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Abstract— This paper describes a vision-based large-area si-
multaneous localization and mapping (SLAM) algorithm that
respects the constraints of low-overlap imagery typical of under-
water vehicles while exploiting the information associated with
the inertial sensors that are routinely available on such platforms.
We present a novel strategy for efficiently accessing and main-
taining consistent covariance bounds within a SLAM information
filter, greatly increasing the reliability of data association. The
technique is based upon solving a sparse system of linear
equations coupled with the application of constant-time Kalman
updates. The method is shown to produce consistent covariance
estimates suitable for robot planning and data association. Real-
world results are presented for a vision-based 6 DOF SLAM
implementation using data from a recent ROV survey of the
wreck of the RMS Titanic.

I. INTRODUCTION

This paper addresses the problem of precision navigation
and mapping using low-overlap, high resolution image se-
quences obtained by autonomous undersea vehicles. From
a “robotics science” perspective, our primary contribution
consists of an efficient algorithm for extracting consistent
covariance bounds from SLAM information filters. From a
“robotics systems” perspective, we demonstrate automatic
visually-augmented navigation processing of a sequence of
866 images of the RMS Titanic (Fig. 1), for a mission with a
vehicle track length over 3 km long.

A number of oceanographic applications share the require-
ment for high resolution imaging of sites extending over
hundreds of meters. These include hydrothermal vent sites,
cold seep sites, shipwrecks of archaeological significance,
coral reefs, and fisheries habitat related regions of interest.
One of the significant challenges associated with such tasks is
the requirement for precise and accurate navigation to ensure
complete repeatable coverage over the site of interest.

Traditionally, the oceanographic community has utilized
three different methodologies (by themselves or in combi-
nation) to address navigation underwater [1]: (1) transponder
networks placed on the seafloor, (2) ship to underwater vehicle
bearing (ultra-short baseline) tracking systems, and (3) ranging
and inertial sensors on the underwater vehicle. Each of these
methodologies trade off different aspects of accuracy, cost,
and complexity. For example, transponder networks provide
accurate navigation on the seafloor but come at the cost of the
overhead required for the deployment and calibration of the
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Fig. 1. Mapping results from a summer of 2004 ROV survey of the
RMS Titanic. (top) XY plot comparing the raw dead-reckon navigation data
(brown), ship-board ultra-short baseline tracking (gray), and reconstructed
survey trajectory from a vision-based 6 DOF SLAM information filter (red).
(bottom) A photomosaic of the RMS Titanic constructed from over 700 digital
still images. Note that this photomosaic is presented for visualization purposes
only as a representation of the data that serves as input to our algorithm. It is
the result of semi-automatic processing with manual selection of a number of
common scene points to guide the photomosaicking process. This could be
considered as a form of benchmark against which fully autonomous processing
can be compared.

individual transponders on the seafloor. These systems are also
limited to providing updates every few seconds based on the
travel time between the vehicle and the transponder beacon.

In this paper we explore a methodology that utilizes a
vision-based SLAM approach to providing high precision
accurate navigation measurements when used in concert with
inertial measurements made on board by the vehicle. The goal
is an algorithm that respects the constraints of low overlap for
large-area extended surveys that are typical of imaging from
underwater vehicles. Our approach considers this problem
from the “information formulation” of SLAM.

Within the SLAM community, algorithms exploiting the



sparse information representation for SLAM were first pro-
posed by Thrun et al. [2], Frese [3], [4], and Paskin [5].
These methods exploit the empirical observation that this
representation is either sparse or “close to sparse”. The sparse
information representation allows for linear storage require-
ments and efficient fusion of sensor measurements. However,
the recovery of covariances is a cubic operation if a naive
approach is followed.

The key issue on which we focus in this paper is the efficient
recovery of consistent covariances from the information filter.
It is hard to define a single definition of consistency employed
uniformly in the prior literature on SLAM. Intuitively, consis-
tency reflects the goal that the error estimates computed by
the filter should “match” the actual errors.

In relation to SLAM, consistency of the error estimates is
important for data association — determining the correspon-
dences for measurements [6]. This is important both in the
context of “local” SLAM (detecting and tracking features),
and in a “global” sense (for closing loops). If the SLAM error
estimates are too small (over-confident), both of these tasks
can become difficult, as will be shown in §IV.

