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Abstract—As autonomous underwater vehicles (AUVs) are
becoming routinely used in an exploratory context for ocean
science, the goal of visually augmented navigation (VAN) is to
improve the near-seafloor navigation precision of such vehicles
without imposing the burden of having to deploy additional
infrastructure. This is in contrast to traditional acoustic long
baseline navigation techniques, which require the deployment,
calibration, and eventual recovery of a transponder network.
To achieve this goal, VAN is formulated within a vision-based
simultaneous localization and mapping (SLAM) framework that
exploits the systems-level complementary aspects of a camera
and strap-down sensor suite. The result is an environmentally-
based navigation technique robust to the peculiarities of low-
overlap underwater imagery. The method employs a view-based
representation where camera-derived relative-pose measurements
provide spatial constraints, which enforce trajectory consistency
and also serve as a mechanism for loop-closure, allowing for
error growth to be independent of time for revisited imagery.
This article outlines the multi-sensor VAN framework and
demonstrates it to have compelling advantages over a purely
vision-only approach by: (i) improving the robustness of low-
overlap underwater image registration, (ii) setting the free gauge
scale, and (iii) allowing for a disconnected camera-constraint
topology.

Index Terms—Computer vision, navigation, mobile robotics,
underwater vehicles, SLAM, and robotic perception.

I. INTRODUCTION

FROM exploring abandoned mines in Pennsylvania [1],to exploring other planets in our solar-system [2], robots

extend our reach to areas where human investigation is consid-

ered too dangerous, too technically challenging, or both. While

high profile missions like the 2004 Mars rovers epitomize
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the lengths that we will go to in search of new origins of

life, it cannot be overstated that exploring the deep-abyss

of our own oceans can be nearly as alien and offer just as

startling discoveries about early life. Though manned vehicles

like Alvin [3], [4] have been responsible for many of the

most important deep-science discoveries [5], [6], the extreme

design requirements, operational costs, risk of life, and limited

availability preclude its ubiquitous use. Therefore, out of

necessity the deep-sea has become an arena where the presence

of mobile robotics is pervasive and their scientific utility

revolutionary [7]–[9].

While underwater mobile robotics have made significant

inroads into mainstream science over the past two decades,

a limiting technological issue to their widespread utility, espe-

cially for exploration, is the lack of easily obtainable precision

navigation [10]. With the advent of the global positioning

system (GPS) [11] many surface and air vehicle applications

are able to easily obtain their position anywhere on the globe

with precision of a few meters via the triangulation of satellite

transmitted radio signals. Unfortunately, these radio signals

do not penetrate sub-sea [12], [13] (nor underground [1], nor

even indoors [14]). Hence, traditional underwater navigation

strategies use acoustic ranging systems whereby seafloor-

tethered beacons relay time-of-flight range measurements for

triangulated positioning [13], [15]. The cost, complexity, and

limitations of this infrastructure dependent solution, however,

leave much to be desired, which is further complicated by the

fact that alternative strap-down methods suffer from a position

drift that grows unbounded with time [13].

Over the past decade, a big research push within the

terrestrial mobile robotics community has been to develop

environmentally-based navigation algorithms, which eliminate

the need for additional infrastructure and bound position error

growth to the size of the environment — a key prerequisite for

truly autonomous navigation. The basis of this work has been

to exploit the perceptual sensing capabilities of robots to “beat-

down” accumulated odometric error by localizing the robot

with respect to landmarks in the environment. The question of

how to use such a methodology for navigation and mapping

was first theoretically addressed in a probabilistic framework

in the mid 1980’s with seminal papers by Smith, Self, and

Cheeseman [16] and Moutarlier and Chatila [17], which have

since then become the cornerstone of the research field known

as simultaneous localization and mapping (SLAM).

