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Abstract—This paper provides a general overview of the
autonomous underwater vehicle (AUV) research projects being
pursued within the Perceptual Robotics Laboratory (PeRL) at
the University of Michigan. Founded in 2007, PeRL’s research
thrust is centered around improving AUV autonomy via al-
gorithmic advancements in sensor-driven perceptual feedback
for environmentally-based real-time mapping, navigation, and
control. In this paper we discuss our three major research
areas of: (1) real-time visual simultaneous localization and
mapping (SLAM); (2) cooperative multi-vehicle navigation; and
(3) perception-driven control. Pursuant to these research ob-
jectives, PeRL has acquired and significantly modified two
commercial off-the-shelf (COTS) Ocean-Server Technology, Inc.
Iver2 AUV platforms to serve as a real-world engineering testbed
for algorithm development and validation. Details of the design
modification, and related research enabled by this integration
effort, are discussed herein.

I. INTRODUCTION

The Perceptual Robotics Laboratory (PeRL) at the Uni-
versity of Michigan (UMich) is actively involved in three
major research efforts: real-time vision-based simultaneous lo-
calization and mapping (SLAM), heterogeneous multi-vehicle
cooperative navigation, and perception-driven control. The
laboratory chose to purchase two commercial off-the-shelf
(COTS) Ocean-Server Technology autonomous underwater
vehicles (AUVs) to support these research goals, and upgraded
the vehicles with additional perceptual and navigation sensors
to enable this research.

A. Real-Time Visual SLAM

The first of the three PeRL research domains, real-time
vision-based SLAM algorithms [1]–[4], has direct application
to ship-hull inspection [5] and deep sea archaeological mis-
sions [6]. Present day means for ship hull and port facility
inspection require either putting divers in the water or piloting
a remotely operated vehicle (ROV) over the area of interest—
both of which are manpower intensive and generally cannot
guarantee 100% survey coverage. Automating this task, how-
ever, is challenging and compounded by the fact that areas
around ships in berth are severely confined, cluttered, and
complex sensing environments (e.g., acoustically, optically,
magnetically). Current tethered robotic inspection systems
present issues of snagging, maneuver degradation, and tether
management, all of which make maneuvering around the ship

at pier difficult. Moreover, current robotic inspection methods
require human in-the-loop intervention for both sensory inter-
pretation and control (piloting). Navigation feedback in these
scenarios is typically performed using acoustic transponder-
based time-of-flight ranging [7], [8]. This necessitates setup
and calibration of the associated acoustic-beacon navigation
infrastructure, and therefore vitiates our ability to rapidly and
repeatably inspect multiple underwater structures.

In light of this, there exists a need to automate this task
through the use of untethered robotic vehicles. To do so with
AUVs requires overcoming several present-day science and
technology challenges inherent to the inspection task. For
example, areas around ships in berth are severely confined,
cluttered, and complex sensing environments (e.g., rudders,
screws). This necessitates the need for advanced navigation
and localization systems that can work in confined, mag-
netically noisy spaces. In addition, to ensure 100% survey
coverage of ship hulls, pier structures, and pilings requires
technological advances in our understanding of autonomous
environmental perception and control. The underlying algo-
rithm should facilitate in-situ sensor-reactive navigation and
mapping in these environments while accommodating map-
based learning through time via revisited exploration (a pre-
requisite for hull change detection). Moreover, the increased
diversity of threat objects and associated potential for more
false alarms due to a cluttered environment necessitates that
fusion take place from multiple types of sensors for robust-
ness and redundancy. In combination, all of these individual
challenges/requirements, together, suggest that a feature-based
navigation and mapping strategy approach would accommo-
date the needs of autonomous automated search and inspection
by AUVs.

The technical objective of this work is to develop an
optical/acoustic real-time feature-based navigation (FBN) ca-
pability for explosive ordnance disposal (EOD) autonomous
ship-hull inspection. Fig. 1 depicts core elements of the over-
all FBN methodology, called visually augmented navigation
(VAN). The VAN framework uses visual perception to aug-
ment the onboard dead-reckon navigation capabilities of the
unmanned underwater vehicle (UUV). VAN uses a pose-
graph SLAM framework [3], [4], [9] to incorporate pairwise
constraints from overlapping sensor imagery. These constraints
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ily defined [18]. However, unstructured outdoor environments

can pose a more challenging task for feature extraction and

matching, which has lead to scan-matching based approaches

that do not require an explicit representation of features [19],

[20]. These view-based, data-driven techniques have tradition-

ally been used with accurate perceptual sensors such as laser

range finders where raw data can be matched directly (e.g., in

an iterative closest point sense [21]). Along these lines, our

underwater approach is to use a camera as an accurate and

inexpensive perceptual sensor to collect near-seafloor imagery

that can also be matched directly. Motivation for such an

approach comes from the fact that, in practice, autonomous

underwater vehicles (AUVs) typically collect imagery using a

digital-still camera and not video (to minimize the amount of

power consumption spent on illumination [22]). This results in

a temporally low-overlap image sequence with the implication

that 3D features in the environment are not observed for

more than a couple of frames. Such a low-overlap constraint

implies that a view-based representation is particularly suitable

for this type of data, since overlapping image pairs from a

calibrated camera can be registered in a pairwise fashion to

extract “zero-drift”, relative-pose modulo scale measurements,

without explicitly representing 3D feature points. In this way,

registering an image taken from time ti to an image taken at

time tj provides a spatial constraint whose error is bounded

regardless of time or the trajectory followed between the two

views.