Before describing our approach for efficient recovery of
consistent covariances bounds, we first review the basic char-
acteristics of SLAM information filters.

II. SLAM INFORMATION FILTERS

A number of recent SLAM algorithms have explored re-
formulating the estimation problem within the context of an
extended information filter [2], [4], [5], [7]. The information
form is often called the canonical or natural representation
of the Gaussian distribution because it stems from expanding
the quadratic in the exponential. The result is that rather than
parameterizing the normal distribution in terms of its mean
and covariance as in N

(
ξt;µt,Σt

)
, it is instead parametrized

in terms of its information vector and information matrix,
N−1

(
ξt;ηt,Λt

)
[8]. The two forms are related via (1).

Λt = Σ−1
t ηt = Λtµt (1)

A. Constant-Time Measurement Updates
A well known and very attractive property of formulating

SLAM in the information form is that measurement updates
are an additive and efficient operation. This is in contrast to the
quadratic complexity per update in the covariance form. For
example, assume the following general nonlinear measurement
function (2) and its first order linearized form (3)

zt = h(ξt) + vt (2)
≈ h(µ̄t) + H(ξt − µ̄t) + vt (3)

where ξt is the predicted state vector distributed according
to ξt ∼ N

(
µ̄t, Σ̄t

)
= N−1

(
η̄t, Λ̄t

)
, vt is the white measure-

ment noise vt ∼ N
(
0,R

)
, and H is the Jacobian evaluated

at µ̄t. The EKF covariance update requires computing the
Kalman gain and updating µ̄t and Σ̄t via (4) [8]. This cal-
culation non-trivially modifies all elements in the covariance

matrix resulting in quadratic computational complexity per
update [9].

K = Σ̄tH
>(HΣ̄tH

> + R
)−1

µt = µ̄t + K
(
zt − h(µ̄t)

)

Σt =
(
I−KH

)
Σ̄t
(
I−KH

)>
+ KRK>

(4)

In contrast the corresponding EIF update is given by (5) [2].

Λt = Λ̄t + H>R−1H

ηt = η̄t + H>R−1
(
zt − h(µ̄t) + Hµ̄t

) (5)

Equation (5) shows that the information matrix is additively
updated by the outer product term H>R−1H. In general,
this outer product modifies all elements of the predicted
information matrix Λ̄t, however a key observation is that the
SLAM Jacobian H is always sparse [2]. For example, in our
application we use a view-based SLAM implementation built
around using a camera to extract relative pose measurements
from pairwise registration of overlapping images of the envi-
ronment. Given a pair of images Ii and Ij , image registration
provides a relative pose measurement between states xi and
xj resulting in a sparse Jacobian of the form

H =
[
0 · · · ∂h

∂xi
· · · 0 · · · ∂h

∂xj
· · · 0

]
(6)

As a result only the four-block elements corresponding to xi
and xj of the information matrix need to be modified (i.e.,
Λ̄xixi , Λ̄xjxj , and Λ̄xixj = Λ̄>xjxi ). Since measurements only
ever involve a fixed portion of the SLAM state vector updates
can be performed in constant time.

B. Sparse Representation
Thrun et al. [2] originally showed that the feature-based

SLAM filter information matrix empirically obeys a “sparse”
structure when properly normalized. This observation has lead
to the development of a number of computationally efficient
feature-based SLAM algorithms such as Sparse Extended
Information Filters (SEIFs) [2], Thin-Junction Tree Filters
(TJTFs) [5], and Tree-Map filters [4]. These algorithms ap-
proximate the SLAM posterior by eliminating “small” ele-
ments in the information matrix. The elimination of weak
constraints results in a sparse information matrix allowing the
development of efficient filter algorithms that exploit the re-
sulting sparse information matrix architecture. This empirical
observation of weak inter-landmark constraints has recently
been given a solid theoretical foundation by Frese [10] where
he mathematically shows that information between landmark
features decays spatially at an exponential rate. This adds some
justification for the sparseness approximations in the feature-
based SLAM information form.