One of the major challenges of a SLAM methodology is that

defining what constitutes a feature from raw sensor data can be

nontrivial. In man-made environments, typically composed of

planes, lines and corners primitives, features can be more eas-
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ily defined [18]. However, unstructured outdoor environments

can pose a more challenging task for feature extraction and

matching, which has lead to scan-matching based approaches

that do not require an explicit representation of features [19],

[20]. These view-based, data-driven techniques have tradition-

ally been used with accurate perceptual sensors such as laser

range finders where raw data can be matched directly (e.g., in

an iterative closest point sense [21]). Along these lines, our

underwater approach is to use a camera as an accurate and

inexpensive perceptual sensor to collect near-seafloor imagery

that can also be matched directly. Motivation for such an

approach comes from the fact that, in practice, autonomous

underwater vehicles (AUVs) typically collect imagery using a

digital-still camera and not video (to minimize the amount of

power consumption spent on illumination [22]). This results in

a temporally low-overlap image sequence with the implication

that 3D features in the environment are not observed for

more than a couple of frames. Such a low-overlap constraint

implies that a view-based representation is particularly suitable

for this type of data, since overlapping image pairs from a

calibrated camera can be registered in a pairwise fashion to

extract “zero-drift”, relative-pose modulo scale measurements,

without explicitly representing 3D feature points. In this way,

registering an image taken from time ti to an image taken at
time tj provides a spatial constraint whose error is bounded
regardless of time or the trajectory followed between the two

views.

In the rest of this article we present our framework and

methodology for incorporating camera-derived relative-pose

measurements with vehicle navigation data in a view-based

SLAM context (Fig. 1). In particular, §II and §III describe our
assumptions and coordinate frame conventions, respectively.

§IV presents a delayed-state SLAM framework for fusing
camera measurements that also serves as a foundation for

probabilistic link hypothesis. In §V we explain how to actually
make the pairwise camera measurement using a systems-

level, feature-based, image registration approach. We show

that a multi-sensor approach has compelling advantages over

a camera-only navigation system and, in particular, that it

improves registration robustness via a novel pose-constrained

correspondence search. Results are presented in the context of

a real-world data set collected by an AUV in a rugged under-

sea environment, and for tank data collected by a remotely

operated vehicle (ROV) for which position ground-truth is

available.

II. ASSUMPTIONS

Our application is based upon using a pose instrumented

AUV equipped with a single downward-looking digital-still

calibrated camera to perform underwater imaging and map-

ping. We assume that the vehicle can make acoustic measure-

ments of both velocity and altitude relative to the seafloor,

that absolute orientation is measured to within a few degrees

over the entire survey area via inclinometers and a magnetic

compass, and that bounded positional estimates of depth, Z,

are provided by a pressure sensor. A detailed discussion of

our particular AUV platform can be found in [23], [24]. For
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Fig. 1. The objective of visually augmented navigation (VAN) is the real-
time fusion of “zero-drift” camera measurements with navigation sensor data
to close-the-loop on dead-reckoned error. For this purpose VAN adopts a top-
down systems-level approach to visual navigation. At its core, VAN is founded
upon registering raw imagery to generate pairwise camera constraints that are
then fused with navigation sensor data in a view-based SLAM framework.

TABLE I

TYPICAL POSE SENSOR CHARACTERISTICS FOR UNDERWATER

PLATFORMS.

Measurement Sensor Precision

Roll/Pitch Tilt Sensor ±0.5◦

Heading Magnetic Compass ±2.0◦

3-Axis Angular Rate AHRS ±1.0◦/s
Body Frame Velocities Acoustic Doppler ±1–2 mm/s
Depth Pressure Sensor ±0.01%
Altitude Acoustic Altimeter ±0.1 m

convenience, Table I provides a short summary of assumed

sensor characteristics. In brief we assume:

• An ideal (i.e., lens distortion compensated) calibrated

camera.

• A pose-instrumented platform.

• Known reference frames (e.g., extrinsic camera to vehicle

coordinate transform).

• Pairwise image registration using a six degree of freedom

(DOF) motion model to accommodate low-temporal over-

lap.

III. 6-DOF COORDINATE FRAME RELATIONSHIPS

This section describes the reference frames used in vehicle

navigation and their 6-DOF coordinate frame relationships as

illustrated in Fig. 2. We follow standard SNAME1 convention

[25] and define the vehicle frame, denoted subscript v, to be
coincident with a fixed point on the vehicle and oriented such

that the positive Xv-axis is aligned with the bow, positive

Yv-axis to starboard, and Zv-axis down, thus completing a

right handed coordinate frame.

