate frame and the prior model’s coordinate frame.

As discussed in Section 2.6.1, we derive the initial guess by performing a one-

time alignment (using GICP) between the DVL-derived range returns and the

vertices of the CAD.

3. Model-assisted Visual Mapping

3.1. Notation

In addition to the notation introduced in Section 2.1, we will letMnew denote

the updated mesh (i.e., the fusion of camera-derived structure with the prior

model,Mprior). This is the final output of our algorithm.

3.2. Identifying Shapes by Clustering Features

Once we estimate all unknowns in the factor-graph formulation from Section 2,

we can easily compute the structural deviation from the prior model using the

formula for signed distance that is provided in (5).
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Algorithm 1 Detect shapes at a given camera pose at time i
Require: Camera pose (posei), visible features (Fvi), and mesh (Mprior)

1: Pi = ∅ //Set of points to cluster.
2: Ci = ∅ //Set of clusters from DBSCAN.
3: Si = ∅ //Set of detected shapes.
4: for feature l = [lx, ly, lz] in Fvi, expressed in global frame do
5: d = |h(xgM, l)| //See Eqn. (5).
6: if d > τ then
7: [fx fy fz]

> = Hg
cT l //Transform to camera frame

8: Pi = Pi ∪ {fx, fy, d}
9: end if

10: end for
11: Ci = DBSCAN(Pi)
12: for cluster in Ci do
13: MSi = alpha shape(cluster) //2.5D triangulation over fx, fy , and fz
14: Si = Si ∪MSi

15: end for
16: return Si

For this section, we adapt the notion of a bundle adjusted feature’s struc-

tural deviation. This is simply the orthogonal signed distance of each feature;

these values were computed during BA. Using these feature deviations, we

apply density-based spatial clustering of applications with noise (DBSCAN)

to nonlinearly separate the features’ positions (as expressed in each camera’s

coordinate frame) into clusters [21]. In short, DBSCAN visits each point in the

dataset, queries its neighbors using a distance metric, and assigns the neighbors

to a new cluster. This process is repeated until all points are visited.

Note that in general DBSCAN clusters a dataset consisting of column vectors.

In our case, the dataset consists of 3D points corresponding to the positions of

visual features as expressed in the camera coordinate frame.

These clusters of points are converted to shapes using a simple extension to

Delaunay triangulation known as alpha-shapes [20]. This algorithm is summa-

rized in Algorithm 1, with an accompanying example in Fig. 11.
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(a) Feature locations (b) Distance from camera

(c) Deviation toMprior (d) Alpha-shaped clusters

Figure 11: Visual overview of Algorithm 1. For a particular keyframe, the bundle adjusted features,
(a) and (b), are assigned a deviation by computing the intersection of the ray to the prior model (c).
These values are clustered using DBSCAN, and meshed using alpha-shapes. In (d), the three
detected clusters have their alpha-shapes shown as white triangular meshes.

As shown in Fig. 11(d), the detected alpha-shapes can be projected as two-

dimensional triangular meshes in the camera imagery. The choice of “alpha” in

determining these shapes is quite application-dependent [20]. We use a fixed

value of 12 cm for all of our experiments, but we suspect this value should be

tuned depending on the application.

We note that line 13 of Algorithm 1 computes alpha-shapes using 2D De-

launay triangulation on the points’ x, y coordinates as expressed in the camera

frame. Each vertex in the 2D triangulation is then assigned the camera-relative z

value, lifting the detected shape a 2.5D triangular mesh (when expressed in the

camera frame). The use of 2.5D shapes as opposed to fully 3D shapes effectively
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prevents triangles from occluding each other. In addition, these shapes are

determined for every camera view, and therefore a single physical object on the

hull will have multiple shapes associated with it. In Algorithm 2, these shapes

are combined across multiple views and fused intoMprior.