In addition to feature-based techniques, a recent paper by
Eustice el al. [7] shows that for a view-based representation
the SLAM information matrix is exactly sparse without having
to make any approximations. The implication of this result
is that view-based SLAM systems can take advantage of
the sparse information parameterization without incurring any
approximation error. Based upon this insight, for our undersea



application we’ve implemented a view-based SLAM system
built around fusing 6 DOF relative pose camera measurements
from monocular overlapping seafloor imagery with traditional
underwater vehicle dead-reckon navigation sensors. The result
shown in Fig. 2 illustrates the information matrix repre-
sentation associated with registering 866 images and fusing
them with navigation data from a grid-based ROV survey
of the wreck of the RMS Titanic. The off-diagonal elements
correspond to spatial relative pose measurements made by the
camera while the block-tridiagonal elements arise from the
Markov process model and temporal camera measurements.
The wreck was surveyed from midship to stern and then from
midship to bow resulting in a large loop-closing event which
can be seen in the information matrix as pointed out in Fig. 2.
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Fig. 2. This figure highlights the exact sparsity of the view-based SLAM
information matrix using data from a recent ROV survey of the wreck of the
RMS Titanic. In all there are 867 robot states where each state is a 12-vector
consisting of 6 pose and 6 kinematic components. The resulting information
matrix is a 10, 404× 10, 404 matrix with only 0.52% nonzero elements.

C. State Recovery
While the insight of “sparseness” has lead to the devel-

opment of computationally efficient SLAM algorithms such
as the ones previously mentioned, an issue countering the
information filter is the question of how to gain efficient access
to the state estimate and its uncertainty. Referring back to
(1) we see that the information parameterization embeds the
state mean and covariance within the information vector and
information matrix respectively. State recovery implies that
whenever we want to actually recover our state estimate for the
purposes of motion planning, data association, map recovery,
linearizing our process or observation models, etc., we must
invert the relationship given in (1).

1) Recovering the mean: Naive recovery of our state es-
timate through matrix inversion results in cubic complexity
and destroys any efficiency gained over the EKF. Fortunately,
closer inspection shows that recovery of the state mean µt can
be posed more efficiently as solving the sparse, symmetric,
positive-definite, linear system of equations shown in (7).

Λtµt = ηt (7)

Such systems can be solved via the classic iterative method
of conjugate gradients (CG) [11]. In general, CG can solve

this system in n iterations (with O(n) cost per iteration
where n is the size of the state vector) and typically in
many fewer iterations if the initialization is good [12]. In
addition, since the state mean µt typically does not change
significantly with each measurement update (excluding key
events like loop-closure) this relaxation can take place over
multiple time steps using a fixed number of iterations per
update [2], [13]. Also, recently proposed multigrid SLAM
algorithms such as [12], [14] appear capable of solving this
system with linear asymptotic complexity. This is achieved
by sub-sampling poses and performing the relaxation over
multiple spatial resolutions which has the effect of improving
convergence rates.

2) Recovering covariance: The covariance matrix corre-
sponds to the inverse of the information matrix, however,
actually recovering the covariance via (1) is not practical since
matrix inversion is a cubic operation. Additionally, while the
information matrix can be a sparse representation for storage,
in general, its inverse results in a fully dense covariance matrix
despite any sparsity in the information form [3]. This means
that calculating the covariance matrix requires quadratic mem-
ory storage which may become prohibitively large for very
large maps (e.g., maps ≥ O(105) state elements). To illustrate
this point, for the 10, 404× 10, 404 information matrix shown
in Fig. 2, storing it in memory only requires 4.5MB of double
precision storage for the nonzero elements while its inverse
requires over 865MB.

Fortunately, recovering the entire covariance matrix usually
isn’t necessary for SLAM as many of the data association
and robotic planning decisions typically do not require the
full covariance matrix but only the covariance over subsets
of state variables [15]. Unfortunately, accessing only subsets
of state variables in the information form is not an easy
task. The covariance and information representations of the
Gaussian distribution lead to very different computational
characteristics with respect to the fundamental probabilistic
operations of marginalization and conditioning. Table I sum-
marizes these operations where we see that the covariance
and information representations exhibit a dual relationship. For
example, marginalization is easy in covariance form since it
corresponds to extracting the appropriate sub-block from the
covariance matrix while in information form it is hard because
it involves calculating the Schur complement over the variables
we wish to keep (note that the opposite relation holds true for
conditioning which is easy in the information form and hard in
covariance form). Therefore, even though we may only need
access to covariances over subsets of the state elements [15]
(and thus only have to invert a small information matrix related
to the subset of variables we are interested in), accessing them
in the information form requires marginalizing out most of
our state vector resulting in cubic complexity due to matrix
inversion in the Schur complement.