Additionally, we must consider each onboard sensors’ inter-

nal coordinate frame (in which measurements are expressed)

and its subsequent relationship to the vehicle. The sensor

frame, denoted subscript s, is assumed to be static and known
with respect to the vehicle frame (i.e., calibrated beforehand);

we denote this sensor to vehicle coordinate frame relationship

notationally as xvs. Also, two navigation frames are defined

and used for expressing vehicle pose. The first is the world

1The Society of Naval Architects and Marine Engineers.
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Fig. 2. Illustration of the different reference frames used within VAN. Frames
w and ℓ represent the world and local-level frames, respectively. Frame v
represents the vehicle reference frame while frame s represents an arbitrary
sensor frame. The sensor and vehicle frames are attached to the same rigid
body and therefore are static with respect to each other.

frame, denoted subscript w, which is a static reference frame
located at the water surface oriented with Xw-East, Yw-North,

and Zw-Up. It is useful for displaying results since it follows

standard map convention; vehicle position with respect to

this frame is denote xwv . The second navigation frame that

we define is the local-level frame, denoted subscript ℓ. This
frame is coincident with the world frame, however, it is

oriented with Xℓ-North, Yℓ-East, Zℓ-Down and corresponds

to a zero-orientation (i.e., local-level) version of the vehicle

frame. This frame is useful for navigation because standard

compass-measurements are consistent with the right-hand rule

convention about the z-axis. Vehicle position in this frame is

denoted xℓv.

Throughout this article, we adopt the Smith, Self, and

Cheeseman coordinate frame convention [16]. Standard co-

ordinate transformation operations are the compounding and

inverse coordinate frame relationships, which are denoted as

xik = xij ⊕ xjk, and xji = ⊖xij , respectively.

IV. VIEW-BASED SLAM ESTIMATION FRAMEWORK

Typical structure-from-motion (SFM) approaches estimate

both camera motion and 3D scene structure from a sequence

of video frames. In our application, however, the low degree of

temporal image overlap (typically on the order of 35% or less

with digital-still imagery) motivates us to focus on recover-

ing pairwise measurements from spatially neighboring image

frames. In this approach, the camera provides observation of

the 6-DOF relative coordinate transformation between poses

modulo scale (via calculation of the Essential matrix). These

measurements are used as constraints in a recursive estimation

framework that determines the global poses consistent with the

camera measurements and navigation prior. The global poses

correspond to samples from the robot’s trajectory at the times

associated with image acquisition. Thus, unlike the typical

feature-based SLAM estimation problem, which keeps track of

the current robot pose and an associated landmark map [16],

the VAN state vector consists entirely of historical trajectory

xtxt−1xt−2· · ·xt0

camera camera

camera

camera

navnavnavnav

Fig. 3. A view-based representation consists of a network of navigation and
camera constraints over a collection of delayed-state vehicle poses.

samples sampled at image acquisition. In our nomenclature

these samples are refereed to as delayed-states.

The delayed-state approach corresponds to a view-based

representation of the environment where dead-reckoned sensor

navigation provides temporal (Markov) observations while

overlapping imagery provides both temporal and non-temporal

(i.e., spatial image overlap) pose constraints (Fig. 3). This

view-based approach can be traced through the literature to a

batch scan-matching method by Lu and Milios [19] using laser

range data, a delayed decision making framework by Leonard

and Rikoski [26] for feature initialization with sonar data,

and the hybrid batch/recursive formulations by Fleischer [27]

and McLauchlan [28] using camera images. In this context,

pairwise registered imagery results in observation of relative

robot motion with respect to a place it has previously visited.

A. Delayed-State Filtering

We begin by describing our representation of vehicle state

and a general system model for state evolution and ob-

servation. We show how this representation can be used

to incorporate camera-derived relative-pose measurements by

augmenting our state representation to include historical trajec-

tory samples (i.e., delayed-states). For the sake of conceptual

clarity, we outline the procedure of delayed-state filtering

within the context of an extended Kalman filter (EKF) [29],

which is a well-known inference approach to SLAM [16].2

While this work follows that of Garcia [34] and Fleischer

[27], it substantially differs by extending the motion and

camera models to deal with 6-DOF movement in a fully 3D

environment.

1) Fixed-Size State Description: The vehicle state vector,

xv, contains both pose, xp, and kinematic terms, xκ, and is

defined as

xv ≡
[
x
⊤
p , x

⊤
κ

]⊤
.