In the rest of this article we present our framework and

methodology for incorporating camera-derived relative-pose

measurements with vehicle navigation data in a view-based

SLAM context (Fig. 1). In particular, §II and §III describe our

assumptions and coordinate frame conventions, respectively.

§IV presents a delayed-state SLAM framework for fusing

camera measurements that also serves as a foundation for

probabilistic link hypothesis. In §V we explain how to actually

make the pairwise camera measurement using a systems-

level, feature-based, image registration approach. We show

that a multi-sensor approach has compelling advantages over

a camera-only navigation system and, in particular, that it

improves registration robustness via a novel pose-constrained

correspondence search. Results are presented in the context of

a real-world data set collected by an AUV in a rugged under-

sea environment, and for tank data collected by a remotely

operated vehicle (ROV) for which position ground-truth is

available.

II. ASSUMPTIONS

Our application is based upon using a pose instrumented

AUV equipped with a single downward-looking digital-still

calibrated camera to perform underwater imaging and map-

ping. We assume that the vehicle can make acoustic measure-

ments of both velocity and altitude relative to the seafloor,

that absolute orientation is measured to within a few degrees

over the entire survey area via inclinometers and a magnetic

compass, and that bounded positional estimates of depth, Z,

are provided by a pressure sensor. A detailed discussion of

our particular AUV platform can be found in [23], [24]. For
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Fig. 1. The objective of visually augmented navigation (VAN) is the real-
time fusion of “zero-drift” camera measurements with navigation sensor data
to close-the-loop on dead-reckoned error. For this purpose VAN adopts a top-
down systems-level approach to visual navigation. At its core, VAN is founded
upon registering raw imagery to generate pairwise camera constraints that are
then fused with navigation sensor data in a view-based SLAM framework.

TABLE I

TYPICAL POSE SENSOR CHARACTERISTICS FOR UNDERWATER

PLATFORMS.

Measurement Sensor Precision

Roll/Pitch Tilt Sensor ±0.5◦
Heading Magnetic Compass ±2.0◦
3-Axis Angular Rate AHRS ±1.0◦/s
Body Frame Velocities Acoustic Doppler ±1–2 mm/s
Depth Pressure Sensor ±0.01%
Altitude Acoustic Altimeter ±0.1 m

convenience, Table I provides a short summary of assumed

sensor characteristics. In brief we assume:

• An ideal (i.e., lens distortion compensated) calibrated

camera.

• A pose-instrumented platform.

• Known reference frames (e.g., extrinsic camera to vehicle

coordinate transform).

• Pairwise image registration using a six degree of freedom

(DOF) motion model to accommodate low-temporal over-

lap.

III. 6-DOF COORDINATE FRAME RELATIONSHIPS

This section describes the reference frames used in vehicle

navigation and their 6-DOF coordinate frame relationships as

illustrated in Fig. 2. We follow standard SNAME1 convention

[25] and define the vehicle frame, denoted subscript v, to be

coincident with a fixed point on the vehicle and oriented such

that the positive Xv-axis is aligned with the bow, positive

Yv-axis to starboard, and Zv-axis down, thus completing a

right handed coordinate frame.

Additionally, we must consider each onboard sensors’ inter-

nal coordinate frame (in which measurements are expressed)

and its subsequent relationship to the vehicle. The sensor

frame, denoted subscript s, is assumed to be static and known

with respect to the vehicle frame (i.e., calibrated beforehand);

we denote this sensor to vehicle coordinate frame relationship

notationally as xvs. Also, two navigation frames are defined

and used for expressing vehicle pose. The first is the world

1The Society of Naval Architects and Marine Engineers.

(a) VAN methodology.
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and camera sensor measurements. This is a well known

approach whose application to SLAM was originally developed

by Smith, Self, and Cheeseman [22], [23] and Moutarlier and

Chatila [24]. The EKF maintains the joint correlations over

all elements in the state vector and, therefore, can update

estimates of all the elements involved in key events like

loop closure. Maintaining these joint correlations, however,

represents a significant computational burden since each mea-

surement update requires quadratic complexity in the size

of the state vector. This limits the online use of an EKF to

relatively small maps (e.g., for the VAN approach this equates

to an upper bound of approximately 100 six-vector poses).