To get around this dilemma, Thrun et al. propose a data
association strategy based upon using conditional covariances
[2], [16]. Since conditional information matrices are easy to
obtain in the information form (simply extract a sub-block



TABLE I
SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON

A GAUSSIAN DISTRIBUTION EXPRESSED IN COVARIANCE AND

INFORMATION FORM

p (α,β) = N
`hµα
µβ

i
,
h

Σαα Σαβ
Σβα Σββ

i´
= N−1

`h ηα
ηβ

i
,
h

Λαα Λαβ
Λβα Λββ

i´

MARGINALIZATION CONDITIONING

p (α) =
R
p (α,β) dβ p (α | β) = p (α,β) /p (β)

COV.
FORM

µ = µα µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ = Σαα Σ′ = Σαα − ΣαβΣ−1
ββΣβα

INFO.
FORM

η = ηα − ΛαβΛ−1
ββηβ η′ = ηα − Λαββ

Λ = Λαα − ΛαβΛ−1
ββΛβα Λ′ = Λαα

over the desired variables) their strategy is to choose an
appropriate sub-block from the information matrix such that
it’s inverse approximates the actual covariance for the subset of
variables they are interested in. In particular, given two state
variables of interest, xi and xj , their approximation selects
the joint-Markov blanket M+

i ∪M+
j (i.e., M+

k represents
state variables directly connected to xk in a graph theoretic
sense within the information matrix) and additionally if the
intersection is null (i.e., M+

i ∩M+
j = ∅) variables along a

path connecting xi and xj topologically. Their method then
extracts and inverts this sub-block to obtain an covariance
matrix for xi and xj conditioned on all other variables which
have an indirect influence. They note that empirical testing
shows that their approximation method seems to work well in
practice for their application [16] despite the fact that using
conditional covariances should result in an over-confident
approximation.

III. CONSISTENT COVARIANCE RECOVERY

Our strategy for approximate covariance recovery from the
information form is formulated upon gaining efficient access
to meaningful values of covariance which are consistent with
respect to the actual covariance obtained by matrix inversion.
The motivation for a consistent approximation is that we guard
against under-representing the uncertainty associated with our
state estimates which otherwise could lead to data association
and robot planning errors. It is the access to meaningful values
of joint-covariance for robot interaction, data association, and
decision making in the information form which motivates
our discussion. In this section we describe our strategy for
obtaining covariance bounds within the context of our view-
based SLAM application.

A. Efficiently Accessing The Robot’s Covariance
We begin by noting that recovery of our state estimate µt

from the information form already requires that we solve the
sparse, symmetric, positive-definite system of equations (7)
and moreover that this system can be solved in linear time
using the iterative techniques outlined in §II-C.1 (i.e., [12],
[14]). Our covariance recovery strategy for the information
form is based upon augmenting this linear system of equations

so that the current robot pose covariance is accessible as well.
Note that by definition (8) holds and therefore by picking the
ith basis vector ei from the identity matrix we can use it to
selectively solve for a column of the covariance matrix denoted
as Σ∗i (9).

ΛtΣt = I (8)

ΛtΣ∗i = ei (9)

To obtain the robot’s covariance at any time step we simply
augment our original linear system (7) to include an appro-
priate set of basis vectors Er = {er} such that the solution
to (10) provides access to our current state and the robot’s
covariance-column.

Λt
[
µt Σ∗r

]
=
[
ηt Er

]
(10)

B. Consistent Covariances for Data Association
In this section we outline our strategy for recovering approx-

imate joint-covariances useful for data association. Before we
begin we want it to be clear to the reader that our technique
for obtaining and maintaining these covariances should not be
confused with the actual updating and mechanics of the in-
formation parameterization. What we present in the following
section is a way of maintaining covariance bounds that are
consistent with respect to the information parameterization.
Furthermore, these covariances are used for data association
only and are not in any way involved in the actual update and
maintenance of the information filter representation. With that
being said we now present our algorithm.