Here, xp is a 6-vector of vehicle pose in the local-

level navigation frame where XYZ roll, pitch, and heading

Euler angles are used to represent orientation [25] (i.e.,

xp ≡ xℓv ≡
[
x, y, z, φ, θ, ψ

]⊤
), and xκ represents any kine-

matic state elements that are required for propagation of

2In practice, the EKF SLAM framework does not scale well to large-
environments due to the quadratic complexity in maintaining the joint-
correlations. In separate publications [30]–[33], we have developed a novel
scalable framework based upon exploiting natural exact sparsity in the EKF’s
dual — an extended information filter (EIF). Since the EIF is the dual of the
EKF, the methods and results we present in this article equally apply to the
EIF framework. For conceptual clarity, however, we instead present the more
standard EKF-based formulation so that we can focus on the contributions of
our systems-level VAN methodology.
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the vehicle process model (e.g., body-frame velocities, ac-

celerations, angular rates). In addition, we assume that the

vehicle state can be modeled as being normally distributed,

xv ∼ N
(
µv,Σvv

)
, with mean and covariance given by

µv =
[
µ⊤

p , µ⊤
κ

]⊤
and Σvv =

[
Σpp Σpκ

Σκp Σκκ

]

.

The vehicle state evolves through a time-varying continuous

time process model, f( · , t), driven by additive white noise,
w(t) ∼ N

(
0,Q(t)

)
, and deterministic control inputs, u(t),

while discrete time measurements, z[tk], of elements in the
vehicle state are observed through an observation model,

h( · , tk), corrupted by additive time independent Gaussian
noise, v[tk] ∼ N

(
0,Rk

)
, with E

[
wv

⊤] = 0. The resulting
system model is:

ẋv(t) = f(xv(t),u(t), t) + w(t)

z[tk] = h(xv[tk], tk) + v[tk].
(1)

As is typical in the navigation literature, the vehicle state

distribution is approximately maintained using a continuous-

discrete EKF [29]:

Prediction
µ̇v(t) = f(µv(t),u(t), t)

Σ̇vv(t) = FxΣvv(t) + Σvv(t)F⊤
x + Q(t)

(2)

Update

K = Σ̄vvH⊤
x

(
HxΣ̄vvH⊤

x + Rk

)−1

µv = µ̄v + K
(
z[tk]− h(µ̄v, tk)

)

Σvv =
(
I−KHx

)
Σ̄vv

(
I−KHx

)⊤
+ KRkK⊤

(3)

where Fx = ∂f

∂xv

∣
∣
µv

and Hx = ∂h

∂xv

∣
∣
µ̄v

are the process and

observation model Jacobians, respectively. In this formulation,

the predicted vehicle distribution, x̄v ∼ N
(
µ̄v, Σ̄vv

)
, is com-

puted between asynchronous sensor measurements by solving

(2) via a fourth-order Runge-Kutta numerical integration ap-

proach [35].

Unfortunately, the fixed-size state description, xv , does

not allow us to represent our pairwise camera constraints.

This is because registration of an image pair results in a

relative-pose measurement modulo scale, and not an absolute

observation of elements in vehicle pose, xp. Therefore, before

we can incorporate pairwise camera constraints, we have to

first augment our state representation to include a history of

vehicle poses where each delayed-state entry corresponds to

an image in our view-based map. Under this representation,

the distribution we are trying to estimate is p
(
ξt

∣
∣z

t,ut
)
where

z
t represents all measurements up to time t (including camera
and navigation sensors), ut is the set of all control inputs, and

ξt is our view-based SLAM state vector. Next, we describe

the process of how delayed-states are added to our view-based

map.

2) Augmenting our State Description with Delayed-States:

At time t1, corresponding to when the first image frame, I1, is
acquired, we augment our state description, ξt, to include the

vehicle’s pose of where it was when it acquired that image

(i.e., ξt = [x⊤
v , x

⊤
p1

]⊤). Therefore, at this time instance the

augmented state distribution, ξt ∼ N
(
µt,Σt

)
, is given by

µt =
[
µv[t1]

⊤, µp[t1]
⊤

]⊤ ≡
[
µ⊤

v , µ⊤
p1

]⊤

Σt =

[
Σvv[t1] Σvp[t1]
Σ⊤

vp[t1] Σpp[t1]

]

≡
[

Σvv Σvp1

Σp1v Σp1p1

]

.
(4)

This process is repeated for each camera frame that we wish

to include in our view-based map so that after augmenting n
delayed states (one for each retained camera frame) we have

ξt =
[
x
⊤
v , x

⊤
p1
, · · · , x

⊤
pn

]⊤
with

µt =








µv

µp1

...