Algorithm 2 Fuse shapes into prior mesh
1: Mnew = Mprior //Make a deep copy of the prior mesh
2: for pose in poses do
3: Fv = is visible(pose,F) //Visible features
4: Sd = Algorithm1(pose,Fv,Mprior) //Detected shapes
5: Vn = nearby vertices(pose, vertices(Mprior))
6: for shape Ms in Sd do
7: for vertex vi ∈ Vn indexed by i do
8: ray = make ray(pose,Vn[i])
9: if ray.intersects with(Ms) then

10: pi = ray.intersection(Ms)
11: moving avg(Mnew, i,p

i) //Using Eqn. (15)
12: end if
13: end for
14: end for
15: end for
16: return Mnew

3.3. Model Remeshing Step

The final step of our approach is to fuse the shapes detected in Algorithm 1

with the prior mesh, Mprior, resulting in a new mesh, Mnew. To this end,

we compute a ray originating from the top camera’s center (cT in Fig. 9) and

extending toward a vertex inMprior. Like the DVL range observation model

from (14), we use a raycasting approach to compute the intersection with any

detected shapes. Once the intersection point corresponding to the ith vertex, pi,

is calculated, we update the corresponding vertex inMnew, v̂i, with a recursive

moving average filter:

v̂in+1 =
pi + nv̂in
n+ 1

(15)

v̂i0 = get ith vertex(Mprior, i),
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(a) DBSCAN mesh overlayed on
prior mesh

(b) Augmented CAD mesh

Figure 12: Visualization of Algorithm 2. A 3D shape, S, derived from Algorithm 1 can be fused
into the prior mesh by intersecting rays from the camera frame. For a particular camera pose,
we choose a mesh vertex, Vn[i], and then compute the intersection of the camera-to-vertex ray as
pi. The various intersections at different camera poses are fused into a new mesh,Mnew, using a
moving-average filter.

where the ith vertex’s counter, n, is incremented after every evaluation of line 11

from Algorithm 2. Note that because the shapes are all 2.5D when expressed in

the camera frame, all rays from the camera center to the vertices will intersect

the detected shapes no more than once.

This process is repeated for every pose. A summary of this algorithm is pro-

vided in Algorithm 2 along with an accompanying visualization in Fig. 12. The

function nearby vertices() simply returns a set of vertices that are some

fixed distance from the camera pose (we conservatively use 5 m). Because the

number of vertices in the prior mesh is very large, we use a k-dimensional (KD)
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Ship Length 183 m
Ship Beam 27 m
Ship Draft 9.1 m

Table 2: Size characteristics of the SS Curtiss.

tree to make this search computationally efficient. The function is visible()

returns the set of visual features that are contained in the camera’s frustum.

Note that the vertices are only updated if a line segment between the camera

center and the vertex intersects with a detected shape (line 9 of Algorithm 2).

4. Results

The field data used in our experimental evaluation is taken from the Bluefin

Robotics HAUV surveying the SS Curtiss, shown in Fig. 13. A 3D triangular

mesh, shown previously in Fig. 1 and Fig. 2, was derived from computer aided

design (CAD) drawings, and serves as the prior model in our model-assisted

framework. In this section, we evaluate the performance of three approaches

when processing this single large dataset:

1. A naive BA framework where the measurements consists of Zprior, Zodo,

Zrange, and Zfeat. All surface constraints are disabled, i.e., λi = 0 for every

feature.

2. The approach based on Geva et al. [26], which consists of the measure-

mentsZprior, Zodo, Zrange, andZfeat, in addition to surface constraints, Zsurf,

such that λi = 1 for every feature.

3. The proposed algorithm discussed in Section 2.2, implemented using

Gaussian max-mixtures, where each hidden label λi is assigned from (7).

The size of the bundle adjustment problem is shown in Table 2.
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Figure 13: The vessel being surveyed is the SS Curtiss, for which we have access to a CAD-derived
3D mesh. The size of the dataset used in this paper is summarized in Table 2.

4.1. Model-assisted Bundle Adjustment

We provide a visualization of the reconstruction that highlights the advan-

tages of our approach in Fig. 14 and Fig. 15. These plots show cross sections

of the ship hull, from starboard-to-port, to highlight the relevant portions of

the visual features and range returns from the DVL. Because of the raycasting

factors from (14), these range returns act as a proxy for the true profile of the

hull form. We achieve this as follows: in the top rows of Fig. 14 and Fig. 15, we

plot a narrow cross-sectional 3D rectangle in pink. In the second row, we only

plot the DVL and visual features that are contained within this pink rectangle.

Finally, the third row shows a zoomed-in portion of the second row to highlight

small-scale details.

Fig. 14 shows the reconstruction using 2014 field data, which uses an un-

derwater stereo camera. The portion of the ship hull that is captured in the

bottom row of Fig. 14 corresponds to the biofouling detection shown in Fig. 1.