The EKF’s quadratic computational complexity has long

been a recognized issue within the SLAM community and

has lead to a great deal of research being directed towards

scalable large-area SLAM algorithms. Notable large-area ap-

proaches include submaps [25]–[27], postponement [28]–[30],

Rao-Blackwellized particle filtering techniques [31], [32], and

covariance intersection [33]. In addition to this body of work,

promising new approaches for scalable SLAM have appeared

in the recent literature and are based upon exploiting sparsity

in the Gaussian “information form” [34]–[38].

B. A Scalable Framework

To our knowledge, the earliest related work that exploited

the efficiency of the measurement update in the inverse

covariance form was published by McLauchlan and Murray

[39], in the context of recursive structure-from-motion (SFM).

This work was subsequently extended to realize a hybrid

batch/recursive visual SLAM implementation that unified re-

cursive SLAM and bundle adjustment [21]. McLauchlan recog-

nized the potential increase in efficiency that can be gained via

approximations to maintain sparsity of the information matrix:

It has long been known in the photogrammetry

community, in the form of the equivalent normal

formulation, that the [information] matrix . . . takes

a special sparse form in the context of recon-

struction . . . [However, in a recursive formulation]

. . . eliminating motion fills in the structure blocks.

This has to be avoided to maintain update times

proportional to n. So our partial elimination adjust-
ment method is to ignore corrections that fill-in zero

blocks, while applying the correction to the blocks

which are already non-zero.

While the consistency implications of this approximation are

unknown, in practice the method achieved results approaching

xtxt−1xt−2· · ·xt0

relative-pose relative-pose

relative-pose

relative-pose
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Fig. 1. The system diagram for a view-based representation. The model is
comprised of a graph where the nodes correspond to historical robot poses
and edges represent either Markov (navigation) or non-Markov (relative-pose)
constraints.

those of a full batch solution for moderate duration image

sequences.

Recently, the SLAM community has also turned its attention

to exploring the information parameterization for increased ef-

ficiency. In particular, published approaches include the sparse

extended information filter (SEIF) [34], the thin junction-tree

filter (TJTF) [35], and Treemap filters [37]. The authors of these

algorithms make the important empirical observation, first

noted in [34] and later proved in [40], that when the feature-

based SLAM posterior is cast in the form of the extended

information filter (EIF), (i.e., the dual of the EKF), many of the

off-diagonal elements in the information matrix are near zero

when properly normalized. These new feature-based SLAM

information algorithms approximate the posterior with a sparse

representation and thereby prevent weak inter-landmark links

from forming. This approach (effectively) bounds the density

of the information matrix and, as each author shows, allows

for constant time updates. The delicate and nontrivial issue

that must be dealt with, however, is “how to sparsify the

information matrix?”, since this approximation can lead to

global map inconsistency [41], [42].

Interestingly, it is the same phenomenon that plagues both

the information formulations of McLauchlan and Murray

[21], [39], as well as the feature-based SLAM algorithms of

Thrun et al. [34], Paskin [35], and Frese [37] — and that is

“eliminating motion fills in the structure blocks.” Eliminating

the robot’s trajectory causes the SLAM landmark posterior to

densify destroying any sparsity [38], [43] and, hence, any

efficiency associated with a sparse representation. This is the

reason why all feature-based SLAM information algorithms are

founded upon some type of pruning strategy that removes

weak constraints.

In the following, we illustrate why the feature-based SLAM

information matrix is naturally dense and therefore, why SEIFs

and TJTFs have to approximate the SLAM posterior with a

sparse representation. We then continue by introducing the

novel insight that the information form is exactly sparse for

a delayed-state representation. This inherent sparsity allows

us to cast the delayed-state framework in an efficient repre-

sentation, but without any sparse approximation error. We call

this result “exactly sparse delayed-state filters (ESDFs).” Bench-

mark results quantifying the ESDF’s efficiency with respect

to the standard EKF formulation are shown for a controlled

laboratory dataset. In addition, real-world results for a recent

ROV survey of the wreck of the RMS Titanic are presented.

II. THE INFORMATION FORM

A. An Alternative Parameterization of the Gaussian

The information form is often called the canonical or natural

representation of the Gaussian distribution. This notion of a

natural representation stems from expanding the quadratic in

the exponential of the Gaussian distribution as

p
(
ξt

)
= N (

ξt;µt,Σt

)
=

1√|2πΣt|
exp

{
− 1

2 (ξt − µt)
⊤Σ−1

t (ξt − µt)
}(b) Pose-graph

Fig. 1. The foundation of visually augmented navigation (VAN) is the fusion
of “zero-drift” camera measurements with dead-reckoned vehicle navigation
data to produce a bounded error position estimate. These constraints are fused
with onboard navigation sensor data in a view-based stochastic map frame-
work; the model is comprised of a pose-graph where the nodes correspond
to historical robot poses and the edges represent either navigation (first-order
Markov) or camera (non-Markov) constraints.

form edges in the pose-graph and constrain the vehicle posi-
tion estimate to bounded precision. This type of view-based
approach is ideally suited to the ship-hull inspection task since
the goal is to provide 100% survey coverage of the hull with
minimal trajectory redundancy.