µpn







and Σt =








Σvv Σvp1
· · · Σvpn

Σp1v Σp1p1
· · · Σp1pn

...
...

. . .
...

Σpnv Σpnp1
· · · Σpnpn







.

(5)

Note that in (4) the vehicle’s current pose, xp, is fully

correlated with xp1
by definition. Therefore, when the nth

delayed-state, xpn
, is augmented in (5), its cross-correlation

with the other delayed-states in Σt is non-zero since the

current vehicle state has correlation with each delayed-state.

The system model (1) must be also be extended to incorpo-

rate the augmented state representation. For the process model

the only required change is that xv continue to evolve through

the vehicle dynamic model, f( · , t), while the delayed-state
entries do not:

ξ̇t =
d

dt








xv

xp1

...

xpn








=








f(xv(t),u(t), t) + w(t)
06×1

...

06×1







.

Similarly, navigation sensor observation models continue to

remain a function of only the current vehicle state, xv , which

results in sparse Jacobians of the form

Hξ =
[
Hx, 0m×6, · · · , 0m×6

]
,

where m is the dimension of the measurement. In the case
of camera-derived measurements, however, the observation

model is a function of delayed-states entries as we discuss

next.

B. Pairwise Camera Observation Model

Pairwise image registration from a calibrated camera has

the ability to provide a measurement of relative-pose modulo

scale between delayed-state elements xpi
and xpj

, provided

images Ii and Ij have common overlap. In deriving the
camera observation model we use the familiar Smith, Self, and

Cheeseman coordinate transformation operations (i.e., head-to-

tail, tail-to-tail, and inverse) [16], and assume that the extrinsic

camera to vehicle pose, xvc, is known.
1) Camera Relative Pose: The delayed-state entries xpi

and

xpj
correspond to vehicle poses xℓvi

and xℓvj
, respectively,

as represented in the local-level navigation frame defined in

§III. Hence, using the extrinsic camera to vehicle pose, xvc,

we can express the transformation from camera frame i to j
using the tail-to-tail operation as

xcjci
= ⊖xℓcj

⊕ xℓci
(6a)

= ⊖(xℓvj
⊕ xvc)⊕ (xℓvi

⊕ xvc), (6b)
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with Jacobian

Jcjci
=

∂xcjci

∂(xℓvj
, xℓvi

)
=

∂xcjci

∂(xℓcj
, xℓci

)

∂(xℓcj
, xℓci

)

∂(xℓvj
, xℓvi

)
︸ ︷︷ ︸

chain-rule

(7a)

= ⊖J⊕
∣
∣
(xℓcj

, xℓci
)

[
J1⊕

∣
∣
(xℓvj

, xvc)
06×6

06×6 J1⊕

∣
∣
(xℓvi

, xvc)

]

.

(7b)

2) 5-DOF Camera Measurement: What the camera actually

measures, however, is not the 6-DOF relative-pose measure-

ment (6), but instead only a 5-DOF measurement due to loss of

scale in the image formation process. This loss of scale implies

that only the baseline direction, as represented by azimuth and

elevation angles αji and βji, respectively, is recoverable from

image space. Realizing that the relative-pose measurement

xcjci
is parameterized by

xcjci
= [cjt

⊤
cjci

,Θ⊤
cjci

]⊤ = [xji, yji, zji, φji, θji, ψji]
⊤,

we can express the bearing-only baseline measurement of αji

and βji as

αji = tan-1(yji/xji)

βji = tan-1
(
zji/

√

x2
ji + y2

ji

)
.

with Jacobian

Jαβ =
∂(αji, βji)

∂cjtcjci

=





−yji

x2
ji+y2

ji

xji

x2
ji+y2

ji

0

−zjixji

t2
√

x2
ji+y2

ji

−zjiyji

t2
√

x2
ji+y2

ji

x2
ji+y2

ji

t2



,

where

t =
∥
∥cjtcjci

∥
∥ =

√

(x2
ji + y2

ji + z2
ji).

Hence, the pairwise 5-DOF camera observation model be-

comes (Fig. 4)

zji = hji(ξt) = hji(xpj
,xpi

) = [αji, βji, φji, θji, ψji]
⊤,
(8)

with Jacobian

Hξ =
[

0 · · · ∂hji

∂xpj

· · · 0 · · · ∂hji

∂xpi

· · · 0
]

,

where

∂hji

∂(xpj
,xpi

)
=

∂hji

∂xcjci

∂xcjci

∂(xpj
,xpi

)
=

[
Jαβ 02×3

03×3 I3×3

]

Jcjci
.

