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Abstract 
This paper reports on current research to automate the task of ship hull inspection 
and search using autonomous underwater vehicles (AUVs).  We describe an 
automated feature-based navigation (FBN) and mapping framework that provides 
the AUV with precise in-situ hull-relative localization.  Our vision-based 
perception approach eliminates the need for having to deploy additional 
navigation infrastructure, such as acoustic beacons (a traditional method for 
obtaining precise bounded-error navigation).  We describe our mapping 
framework and show how we are now applying that framework to the task of 
automated ship-hull inspection using the HAUV testbed.  The operational impact 
to the Navy of this technology development will be rapid, repeatable, automated 
100% survey coverage for ship-hull inspection. 

1 Introduction 
Present day means for ship hull and port facility inspection require either putting 
divers in the water or piloting a remotely operated vehicle (ROV) over the area of 
interest — both of which are manpower intensive and generally cannot guarantee 
100% survey coverage. The Navy would benefit from being able to automate this 
task, allowing for autonomous robotic inspection of its ships and port facilities for 
foreign objects such as limpet mines or improvised explosive devices (IEDs) on a 
routine round-the-clock basis. Automating this task, however, is challenging and 
compounded by the fact that areas around ships in berth are severely confined, 
cluttered, and complex sensing environments (e.g., acoustically, optically, 
magnetically). Current tethered robotic inspection systems present issues of 
snagging, maneuver degradation, and tether management, all of which make 
maneuvering around the ship at pier difficult. Moreover, current robotic 
inspection methods require human in-the-loop intervention for both sensory 
interpretation and control (piloting). Navigation feedback in these scenarios is 
typically performed using acoustic transponder-based time-of-flight ranging.  This 
necessitates setup and calibration of the associated acoustic-beacon navigation 



infrastructure, and therefore vitiates our ability to rapidly and repeatably inspect 
multiple underwater structures. 
 
In light of this, there exists a need to automate this task through the use of 
untethered robotic vehicles. To do so with AUVs requires overcoming several 
present-day science and technology challenges inherent to the inspection task. For 
example, areas around ships in berth are severely confined, cluttered, and 
complex sensing environments (e.g., rudders, screws).  This necessitates the need 
for advanced navigation and localization systems that can work in confined, 
magnetically noisy spaces.  In addition, to ensure 100% survey coverage of ship 
hulls, pier structures, and pilings requires technological advances in our 
understanding of autonomous environmental perception and control.  The 
underlying algorithm should facilitate in-situ sensor-reactive navigation and 
mapping in these environments while accommodating map-based learning 
through time via revisited exploration (a prerequisite for hull change detection). 
Moreover, the increased diversity of threat objects and associated potential for 
more false alarms due to a cluttered environment necessitates that fusion take 
place from multiple types of sensors for robustness and redundancy.  In 
combination, all of these individual challenges/requirements, together, suggest 
that a feature-based navigation and mapping strategy approach would 
accommodate the needs of autonomous automated search and inspection by 
AUVs. 

2 Technical Approach 
The technical objective of this work is to develop an optical/acoustic real-time 
FBN capability for explosive ordinance disposal (EOD) autonomous ship-hull 
inspection.  FBN is a vital requirement for autonomous robotic ship-hull 
inspection.  Current robotic inspection methods require human in-the-loop 
intervention for both sensory interpretation and control (piloting).  Navigation 
feedback in these scenarios is typically performed using acoustic transponder-
based time-of-flight ranging – which necessitates setup, calibration, and 
infrastructure – and thereby vitiates the Navy's ability to rapidly and repeatably 
inspect multiple underwater structures. 

2.1 System Overview 
Figure 1 depicts core elements of the overall FBN methodology, called visually 
augmented navigation (VAN).  The VAN framework uses visual perception to 
augment the onboard dead-reckon navigation capabilities of the unmanned 
underwater vehicle (UUV).  VAN uses a pose-graph simultaneous localization 
and mapping (SLAM) framework [1-6] to incorporate pairwise constraints from 
overlapping sensor imagery.  These constraints form edges in the pose-graph and 



constrain the vehicle position estimate to bounded precision.  This type of view-
based approach is ideally suited to the ship-hull inspection task since the goal is to 
provide 100% survey coverage of the hull with minimal trajectory redundancy. 
 

 
Figure 1:  The core mechanism behind VAN’s bounded precision is the fusion of “zero-drift” 
camera measurements with dead-reckoned navigation data.  Camera constraints are fused with 
onboard navigation sensor data in a view-based stochastic map framework where the model is 
comprised of a pose-graph.  Nodes correspond to historical robot poses and the edges representing 
either Markov (navigation) or non-Markov (camera) constraints. 
 