We are currently in Year 1 of a three year project to develop
a real-time feature-based navigation system. Years 1 and 2 are
focused on developing the overall mapping framework using
vision as the main perceptual sensor. Year 3 of the project will
investigate transitioning the VAN framework to sonar-based
perception, which will yield a larger standoff range sensing
capability in turbid water. The transition to sonar percep-
tion will require developing an appropriate sonar registration
engine so that overlapping sonar images can be registered
to extract pose-constraints similar to the optical registration
engine of [4]. This work will explore the adaptation of feature
extraction and description techniques developed within the
computer vision community to the physics constraints of sonar
imaging.

B. Cooperative Navigation

In addition to real-time visual SLAM, PeRL is working
toward cooperative multi-vehicle missions for large-area sur-
vey. Multi-vehicle cooperative navigation offers promise of
efficient exploration by groups of mobile robots working
together to pool their mapping capability. Most prior research
in the SLAM community has focused on the case of single-
agent mapping and exploration. While these techniques can
often be extended to a centralized multi-agent framework
[10] (provided that there are no communication bandwidth
restrictions), the extension of single-agent techniques to a

decentralized multi-vehicle SLAM framework is often not
obvious nor appropriate. Much of the previous research in
the area of distributed multi-vehicle SLAM has focused pri-
marily on terrestrial (i.e., land and aerial) applications [11]–
[15], where high-bandwidth radio communication is possible;
however, underwater communication bandwidth is distinctly
limited from that on land [16].

The speed of sound in water is 1500 m/s, which is
1/200,000 that of the speed of light! Moreover, it requires
on the order of 100 times more power to transmit than it
does to receive, making acoustic transmission and reception
asymmetrical for medium access (MAC) schemes [16]. Half-
duplex time division multiple access (TDMA) networks are
usual, with typical acoustic-modem data rates ranging from
5 kbits/s at a range of 2 km (considered a high rate), to as
little as 80 bits/s (a low rate). The low acoustic data rates are
not simply a limitation of current technology—the theoretical
performance limit for underwater acoustic communications is
40 km · kbps (i.e., a max theoretical data rate of 20 kbps at
a range of 2 km, for example) [16]. Therefore, any type of
multi-vehicle SLAM framework must adhere to the physical
bandwidth limitations of the underwater domain.

In previous work, Eustice et al. developed a synchronous-
clock acoustic modem-based navigation system capable of
supporting multi-vehicle ranging [9], [17]. The system con-
sisted of a WHOI Micro-Modem [18], [19] (an underwater
acoustic modem developed by Woods Hole Oceanographic
Institution (WHOI)) and a low-power stable clock board. This
system can be used as a synchronous-transmission commu-
nication/navigation system wherein data packets can encode
time of origin information as well as local ephemeris data
(e.g., x, y, z positional data and error metric). This allows for
the direct measurement of inter-vehicle one-way travel time
(OWTT) time-of-flight ranging. The advantage of a OWTT
ranging methodology is that all passively receiving nodes
within listening range are able to decode and measure the
inter-vehicle range to the broadcasting node.

PeRL is currently investigating probabilistic fusion meth-
ods for a OWTT multi-vehicle framework that scales across
a distributed network of multiple agents who have limited
communication bandwidth in a non-fully-connected network
topology. The proposed acoustic-modem augmented naviga-
tion framework will exploit inter-vehicle OWTT ranging to
supplement perceptual SLAM localization while reducing the
need for state communication. The goal is to distribute state
estimation between the vehicles in a coordinated fashion—
allowing for navigation impoverished vehicles (e.g., no inertial
measurement unit (IMU) or Doppler velocity log (DVL)) to
share from positional accuracies of better equipped vehicles
(e.g., those with DVL bottom-lock).

For example, a near-seafloor VAN [4] enabled vehicle
could perform highly detailed inspection over small regions,
while a mid-water column vehicle enabled with side-scan
sonar could traverse larger regions to identify specific sites of
interest. As the VAN vehicle’s state estimation improves over
time, distributing this knowledge to the other vehicle could
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Fig. 2. Preliminary OWTT results as reported in [9], [17] for a two node
network consisting of an AUV and a surface ship. Shown in blue is the raw
dead-reckoned AUV trajectory; in cyan is the GPS-derived ship position; in
red is the OWTT fused AUV trajectory; and in green is the (on-surface) GPS-
measured AUV position, which serves as an independent ground-truth.

refine the non-VAN vehicles’ state estimate. This coordinated
effort would result in faster overall survey times and more
attention to regions of interest, rather than using the full VAN
capabilities over feature-barren tracts of seafloor.