3) What do pairwise camera measurements tell us?: Now

that we have derived how to model pairwise camera measure-

ments, it’s worth intuitively describing what a 5-DOF relative-

pose observation means in terms of reducing navigation error.

First of all, pairwise camera measurements (8) provide us

with a bearing-only measurement of the baseline between

poses — hence, we are dependent upon our navigation sensors

to set the free-gauge scale. In our application this scale is

implicitly fixed within the filter by two sources: (i) bounded-

error measurements of depth variations (Z direction) coming

from a pressure sensor, and (ii) Doppler velocities that provide

an integrated measurement of XYZ position.

j
iR(φji, θji, ψji)

j
tji

Oj

Oi

αji, βji

αji azimuth
βji elevation

φji Euler roll
θji Euler pitch
ψji Euler yaw

Fig. 4. An illustration of the pairwise 5-DOF camera measurement (i.e.,
relative-pose modulo scale).

Secondly, (8) tells us that camera measurements can only

reduce relative positional error components that are orthogonal

to the baseline motion. Referring to Fig. 4 we see that frame

Oi can slide anywhere along the baseline,
j
tji, without

effecting the measure of azimuth/elevation. This suggests that

temporal camera measurements do very little to reduce along-

track error growth (though, they still refine the direction

of motion). Hence, long linear surveys will benefit far less

from camera constraints than surveys incorporating cross-over

points, where “loops” in the trajectory result in ample spatial

constraints.

Finally, the nonlinear bearing-only constraints of (8) imply

that linearization errors in the observation model will be less

significant if we can maintain good map contact (e.g., typical

boustrophedon surveys achieve this) to prevent our lineariza-

tion point from drifting too far from the truth. This also

suggests that when closing large loops, where the linearization

point may be far from the true state, that we should incorporate

the pairwise camera constraints in aggregate via some form

of triangulation — a technique commonly used for feature-

initialization in bearing-only SLAM applications [36].

C. Link Hypothesis

An essential task in a view-based representation is hy-

pothesizing probable overlapping image pairs. Because image

registration is arguably the slowest component in the VAN

framework, it is to our advantage to feed the registration

module only likely candidate pairs so as to not waste time

attempting registration on images that have a low likelihood

of overlap. Since our hovering AUV flies in a closed-loop

bottom-following mode for camera surveys, it maintains an

approximately constant altitude above the seafloor. For sim-

plicity, our link hypothesis strategy is based upon a grossly-

simplified 1D model for image overlap (i.e., analogous to a

circular field of view assumption) that uses our state estimate

and altimeter measured scene altitude to project image foot-

prints onto a horizontal plane as illustrated in Fig. 5. When

computing pairwise overlap we assume the larger altitude of

the camera pair in our calculations (Fig. 5(b)).

Assuming the above mentioned configuration, image per-
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Oi

Oj

FOV

FOV

dij

Ai
Aj

Wi = 2Ai tan( 1
2

FOV)

Wj = 2Aj tan( 1
2

FOV)

(a)

Oi
Oj

FOV FOV

dij

Amax Amax = max(Ai, Aj)

Wmax = 2Amax tan( 1
2

FOV)

Wmax

(b)

Fig. 5. Calculation of pairwise overlap for link hypothesis. (a) To simplify
the calculation of image overlap, we reduce it to a 1D case on a horizontal
plane. In the illustrations above, Oi and Oj are the camera centers, FOV is
the field of view, Ai and Aj are the altimeter measured altitudes, Wi and
Wj are the computed 1D image widths, and dij is the Euclidean baseline
distance derived from our state estimate. (b) Assuming the vehicle’s closed-
loop control approximately maintains a constant altitude above the seafloor
then Ai ≈ Aj . Therefore, we further simplify the calculation by assuming
the larger altitude for both cameras.

cent overlap, ǫ, can be defined as

ǫ =

{

1− dij

Wmax
0 ≤ dij ≤Wmax

0 otherwise
.