 
Figure 2:  A block-diagram depicting VAN’s systems-level approach to image registration.  
Dashed lines represent additional information provided by the VAN state estimate, while bold 
boxes represent systems-level extensions to a typical feature-based registration framework. 



Camera measurements are used as constraints in VAN’s pose-graph framework.  
Recursive inference is use to determine the global poses consistent with the 
camera measurements and navigation prior.  VAN's goal is to be a real-time 
filtering algorithm, focused primarily on navigation and capable of scaling to 
large environments (image sequences consisting of thousands of key frames).  To 
efficiently and robustly do so, VAN takes advantage of the complementary 
aspects of inertial sensing within the vision processing pipeline (as depicted in 
Figure 2). 
 
VAN uses an extended information filter (EIF) (i.e., the dual of an extended 
Kalman filter (EKF)) for sensor fusion.  The EIF representation results in an 
information matrix (i.e., inverse of the covariance matrix) that is exactly sparse 
without any approximation and allows for highly efficient, large-area scalable 
FBN [4-5].  For example, Figure 3 depicts the resulting information matrix 
associated with registering 866 images and fusing them with navigation data from 
a lawn-mower trajectory ROV survey of the RMS Titanic.  The off-diagonal 
elements in the information matrix correspond to cross-track camera 
measurements while the block-tridiagonal structure naturally arises from the first-
order Markov process model.  The wreck was surveyed amidships to stern and 
then amidships to bow, requiring a total of 344 minutes to survey.  During the 
course of the survey, the ROV traveled a total survey path length of 3.4 km.  For 
this data set the VAN technique required only 39 minutes worth of processing 
time to update and maintain the global SLAM estimate, which is approximately a 
9x speed-up over real-time.  
 

 
Figure 3:  VAN uses a sparse EIF representation for inference.  Shown is the information matrix 
for a ROV survey of the wreck of the RMS Titanic.  In all there are 867 nodes where each state, xi, 
is a 12-vector consisting of 6-pose (i.e., Cartesian position and Euler attitude) and 6-kinematic 
components (i.e., linear and angular body-frame velocities).  The resulting information matrix is a 
10,404 x 10,404 matrix with only 0.52% nonzero elements.  From [4-5]. 
 



 
Figure 4: Results from a 2004 ROV survey of the RMS Titanic previously published by the 
Author in [4-5]. The mapped area encompasses over 3100 m2 and over 3.4 km of traveled path 
length. (a) Four frame image sequence from the RMS Titanic data set depicting typical monocular 
image overlap and representative 3D structure content. (b)–(f) Time-evolution of the RMS Titanic 
pose constraint network. Camera links are shown in gray and 3-σ covariance bounds are depicted 
in black. Time progression is from left to right: images 1–200, 1–400, 1–600, 1–800, all. Note the 
large loop-closing event that occurs in (d) when the vehicle returns to the bow of the ship 
(depicted by the black arrow) after having traveled from the stern with the camera off. (g) The 
resulting Delaunay triangulated surface derived from the SLAM poses and image correspondences. 

2.2 Relevance to Sonar-Based Ship Hull Inspection 
While the proposed real-time VAN implementation is founded upon optical visual 
perception, the augmented navigation framework it comprises (Figure 5) is 
largely modality independent.  The stages of: 

• map building and maintenance, 
• large-scale estimation, 
• automatic link hypothesis, 
• fusion of relative-pose and navigation constraints, 



are all independent of how the pose constraints are derived.  To replace the 
underwater image registration module with a DIDSON or BlueView forward-look 
sonar, for example, would require a different physics-based modeling of the 
sensor and the associated pose-constraints that can be extracted, but otherwise the 
rest of the VAN framework holds.  Therefore, understanding the theoretical and 
technical issues behind developing a robust real-time optical VAN system will 
also lead to a better understanding of how to perform large-area autonomous 
search and inspection using other modalities such as sonar. 
 

 
Figure 5:  A depiction of the different areas involved in the visually augmented navigation 
(VAN) framework. 
 
We are currently in Year 1 of a three year project to develop a real-time feature-
based navigation system.  Years 1 and 2 are focused on developing the overall 
mapping framework using vision as the main perceptual sensor.  Year 3 of the 
project will investigate transitioning the VAN framework to sonar-based 
perception, which will yield a larger standoff range sensing capability in turbid 
water.  The transition to sonar perception will require developing an appropriate 
sonar registration engine so that overlapping sonar images can be registered to 
extract pose-constraints similar to the optical registration engine of Figure 2.  This 
work will explore the adaptation of feature extraction and description techniques 
developed within the computer vision community to the physics constraints of 
sonar imaging. 