1) Inserting a new map element: Given that (10) provides
a mechanism for efficient access to the robot’s covariance-
column Σ∗r, we exploit it to obtain useful covariance bounds
for other map elements. For example, whenever we insert a
new image Ii into our view-based map we correspondingly
must add a new element xi into our view-based SLAM state
vector [7], [17]. This new state element xi corresponds to a
sampling of our robot state at time ti (i.e., xi = xr(ti)) and
represents our estimate of where the robot was when it took
that image. Since the two states are coincident at time ti the
covariance for xi is Σii = Σrr and can be obtained by solving
(10). A well-known property of SLAM is that over time the
covariance for xi will decrease as new sensor measurements
are incorporated and all map elements become fully correlated
[15]. Therefore, storing Σ̃ii = Σii as our initial approximate
covariance estimate for xi serves as a conservative bound to
the actual marginal covariance for all time, (i.e., Σ̃ii ≥ Σii(t)).

2) Data association: In our application, the joint-
covariance between the time-projected robot pose xr and any
other map entry xi, (i.e., Σ̄joint =

[
Σ̄rr Σ̄ri
Σ̄ri Σii

]
) is needed for

two operations: link proposal and pose-constrained correspon-
dence searches. Link proposal corresponds to hypothesizing
which images in our view-based map could potentially share
common overlap with the current image being viewed by the
robot, denoted Ir, and therefore could potentially be registered
to generate a relative pose measurement. The second operation,
pose-constrained correspondence searches, uses the relative



pose estimate between candidate images Ii and Ir to restrict
the image-based correspondence search to probable regions
based upon a two-view point transfer relation [17], [18]. 1

To obtain the actual joint-covariance Σ̄joint from the infor-
mation form requires marginalizing out all other elements in
our map except for xr and xi leading to cubic complexity in
the number of eliminated variables. However, we can obtain a
bounded approximation to Σ̄joint at any time-step by using the
solution from (10) to provide us with the current covariance-
column representing the joint-covariances between the time-
projected robot and all other map entries Σ̄∗r (note that
this solution is equivalent to what could be obtained by full
matrix inversion of Λ̄t). Using this result we can construct a
conservative joint-covariance approximation to Σ̄joint as

˜̄Σjoint =

[
Σ̄rr Σ̄>ir
Σ̄ir Σ̃ii

]
(11)

where Σ̄rr and Σ̄ir are extracted from Σ̄∗r, and Σ̃ii is our
conservative covariance bound for xi as described in §III-
B.1. Note that (11) represents a valid positive-semidefinite,
and therefore consistent, approximation satisfying

˜̄Σjoint − Σ̄joint =

[
0 0

0 Σ̃ii − Σii

]
≥ 0 (12)

since Σ̃ii − Σii ≥ 0. Given that (11) provides a consis-
tent approximation to the true covariance, we can use it to
compute conservative 1st-order probabilities of relative poses
xri = 	xr ⊕ xi in the usual way [9] for link hypothesis and
correspondence searches.

3) Updating our covariance bounds: Since Σ̃ii serves as
a conservative approximation to the actual covariance Σii for
map element xi, we would like to be able to place tighter
bounds on it as we gather more measurement information.
In fact, the careful reader will recognize that our SLAM
information filter is implicitly already doing this for us,
however the issue is that extracting the actual filter bound Σii

from the information matrix representation is not particularly
convenient. Note that while we could access Σii by solving
for the covariance-column Σ∗i using an appropriately chosen
set of basis vectors, the reason for not doing this is that
iteratively solving systems like (10) is efficient only when we
have a good starting point [12], [13]. In other words, when we
solve (10) for the latest state and robot covariance-column, our
estimates µt and Σ∗r from that last time-step serve as good
seed points and therefore typically only require a small number
of iterations per time-step to update (excluding loop-closing
events). In the case of solving for an arbitrary column Σ∗i
we do not have a good a priori starting point and therefore
convergence will be slower.

Our approach for tightening the bound Σ̃ii is to use our
joint-covariance approximation (11) and perform a simple
constant-time Kalman filter update on a per re-observation
basis. In other words, we only update our covariance bound

1Note that the standard maximum likelihood data association technique for
feature-based SLAM also only depends on extracting Σ̄joint [15].

Σ̃ii when the robot re-observes xi and successfully gener-
ates a relative pose measurement zri by registering images
Ii and Ir. We then use that relative pose measurement to
perform a Kalman update (4) on the fixed size state vector
y =

[
x>r ,x

>
i

]> and obtain the new conservative bound Σ̃+
ii .