Here, dij is the Euclidean distance between the camera centers,

Wmax = 2Amax tan(1
2FOV) is the 1D image width, Amax

is the larger altitude of the pair, and FOV is the camera

field of view. Under this scheme, we can set thresholds for

minimum and maximum percent image overlap to obtain

constraints on camera distance. We can then compute a first-

order probability associated with whether or not the distance

between the camera pair falls within these constraints. This

calculation serves as the basis of our automatic link hypothesis

algorithm, outlined in Algorithm 1, where all frames in our

view-based map are checked to see whether or not they could

overlap with the current robot view (i.e., linear complexity in

the number of views). The k most likely candidates (k = 5 in
our application) are then sent to our image registration module

for comparison. While simple, we have obtained good results

with this approximation over multiple distinct data sets, and it

has been the basis for the work presented in this article using

automatically proposed links.

V. GENERATING THE 5-DOF CAMERA MEASUREMENT

Having presented a view-based estimation framework capa-

ble of incorporating 5-DOF relative-pose measurements, we

now turn our attention to explaining how we actually make

the pairwise camera measurement. At its core is a feature-

based image registration engine whose purpose is to generate

pairwise measurements of relative-pose. Essential to this goal

is the capability to cope with low-overlap image registration

for two main reasons.

1) Low-overlap digital-still imagery is common in our

temporal image sequences due to the nature of our

underwater application. Therefore, we must be able to

accommodate images in the temporal sequence having

35% or less sequential overlap.

2) Loop-closing and cross-track spatial image constraints

are the greatest strength of a VAN methodology. It is

1: define: k {maximum number of candidates to return}
2: define: ǫmin ∈ [0, 1] {minimum percent overlap}
3: define: ǫmax ∈ [0, 1] {maximum percent overlap}
4: define: α ∈ [0, 1] {confidence-level}
5: for all Ii do
6: Amax ← max(Ai, Ar)
7: Wmax ← 2Amax tan(1

2FOV)
8: dmin ← (1− ǫmax) ·Wmax

9: dmax ← (1− ǫmin) ·Wmax

10: extract from our state, ξt, the joint-marginal:[
xpi

xpr

]

∼ N
(
[
µpi

µpr

]

,

[
Σpipi

Σpipr

Σprpi
Σprpr

]
)

11: compute the relative camera pose, xcrci
, and its first-

order statistics (6),(7)

12: using xcrci
compute the Euclidean distance dri and its

first-order statistics:

dri ∼ N
(
µdri

, σ2
dri

)
where dri ← ‖crtcrci

‖
13: compute the probability Pi that dmin < dri < dmax:

Pi ←
∫ dmax

dmin
N

(
τ ;µdri

, σ2
dri

)
dτ

14: if Pi > α then
15: add Ii to the candidate set S
16: end if

17: end for

18: sort candidate set S by Pi and return up to the k most
probable candidates

Algorithm 1: View-based link hypothesis. Hypothesize which

images, Ii, in our view-based map have a high probability of
overlapping with the current robot view, Ir.

these measurements that help to correct dead-reckoned

drift error and enforce recovery of a consistent trajectory.

Since low-overlap viewpoints are typical in this scenario,

this condition would arise even if temporal overlap were

much higher as with video-frame rates.

Thus, in order to be able to successfully handle low-overlap

image registration, our approach has been to extend a typical

state-of-the-art feature-based image registration framework to

judiciously exploit our navigation prior wherever possible.

For example, in §V-B we show how we can exploit ab-
solute orientation sensor measurements to reduce viewpoint

variability in our feature encoding, and also obtain a good

initialization for pairwise maximum likelihood refinement. We

also show in §V-C how we can use our pose prior and altitude
measurements to improve the robustness of correspondence

establishment via a novel pose-constrained correspondence

search.

A. Pairwise Feature-Based Image Registration

1) Geometric Feature-Based Algorithm: Our feature-based

registration algorithm generally follows a state-of-the-art ge-

ometrical computer vision approach as described by Hartley

and Zisserman [37] and Faugeras, Luong, and Papadopoulo

[38]. Figures 6 and 7 illustrate the overall hierarchy of our

feature-based algorithm founded on:

• Extract a combination of both Harris [40] and SIFT

[41] interest points from each image. It has been our
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(a) Harris interest points. (b) SIFT feature points. (c) Inlier correspondences.

(d) MLE epipolar geometry. (e) MLE relative-pose and texture mapped scene (units in meters).