Fig. 2 depicts preliminary results, reported in [9], [17],
demonstrating the OWTT proof of concept. Here, a global
positioning system (GPS)-equipped surface ship navigationally
aided a submerged AUV by broadcasting ship GPS position
to the network while the AUV measured its range to the ship
via the OWTTs.

C. Perception-Driven Control

Another research focus is in the domain of perception-
driven control. Algorithms are under development to enable
a vehicle to respond to the environment by autonomously
selecting alternative search patterns based on perceived feature
distributions in the observed data. This creates improvements
in productivity by eliminating long surveys of feature-poor
areas and instead allows more bottom-time spent over actual
targets. A seafloor survey vehicle, for example, may drive
into an area devoid of features during a mission. Instead of
continuing to search the featureless space, where there is little
return on investment from the expense of running a vision
system, the vehicle would return to a previously known feature
rich area and begin searching in another direction. The PeRL
group is currently working on algorithms to assist in the
decision making process of when to revisit known landmarks
versus continuing new exploration.

II. TESTBED OVERVIEW

To pursue PeRL’s research objectives, two commercial
Ocean-Server Iver2 AUV systems were purchased and mod-
ified to serve as real-world testbed platforms for SLAM
research at UMich. Although several other vehicle platforms
currently include stereo-vision systems and DVL sensors, the
Iver2 (Fig. 3) was selected as a testbed development platform
due to its ability to be transported in a personal vehicle

and launched by a single user. The vehicles, as shipped, are
rated to a depth of 100 m, have a maximum survey speed of
approximately 2 m/s (4 knots), and weigh ∼30 kg allowing
for transport by two people [20].

Since the COTS Iver2 vehicle does not come equipped with
camera or DVL sensing, sensor upgrades were required to
enable the original vehicle to perform SLAM and coordinated
multi-AUV missions. PeRL upgraded the vehicles with ad-
ditional navigation and perceptual sensors (detailed in Fig. 4
and Table I) including 12-bit stereo down-looking Prosilica
cameras, a Teledyne 600 kHz RDI Explorer DVL for 3-axis
bottom-lock velocity measurements, a KVH single-axis fiber-
optic gyroscope for yaw rate, and a WHOI Micromodem for
communication, along with other sensor packages discussed
forthwith. To accommodate the additional sensor payload, a
new Delrin nose cone was designed and fabricated (Fig. 6).
Additional 32-bit embedded PC104 CPU hardware was added
for data-logging, real-time control, and in-situ real-time SLAM
algorithm testing and validation. Details of the design modi-
fication are discussed herein.

Fig. 3. Modified OceanServer Iver2.

A. Mechanical/Electrical Design and Integration

The design goals during the integration phase of vehicle
development consisted of minimizing hydrodynamic drag,
maintaining neutral buoyancy, and maximizing sensor payload
capacity within the pressure hull. These requirements were
achieved through the use of lightweight materials such as
acrylonitrile butadiene styrene (ABS), Delrin, and aluminum,
and careful center of buoyancy and center of mass compu-
tations. The entire vehicle was modeled using Solidworks
solid modeling software and extensive use of these computer
aided design (CAD) models provided optimal arrangements of
internal components prior to actual installation (Fig. 5).

The addition of a redesigned SLAM nose cone and sensor
payload shifted both the original center of buoyancy and
center of gravity. New positions were estimated using the
CAD models and refined during ballast tests at the UMich
Marine Hydrodynamics Laboratory (MHL). The vehicle is
ballasted to achieve ∼0.11 kg (0.25 lbs) reserve buoyancy for
emergency situations when the vehicle must surface without
power. Vehicle trim is set neutral to achieve passive stability
and to optimize both diving and surfacing operations.



Fig. 4. PeRL modified Iver2 sensor and computing layout.

TABLE I
INTEGRATED SENSORS ON THE PERL VEHICLES.

IVER2 INSTRUMENTS VARIABLE UPDATE RATE PRECISION RANGE DRIFT
OceanServer OS5000 Compass attitude 0.01–20 Hz 1–3◦ (Heading), 2◦ (Roll, Pitch) 360◦ —
Measurement Specialties Pressure
Sensor MSP-340

depth — < 1% of FS 0–300 psi —

Imagenex Sidescan Sonar (Dual
Freq.)