Fig. 15 is taken from a 2011 survey, during which the HAUV was equipped

with a monocular underwater camera. This scene corresponds to a cylindri-

cal shape with known dimensions. This shape will be shown later in Fig. 22.

The factor-graph representations (discussed in Section 2.6) between the stereo

and monocular datasets are quite similar, except that the reprojection error is

computed using (12) in the case of a stereo camera, and (13) in the case of a

monocular camera.
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(i) Proposed: closeup

Figure 14: Visual inspection from 2014 using a stereo camera. Each column represents a different
method, with each column showing the same representative cross section of the reconstruction. For
the naive approach shown in (a) through (c), there are no factors constraining the visual features
and prior model, resulting in a noticeable misregistration with the DVL. Using the method from
Geva et al. [26], shown in (d) through (f), the features and DVL ranges are well-registered, but the
biofouling is visibly “squished” onto the surface. Our method, shown in (g) through (i), combines
the favorable qualities of each method, aligning the visual features and DVL returns while also
preserving 3D structure that is absent from the prior model (i.e., the red points in (i)).

In these figures, we see some general trends. (i) In the reconstruction

derived from the naive approach, the visual features do not lie on the same

surface as the range returns from the DVL. The features are underconstrained in

the naive case because there is zero information (i.e., connected factors) between

the pose of the prior model and the position of the visual features. (ii) Using the

approach from Geva et al. [26], the visual features lie on the same surface as the
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(c) Naive: closeup

(d) Geva et al. [26]: birdseye
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Figure 15: Visual inspection from 2011 using a monocular camera. The general trends in this result
are nearly identical to the trends shown in Fig. 14. In this case, the known cylindrical shape’s 3D
structure is preserved in our method (shown in (i)), while it is not well-preserved using the approach
from Geva et al. [26] (shown in (f)).

DVL range returns, as expected. Because all features are constrained to lie on the

surface, the algorithm does not capture 3D structure present on the actual ship

hull that is not present in the prior model (e.g., the docking blocks along the

bottom of the hull, or manually-placed cylindrical shapes). (iii) Our approach

combines the benefits of both approaches: the visual features and DVL-derived

point cloud lie on the same surface, and our visual reconstruction yields 3D

structure that would have been heavily regularized using the approach from

Geva et al. [26].
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Figure 16: Here we show the relative frequency of all features with λi = 1 as a function of the
current least-squares iteration. The left and right plots corresponds to the right columns of Fig. 14
and Fig. 15, respectively. Note the difference in scale for each plots y-axis, and that the first several
datapoints were omitted to highlight the subtle changes in subsequent iterations. The initial
probabilities for (a) and (b) are 0.82 and 0.34, respectively.

In addition, there exists several outlier features in the sparse monocular

reconstruction compared to the stereo reconstruction, as shown in Fig. 14(h)

and Fig. 15(h). This is not surprising; the geometric verification step is relatively

weak for monocular cameras as compared to stereo (as briefly mentioned in

Section 2.7). This has little to no effect on our model-assisted BA framework;

because they are outliers (i.e., they lie far from the surface of the prior mesh)

they impose very little cost when evaluating the surface constraint likelihood

from (4).

The results in Fig. 16 suggest the identification of feature labels stabilizes

after about twenty iterations. Clearly, for this application, the vast majority of

features lie on the prior model, suggesting that the weights in each mixture (or,

equivalently, the last multiplicand in (1)) can be optionally tuned to reflect this

trend, rather than assigning an uninformative prior probability for p(λi = 1).

However, we prefer the latter approach because it is more appropriate for

conservatively detecting foreign objects (an important capability for automated

ship hull inspection).
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Figure 17: Cost and timing comparison for each method illustrated in Fig. 14 (left) and Fig. 15
(right). Our algorithm imposes some extra computation time compared to the naive approach, but
the overall execution time is comparable. For the stereo dataset, the naive, Geva et al. [26], and
proposed approaches converged in 26, 38, and 29 iterations, respectively. For the monocular dataset,
each approach converged in 47, 51, and 46 iterations, respectively.
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(a) DVL consistency: GICP only (b) DVL consistency: BA
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(c) DVL beam residuals: (a) vs (b)

Figure 18: These figures show that the distribution of residual error for DVL range returns is
relatively large unless using our model-assisted BA framework. Here, residual refers to the difference
between observed range and the range predicted by the observation model, hrn, provided in (14).