Mathematically, the distribution over y corresponds to
marginalizing out all elements in our state vector except for
xr and xi as

p(y) =

∫

xj 6={xr,xi}
N−1

(
η̄t, Λ̄t

)
dxj =

∫

xj 6={xr,xi}
N
(
µ̄t, Σ̄t

)
dxj (13)

which results in the distribution

p(y) = N
([µ̄r
µ̄i

]
,

[
Σ̄rr Σ̄>ir
Σ̄ir Σii

])
(14)

Noting that (11) already provides us with a consistent approx-
imation to this distribution we have

p̃(y) = N
([µ̄r
µ̄i

]
,

[
Σ̄rr Σ̄>ir
Σ̄ir Σ̃ii

])
(15)

where the only difference between the actual distribution
(14) and the approximation (15) is the conservative marginal
Σ̃ii. Using the measurement zri we now perform a constant-
time Kalman update (4) on (15) yielding the conditional
distribution p̃(y|zri) from which we retain only the updated
marginal bound Σ̃+

ii for element xi. This update is computed
in constant-time for each re-observed feature.

Note that by abstractly performing the marginalization
step of (13) before computing the Kalman update, we have
avoided any inconsistency issues associated with only storing
the marginal bounds Σ̃ii and not representing the intra-map
correlations. This ensures that our update step will result in
a consistent marginal bound for data association that will
improve over time as we re-observe map elements.

Require: Σ∗r{initialize bound}
if xi = new map element then

store Σ̃ii ← Σrr
end if

Require: µ̄t, Σ̄∗r{data association and bound update}
for all xi do

˜̄Σjoint ←
[
Σ̄rr Σ̄ri
Σ̄ri Σ̃ii

]

compute link hypothesis
if candidate link then

do constrained correspondence search on Ii and Ir
if image registration success then

do Kalman update on Σ̃joint using measurement zri
store Σ̃ii ← Σ̃+

ii

end if
end if

end for
Algorithm 1: Calculation of marginal covariance bounds used
for data association.



IV. RESULTS

This section presents experimental results validating our
covariance recovery strategy from the information form using
data gathered during a recent survey of the RMS Titanic.
The wreck was surveyed during the summer of 2004 by
the deep-sea ROV Hercules operated by the Institute for
Exploration of the Mystic Aquarium. The ROV was equipped
with a standard suite of oceanographic dead-reckon navigation
sensors capable of measuring heading, attitude, altitude, XYZ
bottom-referenced Doppler velocities, and a pressure sensor
for depth; Table II summarizes the sensor capabilities. In
addition, the vehicle was also equipped with a calibrated
stereo rig consisting of two downward-looking 12-bit digital-
still cameras that collected imagery at a rate of 1 frame
every 8 seconds. Furthermore, note that the results being
presented were produced using imagery from one camera only
— the purpose of this self-imposed restriction to a monocular
sequence of images is to demonstrate the general applicability
of our visually augmented navigation strategy.

TABLE II
POSE SENSOR CHARACTERISTICS.

Measurement Sensor Precision
Roll/Pitch Tilt Sensor ±0.1◦

Heading North-Seeking FOG ±0.1◦

Body Frame Velocities Acoustic Doppler ±0.01 m/s
Depth Pressure Sensor ±0.01 m
Altitude Acoustic Altimeter ±0.1 m
Downlooking Imagery Calibrated 12-bit CCD 1 frame every 8 s

Fig. 5 summarizes our mapping results using an exactly
sparse view-based SLAM information filter as proposed by
[7]. During the course of the grid-based survey the vehicle
traversed a 2D path length of 3.1 km and a 3D XYZ path length
of 3.4 km maneuvering to maintain a safe altitude off the deck
of the wreck. The convex hull of the final mapped region
encompasses an area over 3100m2 and in all a total of 866
images were used to provide 3494 camera-generated relative-
pose constraints. These constraints were generated using a
state-of-the-art feature-based image registration approach [18]
founded on:
• Extracting a combination of both Harris [19] and SIFT

[20] interest points from each image.
• Establishing putative correspondences between overlap-

ping candidate image pairs using a constrained correspon-
dence search [17].

• Employing a statistically robust Least-Median-of-Squares
[21] registration methodology to find the corresponding
Essential matrix.

• Two-view maximum likelihood refinement to extract the
5 DOF relative pose constraint (i.e., azimuth, elevation,
Euler roll, Euler pitch, Euler yaw) based upon minimizing
the reprojection error [18].