3 Real-Time VAN Testing and Development with the HAUV 
We are currently collaborating with MIT and Bluefin Robotics to prototype and 
test our VAN algorithms on real-world ship hull inspection data using the 
Hovering-AUV (HAUV) (Figure 6) [7].  The vehicle is designed around a 
Doppler-based hull-relative navigation strategy using a 1200 kHz DVL mounted 
on a tilt actuator to measure vehicle velocities with respect to the ship hull for 



positioning.  Open-water navigation to the hull is achieved using the DVL tilted 
toward the seafloor in bottom-lock mode aided by GPS surface fixes. Hull sensing 
is achieved using a Dual frequency IDentification SONar (DIDSON); this sonar 
modality was chosen for its ability to see through turbid water with high 
resolution. As an operation requirement, the DIDSON requires a grazing angle of 
15◦–20◦, therefore, it also is mounted on a tilt actuator so that this particular graze 
angle can be maintained. Current work to date has demonstrated an ability to 
work on non-complex areas of the hull (i.e., flat areas of the hull like the sides and 
bottom and not complex regions like the rudder or screws), using a boustrophedon 
survey strategy with sonar-based hull mosaics produced in an offline post-
processing step. 
 

 
Figure 6:  The HAUV and representative imagery from a 2007 field experiment where it 
performed inspection of a flat-bottom barge.  The imagery is from a handheld diver video camera, 
but is representative of the type of imagery and hull texture that VAN will use for feature 
extraction and image registration.  (Imagery courtesy J. Leonard) 



To participate in hull-search experiments with the HAUV testbed, we have 
developed a strap-on camera bottle that can be easily mounted to the vehicle.  The 
VAN hardware consists of a 12-bit Prosilica GigE camera and a 150 W remote 
light.  This system can be run shore side from a laptop computer over the 
HAUV’s fiber-optic tether.  Real-world ship hull inspection data sets for post-
processing algorithmic development will be collected at AUVFest’08 in this 
manner.  Years 2 and 3 of the project will demonstrate real-time optical FBN 
ship-hull inspection using the HAUV with localization output being generated by 
our real-time VAN implementation.  Year 3 will also begin transition of optical 
FBN algorithms to HAUV onboard sonar perception for inspection tasks. 

4 Conclusion 
Robotic perception and its coupling to autonomous navigation are key technical 
challenges in the quest for intelligent, robust, long-term, robotic autonomy.  At 
the forefront of this research within the robotics community are the challenges of 
real-time visual perception and unconstrained 6-DOF motion – both of these 
aspects are inherent to the autonomous ship-hull inspection problem.  Success in 
this arena will come in the form of in-situ perception-based navigation – 
eliminating the need for any external navigation infrastructure. The operational 
impact for the Navy is that this technology will allow for rapid automated 
inspection deployment with guaranteed 100% survey coverage; this will in turn 
reduce the need for having to put divers into the water to perform dangerous 
underwater search and ship hull inspection missions. 

Acknowledgements 
This work is funded by the Office of Naval Research through a grant from the 
Young Investigator Program and by Code 321OE (Ocean Engineering & Marine 
Systems) under award number N000140710791. 



Bibliography 
1. Eustice, R. M.; Singh, H. & Leonard, J. Exactly sparse delayed-state filters 

Proc. IEEE Intl. Conf. Robot. Auto., 2005, 2417-2424 
 
2. Eustice, R. M.; Pizarro, O. & Singh, H. Visually augmented navigation in an 

unstructured environment using a delayed state history Proc. IEEE Intl. Conf. 
Robot. Auto., 2004, 1, 25-3 

 
3. Eustice, R. M.; Singh, H.; Leonard, J. J.; Walter, M. R. & Ballard, R. Visually 

navigating the RMS Titanic with SLAM information filters Proc. Robotics: 
Science & Systems, MIT Press, 2005, 57-64 

 
4. Eustice, R. M.; Singh, H. & Leonard, J. J. Exactly sparse delayed-state filters 

for view-based SLAM IEEE Trans. Robot., 2006, 22, 1100-1114 
 
5. Eustice, R. M.; Singh, H.; Leonard, J. J. & Walter, M. R. Visually mapping 

the RMS Titanic: conservative covariance estimates for SLAM information 
filters Intl. J. Robotics Research, 2006, 25, 1223-1242 

 
6. Eustice, R. M.; Pizarro, O. & Singh, H. Visually augmented navigation for 

autonomous underwater vehicles IEEE J. Oceanic Eng., 2007, In Print 
 
7. Vaganay, J.; Elkins, M.; Willcox, S.; Hover, F.; Damus, R.; Desset, S.; 

Morash, J. & Polidoro, V. Ship hull inspection by hull-relative navigation and 
control Proc. IEEE/MTS OCEANS Conf. Exhib., 2005, 761-766 