— 330 or 800 kHz — 15–120 m —

USGlobalSat EM-406a GPS XYZ position 1 Hz 5–10 m — —

NEW INSTRUMENTS VARIABLE UPDATE RATE PRECISION RANGE DRIFT
Prosilica GC1380H(C) Camera
(down-looking stereo-pair)

gray/color image 1–5 fps 1360×1024 pixels; 12-bit depth — —

Teledyne RDI 600 kHz Explorer
DVL

body velocity 7 Hz 1.2–6 cm/s (@1 m/s) 0.7–65 m —

KVH DSP-3000 single-axis FOG yaw rate 100 Hz 1–6◦/h ±375◦/s 4◦/h/
√

Hz
Desert Star SSP-1 300PSIG Digital
Pressure Transducer

depth .0625–4 Hz 0.2 % of FS 0–300 psi —

Applied Acoustics USBL XYZ position 1.0–10.0 Hz ±0.1 m (Slant Range) 1000 m —
OWTT∗ Nav (Modem+PPS) slant range — 18.75 cm (@1500 m/s) — < 1.5 m in 14 h
–WHOI Micromodem communication Varies — Varies —
–Seascan SISMTB v.4 PPS Clock time 1 Hz 1 µs — 1 ms/14h
Microstrain 3D-GX1 AHRS attitude, body rates 1.0–100 Hz ±0.5◦ ±180,180,90 —

* One-Way-Travel-Time (OWTT)

In determining the location and orientation of each compo-
nent within the vehicle body, heat dissipation and interference
in-between sensors were considered as the critical constraints
after spatial constraints were satisfied. Due to the high density
of sensors and other devices in the pressure housing, the
components with the highest heat radiation, such as comput-
ers and dc-dc converters, are placed in direct contact with
the aluminum chassis to allow better heat dissipation. Also,
sensors that are prone to electrical noise from surrounding
electronics are spatially separated in the layout (e.g. the
MEMS Microstrain 3D-GX1 is located in the nose cone tip,
the furthest point from motor and battery pack influence).

Electrically, the vehicle is powered by a 590 Whr Li-
ion battery pack made up of six 95 Whr laptop batteries

managed by an Ocean-Server Intelligent Battery and Power
System module. The added sensors and PC104 computing
draw 53 W. This load is in addition to the original 9 W
nominal vehicle hotel load and 110 W propulsion load of
the stock Iver2 resulting in a combined maximum total power
draw of ∼172 W (this assumes full hotel load and the motor at
full power.) Future plans include integrating a seventh battery
to achieve 665 Whr for an estimated run time of 3.8 hours at
maximum speed (5 hours or more at 75 W (2 kt) propulsion
speed).

B. SLAM Nose cone

In order to support the real-time VAN objectives of PeRL,
a down-looking stereo-vision system was added to the Iver2



Fig. 5. Mechanical layout.

vehicles. Stereo vision allows scale information to be ex-
tracted from pairwise image registration thereby improving
state estimation by observing velocity scale error in DVL
measurements. A new nose cone was designed and fabricated
to house both the two-camera vision system and the DVL
transducer.

The UMich custom-design nose cone (Fig. 6) was fabricated
from Acetron GP (Delrin) due to the material’s high tensile
strength, scratch resistance, fatigue endurance, low friction,
and low water absorption. Threaded inserts are installed in
the nose cone to prevent stripped threads and stainless fas-
teners with a polytetrafluoroethene (PTFE) paste (to prevent
corrosion issues) are used in all locations.

The designed working depth of the nose cone is 100 m
(to match the full rating of the Iver2). Calculations were
performed according to ASME Section VIII Boiler and Pres-
sure Vessel Code to verify wall thickness in each of the
nose cone sections. A minimum factor of safety of at least
2.64 was attained for all sections of the nose cone. Pressure
tests, conducted at Woods Hole Oceanographic Institution,
demonstrated the structural integrity of the nose cone to 240 m
water depth. Three short duration dives of 12 minutes each
were made to 360 psi and one long duration dive of five hours
was made to 360 psi.

The Teledyne-RDI 600 kHz Explorer DVL (Fig. 6) is inte-
grated into the nose cone using fasteners to attach the DVL
head to threaded inserts in the nose cone material. The internal
cavity space precludes the use of the recommended clamp
attachment scheme. Self-sealing fasteners are used to eliminate
a fluid path through the mounting holes of the DVL to the
interior of the nose cone.

Two nose cone plugs were designed for camera integration
that include a sapphire window and two mounting brackets
each (Fig. 7). The synthetic sapphire window was chosen due
to the high scratch resistance and superior tensile strength
of sapphire versus plastic or glass materials. The mounting
brackets were designed in CAD and printed in ABS plastic
using a Dimension FDM Elite rapid prototype machine. Static
face and edge o-ring seals prevent water ingress through the
plug around the sapphire window.

A Desert Star SSP-1 pressure transducer is mounted to an
internal face of the nose cone and is exposed to the ambient

Fig. 6. Exploded and translucent view of PeRL’s redesigned nose cone.

environment through a 1/8” shaft drilled perpendicular to the
nose cone wall to reduce flow noise influence on the sensor.
The Microstrain 3D-GX1 is integrated into the nose cone tip
by mounting the Ocean-Server OS5000 Compass on top of
the 3D-GX1 and milling a cavity in the tip to allow for the
additional vertical clearance.