In Fig. 5(a) we see a time progression of the camera
constraints and vehicle pose estimation result. In particular,
the third figure from the left shows the closing of a large

loop where the vehicle meandered its way from the stern of
the ship back towards the bow with it’s camera turned off and
then successfully relocalized based upon correctly registering 4
image pairs out of 64 hypothesized candidates. Fig. 5(b) shows
the final resulting pose-constraint network and Fig. 5(c) a
“zoomed in” view of the boxed region to facilitate comparison
of the marginal covariance bounds estimated by our algorithm
to the actual bounds obtained by matrix inversion. Note that
all estimated bounds were verified to be consistent with the
actual bounds by performing Cholesky decomposition on their
difference to establish positive definiteness.

Fig. 3 provides a quantitative assessment comparing the
bounds obtained by our algorithm to the bounds obtained
by inverting only the Markov Blanket as proposed in [2],
[16]. To provide a fair assessment, we choose to evaluate
the relative uncertainty between the robot xr and any other
map element xi. Our justification for this metric is that the
Markov Blanket method results in a conditional covariance
which doesn’t accurately reflect global map uncertainty but
rather relative map uncertainty. Using the information matrix
of Fig. 2, for each map element xi we computed the first-order
relative-pose covariance matrix between it and the robot. For
our metric we chose to compute the log of the determinant
of the approximation covariance to the determinant of the
actual obtained by matrix inversion. Therefore, ratios greater
than one (conservative) are positive and ratios less than one
(over-confident) are negative. We note that Fig. 3 highlights
that our method is conservative while the Markov Blanket is
over-confident. Furthermore, for this dataset the histogram plot
shows that our method tends to be conservative by a smaller
margin than the Markov Blanket is over-confident.

Finally, Fig. 4 demonstrates the actual value of this conser-
vative approximation within the context of pose constrained
correspondence searches. Here we see two pairs of images
and their predicted epipolar geometry based upon our state
estimates. For a calibrated camera, the epipolar geometry is
defined by the relative camera poses and defines a 1D search
constraint [18]. However, when our relative pose estimates are
uncertain this 1D constraint becomes a search region [17].
Fig. 4(a) shows that the Markov Blanket approximation of the
relative pose uncertainty is too over-confident for this image
pair such that the 99.9% confidence search region does not
contain the true correspondence causing image registration
to fail. However, the true correspondence does lie within the
search bounds associated with the actual and conservative ap-
proximation allowing image registration to succeed. Fig. 4(b)
shows that for another image pair, the two methods produce
equivalent results highlighting the unpredictability of the over-
confidence in the Markov Blanket approximation.

V. CONCLUSION

In conclusion, we have presented a novel algorithm for
extracting consistent covariance bounds useful for data as-
sociation in SLAM information filters. We showed that our
method provides a conservative approximation useful for real-
world tasks such a image link hypothesis and constrained
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Fig. 5. This figure summarizes the results of our visually-based navigation of the RMS Titanic. (a) Time progression of our camera constraint network shown
with 3-sigma bounds, from left to right: images 1–200, 1–400, 1–600, 1–800. Green links represent temporally consecutive registered image pairs while red
links represent spatially registered image pairs. Note the large loop-closing event which occurred in third plot from left. (b) Final pose-constraint network
associated with using 866 images to provide 3494 camera constraints, 3-sigma bounds are shown. (c) Inset of final result illustrating the consistency of the
data association bounds generated using our algorithm. Note, 3-sigma bounds have been inflated by a factor of 30 for interpretation. Red: initial covariance
bound associated with pose insertion into map, Gray: current estimate of marginal covariance bound based upon using a constant-time Kalman update per
re-observation, Green: actual marginal covariance bound obtained by inverting the information matrix. (d) XYZ view of recovered pose-constraint network.
Note that the recovered vehicle poses and image correspondences can be used as direct inputs to a standard bundle adjustment step for structure recovery.

correspondence searches. The method’s complexity scales
asymptotically linear with map size as measured by solving
for the robot’s covariance-column coupled with fixed state size
Kalman updates for re-observed map elements. Our results
were presented within the context of an actual robotic mapping
survey of the RMS Titanic embodying several challenging
SLAM research tasks such as: large-area scalable mapping,
6 DOF, an unstructured underwater environment, and visual

perception.
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