We assessed the computational performance by performing timed trials on

a consumer-grade four-core 3.30 GHz processor. These results were obtained

using the freely-available Ceres nonlinear least-squares solver. In each iteration

of Levenburg-Marquardt, we used sparse Cholesky decomposition to solve the

normal equations [3].

We report the timing results of each of the three methods in Fig. 17. From

this plot we draw two conclusions: (i) the computational costs of our method

impose total performance loss of 22.3% (stereo) and 8.9% (monocular) compared

to the naive approach; (ii) the computational costs of the approach from Geva

et al. [26] imposes a performance loss of 50.0% (stereo) and 36.8% (monocular)

compared to the naive approach. This behavior can be explained by the opti-

mizer having to perform more iterations until convergence for the approach

from Geva et al. [26]. Intuitively, by forcing visual features that protrude from
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the prior model to lie flush, the optimizer must perform more iterations to

satisfy the corresponding reprojection errors. Even though our method devotes

additional processing time when evaluating (7), this is overcome by the added

cost of performing additional iterations.

Finally, if we examine the consistency of DVL range measurements, we

can see a noticeable improvement using our model-assisted BA framework.

From Fig. 18(a) and Fig. 18(b), we can see several inconsistencies particularly on

the side of the hull. By examining the distribution of error when evaluating (14)

(shown in in Fig. 18(c)), we quantitatively confirm that the alignment taken from

GICP alone yields relatively large error distribution of DVL returns, however

our model-based BA framework can significantly tighten the distributions of

these residuals. The main source of error is the slop in the servo that rotates the

DVL. By solving for this angle, we can have a much tighter distribution of error,

as shown in Fig. 18(c).

4.2. Model-assisted Mapping Results

Our evaluation of our model-assisted mapping pipeline consists of a metric

evaluation of the structures detected from Algorithm 1 and the utility of the

remeshed prior model from Algorithm 2. These will be discussed in Section 4.2.1

and Section 4.2.2, respectively.

4.2.1. Shape Detection and 3D Accuracy

Illustrative examples of our shape detection approach from Algorithm 1 are

shown in Fig. 19 (stereo) and Fig. 20 (monocular). The former shows biofouling

emanating from a docking block, while the later shows a manually-placed

cylindrical shape. These examples correspond to the cross-sections shown in

Fig. 14 and Fig. 15. The features contained in the shape detected in Fig. 19(b)

have deviations ranging between 0.06 m and 0.18 m. Though we do not have

ground-truth, we can use a dense stereo matching algorithm [28] to get a rough

sense of how much the biofouling protrudes compared to the rest of the scene.
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(a) Sample raw image (b) Shape detection (red)
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Figure 19: Shape detection example from the 2014 stereo dataset. In this example, the foreign object
corresponds to biofouling along the ship hull centerline that is captured in the bottom row of Fig. 14.
The dimensions of this object, as derived from dense stereo matching, agree closely to the proposed
method’s reconstruction from Fig. 14(i).

In Fig. 19(c), we see that the biofouling is about 0.10 m to 0.20 m closer to the

camera than the rest of the scene. Though this comparison is relatively coarse,

this serves as a promising indication that the 3D structure inferred using our

approach is reasonably correct.

The monocular example we show in Fig. 20(a) indicates a cluster of features

centered on the cylindrical shape with a mean deviation of 0.10 m to the CAD

model. In this case we know that the ground-truth height of the cylindrical

shape is 0.11 m, which suggests a reconstruction error of approximately 0.01 m.

In addition, in this figure there are several outlying features (their corresponding

red colors were capped at 0.18 m). Because DBSCAN requires a minimum

number of datapoints per cluster (in our case, we choose 3), these features are

not detected as foreign shapes.
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(a) Shape detection (red)

11 cm

(b) Ground-truth height

Figure 20: Shape detection from the 2011 monocular dataset. In this example, this object corresponds
to the cylindrical shape that is captured in the bottom row of Fig. 15. There is approximately 1 cm of
error between the height of the detected 3D structure (i.e., green cluster in (a)) and the ground-truth
height of the cylindrical shape in (b). In addition, the dimensions of this object, as derived from
ground-truth, agree closely to the proposed method’s reconstruction from Fig. 15(i).