All o-rings installed in the nose cone are of material Buna-N
(acrylonitrile-butadiene) and are lightly lubricated with Dow
Corning #4 prior to installation.

III. MISSIONS AND TESTING

Current missions and testing conducted by PeRL include
testing at the UMich Marine Hydrodynamics Laboratory tow
tank, automated visual ship hull inspection (conducted at
AUVFest’08), field testing and engineering education demon-
strations at the University of Michigan Biological Station
(UMBS), and archaeological surveys of shipwrecks in the
Thunder Bay National Marine Sanctuary (TBNMS).

A. University of Michigan Marine Hydrodynamics Laboratory

Initial in-water testing of the vehicle was held at the
UMich physical model basin—a 109.7 m x 6.7 m x 3.0 m
freshwater tow tank (Fig. 8). The MHL provides a controlled
experimental setup for testing real-time visual SLAM systems
in an aqueous environment. Prescribed vehicle motions can
be precisely achieved via the electronically controlled tank
carriage while imagery of the tank floor can be processed



Fig. 7. (top) Modified Iver2 with new SLAM nose cone shown alongside a
stock Iver2 vehicle. (bottom) A close up view of the SLAM nose cone with
DVL and camera plugs.

Fig. 8. Vehicle testing at the MHL tow tank.

online for visual SLAM estimation. For ease of real-time
algorithm development we can attach a wet-mateable wired
ethernet connection to a vehicle bulkhead so that imagery and
sensor data can be streamed to a topside desktop computer
allowing for greater flexibility in real-time software execution,
visualization, and debugging. Use of the test facility has been
beneficial for rapid prototyping, development, and validation
of our real-time underwater visual SLAM hardware and algo-
rithms.

B. AUVFest’08

The Iver2 testbed serves as a proxy for real-time visual
autonomous port and hull inspection research at UMich where
it is used to collect and perform visual SLAM navigation
over the seafloor. To test our FBN algorithms in a real-hull
environment, PeRL collaborated with Massachusetts Institute
of Technology (MIT) and Bluefin Robotics to put one of our
camera systems on the Hovering Autonomous Underwater
Vehicle (HAUV) [21] at AUVFest’08 to collect imagery of
the hull of the USS Saratoga—a decommissioned U.S. aircraft

carrier stationed as Newport, RI (Fig. 9). PeRL packaged and
mounted a calibrated Prosilica GC1380HC camera (same as
that used in the Iver2 SLAM nose cone) and Deep Sea Power
and Light (DSPL) light system on the HAUV hull inspection
vehicle. Boustraphedeon survey imagery was collected by
the HAUV of the hull of the USS Saratoga. The HAUV is
equipped with a 1200 kHz DVL, fiber optic gyro (FOG), and
depth sensor, and is comparable to the sensor suite integrated
into PeRL’s Iver2 testbed.

Preliminary results for visual hull-relative navigation are
shown in Fig. 9(d). Here we see a pose-graph of camera con-
straints generated through pairwise registration of overlapping
imagery. These constraints are fused with navigation data in
an extended information filter (EIF) [2] framework providing
bounded error precision navigation along the hull. Each node
in the network corresponds to a digital-still image taken along
the hull (1033 images in all). Note the discrete dropout of
images along the second leg in the region of −10 m to −20 m
along the hull axis. Due to a logging error, we did not record
any imagery during this time period; however, this gap in the
visual data record actually highlights the utility of our hull-
referenced visual navigation approach. Because we are able
to pairwise register views of the hull taken from different
times and locations, the camera process is able to “close-the-
loop” and register itself to earlier imagery from the first leg
of the survey thereby reseting any incurred DVL navigation
error during the data dropout period. It is precisely this
hull-referenced navigation capability that allows the AUV to
navigate in-situ along the hull without the need for deploying
any external aiding (e.g. acoustic navigation transponders).

C. University of Michigan Biological Station

Field trials were held on Douglas Lake at the University of
Michigan Biological Station (UMBS) in Pellston, Michigan
during July, 2008. Four days of on-water testing demonstrated
maneuverability, vehicle speed, dead-reckon navigation, wire-
less ethernet communication, sidescan sonar functionality,
digital compass, and manual surface joystick operation modes.
In addition to vehicle trials, PeRL staff presented guest lectures
on AUVs and hosted hands-on training in conducting actual
AUV missions. Launch and recovery were conducted from
shore, dock, and from a pontoon boat. A full sidescan sonar
survey of the south-eastern bay at Douglas Lake was run
from the UMBS docks (Fig. 10). After the completion of the
mission, the vehicle was manually motored, from a portable
wireless station on the dock, back for recovery.