Note that Fig. 19 and Fig. 20 act as evidience that our shape detection al-

gorithm is general enough to handle both monocular and stereo sensor con-

figurations, but they should not be compared against each other. A thorough

comparison between stereo and monocular reconstructions using BA can be

found in in [58].

4.2.2. Remeshing Results

Algorithm 2 provides us with a remeshed CAD model for a visual survey

of the SS Curtiss, which is shown in Fig. 21. We present results for two different

values of τ , the threshold used for determining the eligibility of features to

be clustered with DBSCAN. For this application, the preferred approach is to

keep the threshold zero (Fig. 21(b)), however for certain applications where

false positives are a concern, this can be raised (Fig. 21(c)). Like the other

visualizations for this dataset, rectangular-like foreign 3D structures shown

in Fig. 21(c) correspond to biofouling along the centerline.

In addition to providing visually intuitive false color maps, the remeshed

model can easily be used in a state-of-the-art 3D photomosaicing framework [34].

An example of this application is provided in Fig. 23. Unlike our previous work

in [48] that applied texture to the ship’s CAD model, this work allows additional

36



(a)

(b) τ = 0.0 m

(c) τ = 0.06 m

(d) Portion of photomosaic corresponding to (b) and (c)

Figure 21: Results of Algorithm 1 and Algorithm 2. In (a), we show a heatmap of the remeshed
CAD vertices for the 2014 stereo dataset. The red region is expanded in (b) and (c). In (b), the
clustering threshold from line 6 of Algorithm 1, τ , is zero while in (c) it is relatively high. Lowering
τ provides more details but potentially introduces false positives. We can see the red rectangular
region from (a) corresponds to a strip of biofouling at the ship’s centerline, shown in (d).

structural details at a relatively small scale. In Fig. 23, we shade the regions of

the 3D photomosaic according to height in the z-direction. Clearly, the approach

proposed in this paper captures significantly more information that is otherwise

discarded if the ship hull is assumed to match the CAD model shape exactly.
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(a)

(b) τ = 0.0 m

(c) Portion of photomosaic corresponding to (b)

Figure 22: Remeshed CAD vertices shown as a heatmap for the 2011 monocular dataset. The red
region in (a) is expanded in (b), were we show the 3D structure corresponding to the cylindrical
shape shown in Fig. 20. In (c) we show the corresponding region in 3D photomosac.
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(a) Birds-eye view: (b) and (c) correspond to white region, (d) and (e) correspond
to the red region.

(b) Close-up: proposed method

(c) Close-up: method from [48]

(d) Close-up: proposed method

(e) Close-up: method from [48]

Figure 23: Application to large-scale 3D photomosaicing. Our approach allows 3D photomosaicing
approaches to combine large-scale consistency in (a) with small-scale detail in (b) and (d). In (b)
and (d), the mosaic is shaded according to height. Using the approach from [48], where a CAD
model is used for photomosaicing, the small-scale details are lost as evidenced by the regions in (c)
and (e) being near-perfectly flat.
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5. Conclusion

We proposed a model-assisted bundle adjustment framework that assigns

binary labels to each visual feature. Using an EM algorithm with hard hidden

label assignments, we iteratively update these labels and refine the current

state estimate. We show that this algorithm is a special case of the Gaussian

max-mixtures framework from earlier work in robust pose graph optimization.

We compared our approach to recent work in model-assisted methods, and

showed our algorithm has favorable properties when evaluated in the context

of autonomous ship hull inspection.

In addition, we propose a shape identification and mapping algorithm that

provides precise capabilities for identifying visually-observed 3D structure that

is absent from the CAD model. The mapping algorithm fuses these shapes into

the prior mesh, resulting in a newly remeshed model. This newly remeshed

model has several important benefits for data visualization. In particular, the

false-color figures shown in this paper offer an intuitive visualization that is

harder to discern from image mosaics alone. In addition, the remeshed model

can easily be used in a 3D photomosaicing framework such that the overall

consistency of the ship hull reconstruction is preserved, but captures details at a

small scale.

We evaluated these techniques using field data collected from the HAUV

hull inspection robot—the largest model-assisted BA evaluation to date. We

have shown that our BA framework introduces only slight computational over-

head, while producing accurate reconstructions for both stereo and monocular

camera sensors.
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