D. Thunder Bay National Marine Sanctuary

In August, 2008, PeRL collaborated with National Oceanic
and Atmospheric Administration (NOAA) TBNMS re-
searchers to map unexplored areas outside the Sanctuary’s
current boundaries. Established in 2000, the TBNMS protects
one of the nation’s most historically significant collections
of shipwrecks. Located in the northeast corner of Michigan’s
lower peninsula, the 448 square-mile sanctuary contains 40
known historic shipwrecks. Archival research indicates that



(a) HAUV (b) Hull imagery (c) USS Saratoga

(d) VAN hull-referenced trajectory estimate.

Fig. 9. Vision-based autonomous hull mapping results for data collected at AUVFest’08 of the hull of the USS Saratoga.

Fig. 10. Field testing at UMBS. The vehicle was launched and recovered
from a dock on shore. Shown is a screenshot of Ocean-Server’s Vectormap
GIS mission planning interface.

over 100 sites await discovery within and just beyond the
sanctuary’s current boundaries. This fact, coupled with strong
public support and the occurrence of dozens of known ship-
wrecks, provide the rationale for the sanctuary’s desire to
expand from 448 square-miles to 3,662 square-miles (an eight
fold increase). To date, however, a comprehensive remote sens-
ing survey has not been conducted in the potential expansion
area. Moreover, significant portions of the existing sanctuary
have not been explored. The potential for new discoveries in
these areas is high.

PeRL is engaged in a five-year collaboration with TBNMS
to use the Sanctuary as a real-world engineering testbed for our
AUV algorithms research. TBNMS provides in-kind support of

ship time and facilities, and in return receives SLAM-derived
archaeological data products ranging from 3D photomosaics
of ship wrecks to sidescan sonar maps of the Sanctuary
seafloor. In addition, PeRL is engaged in public outreach
efforts in collaboration with TBNMS to educate the general
public in the use and technology of underwater robotics. In
development is an AUV technology display in their state-
of-the-art Great Lakes Maritime Heritage Center, (a 20,000
square foot building featuring a 100-seat theater, 9,000 square
feet of exhibit space, and distance learning capabilities) that
will consist of an Iver2 AUV hull, a multimedia kiosk, and
maps and data products derived from PeRL’s field testing in
the Sanctuary.

This past August, as part of a NOAA Ocean Exploration
grant, PeRL fielded one of its two Iver2 AUVs to collect
sidescan sonar imagery in unmapped regions of the Sanctuary
seafloor. Of the two Iver2 vehicles owned by PeRL, this
vehicle had not yet been modified with the new SLAM
nose cone and additional sensors. However, it still presented
an opportunity to get practice with the operational side of
vehicle launch, recovery, in-water tracking, and to test the
sidescan sonar system. Fig. 11 shows survey tracklines and
sonar imagery collected of a newly found wreck outside of
the Sanctuary’s boundaries in approximately 50 m of water
depth.

IV. CONCLUSION

This paper provided an overview of PeRL’s AUV algo-
rithms research and testbed development at the University of
Michigan. To summarize, PeRL’s main research thrusts are
in the areas of (1) real-time visual SLAM; (2) cooperative
multi-vehicle navigation; and (3) perception-driven control.
Toward that goal we reported the modifications involved in
preparing two commercial Ocean-Server AUV systems for



(a) Mission overlay.

(b) 330 kHz sidescan imagery.

(c) 800 kHz sidescan imagery.

Fig. 11. Sidescan sonar mapping results from testing this summer in TBNMS. (a) A large area search was conducted first to locate the target wreck indicated
in the white box (survey tracklines are shown in green). A second finer-scale survey was then conducted to map the target at higher resolution (tracklines
overlaid in gray). (b) Target imagery found using 330 kHz sonar. (c) Detailed target imagery using 800 kHz sonar.

SLAM research at the University of Michigan. PeRL upgraded
the vehicles with additional navigation and perceptual sensors
including 12-bit stereo down-looking Prosilica cameras, a
Teledyne 600 kHz RDI Explorer DVL for 3-axis bottom-lock
velocity measurements, a KVH single-axis fiber-optic gyro-
scope for yaw rate, and a WHOI Micromodem for commu-
nication, along with other sensor packages. To accommodate
the additional sensor payload, a new Delrin nose cone was
designed and fabricated. Additional 32-bit embedded CPU
hardware was added for data-logging, real-time control, and
in-situ real-time SLAM algorithm testing and validation.

The impact of this research will be new multi-AUV navi-
gation performance that will enable new missions for ocean
science presently considered impractical or infeasible. The
fundamental robotic navigation algorithms developed in this
body of work will provide the requisite spatial scale, duration,
and autonomy required for in-situ benthic exploration by
AUVs. Our field testing and collaboration with the TBNMS
will provide validation of the proposed navigation methodolo-
gies in a real-world engineering testbed, while a new museum
exhibit on underwater robotics at their visitor center will
disseminate the findings and results of this research to the
general public.
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