Fig. 6. Typical output from our pairwise feature-based image registration module for a temporally sequential pair of underwater images. To aid visualization,
the images have been color corrected using the algorithm described in [39]. The pose and triangulated 3D feature points are the final product of a two-view
MLE bundle adjustment step. The 3D triangulated feature points have been gridded in MATLAB to give a coarse surface approximation that has then been
texture mapped with the common image overlap (the baseline magnitude is set to the navigation prior for visualization).
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Ii Ij

Feature Extract Feature Extract

Feature Encode Feature Encode
Pose Prior
ℓ
iR,ℓtℓi

Pose Prior
ℓ
jR,ℓtℓj

Pose Restricted

Correspondence Search

Robust Correspondences

using LMedS &

6-pt Algorithm E

Relative-Pose
i
jR,itij

Horn’s Relative Orientation Algorithm

with Regularized Sampling

of our Attitude Prior

Two-view Bundle Adjustment

5-DOF

Relative-Pose Measurement

& Covariance

Fig. 7. An overview of the pairwise image registration engine. Dashed
lines represent additional information provided by our state estimate, while
bold boxes represent our systems-level extensions to a typical feature-based
registration framework.

experience that the Harris points provide a high density

of temporal matches thereby yielding a high precision

observation of along-track motion, while the SIFT’s ro-

tational and scale invariance adds cross-track robustness

by providing a sufficient number of putative correspon-

dences for loop-closing. For the Harris points, we first

normalize the surrounding interest regions by exploiting

our navigation prior to apply an orientation correction via

the infinite homography [37] before compactly encoding

using Zernike moments [42].

• Establish putative correspondences between overlapping

candidate image pairs based upon similarity and a pose-

constrained correspondence search (PCCS) [43].

• Employ a statistically robust least median of squares

(LMedS) [44] registration methodology with regularized

sampling [45] to extract a consistent inlier correspon-

dence set. For this task we use a 6-point Essential matrix

algorithm [46] as the motion-model constraint.

• Solve for a relative-pose estimate using the inlier set and

Horn’s relative orientation algorithm [47] initialized with

samples from our orientation prior.

• Carry out a two-view maximum likelihood estimate

(MLE) to extract the 5-DOF relative-pose constraint (i.e.,

azimuth, elevation, Euler roll, Euler pitch, Euler yaw) and

first-order parameter covariance based upon minimizing

the reprojection error over all inliers [37].

2) Calibrated Camera Model: Within our feature-based

framework, we assume a standard calibrated pin-hole camera

model [37] as illustrated in Fig. 8. This means that the

homogeneous mapping from world to image plane can be

��
��
��
��

x

y

v

X

u

f

Z

Y
Camera

Coordinates

Coordinates

Image Plane

Pixel

M

m’

m

Coordinates

��

��
��
��
����
��
��
��

Fig. 8. Illustration of a pinhole camera model. An intrinsically calibrated
camera implies that the mapping from Euclidean camera coordinates to image
pixel coordinates is known. The pinhole projective mapping from scene point
M to image point m is described in homogeneous coordinates in terms
of a 3 × 4 projection matrix P = K[R | t] where K is the 3 × 3 upper
triangular intrinsic parameter matrix and R,t describe the extrinsic coordinate
transformation from scene to camera centered coordinates [37]. In practice,
we must also account for the lens distortion, which further maps m to m

′

[48].

described by a 3× 4 projection matrix P defined as

P = K
[
c
wR

∣
∣ c

tcw

]
.

Here, cwR and c
tcw encode the coordinate transformation from

world, w, to camera centered coordinate frame, c, and

K =





αu s uo

0 αv vo

0 0 1





is the known 3×3 upper triangular intrinsic camera calibration
matrix with αu, αv the pixel focal lengths in the x, y direc-
tions, respectively, (uo, vo) is the principle point measured in
pixels, and s is the pixel skew.
Under this representation the interest point with pixel coor-

dinates (u, v) in image I is imaged as

u = PX (9)

where u = [u, v]
⊤
is the vector description of (u, v),

u = [u⊤, 1]⊤ its normalized homogeneous representation,

X = [X,Y,Z]⊤ is the imaged 3D scene point, and

X = [X⊤, 1]⊤ its normalized homogeneous representation.
Note that for all homogeneous quantities, equality in expres-

sions such as (9) is implicitly defined up to scale. The benefit

of having a calibrated camera is that we can “undo” the

projective mapping in (9) and instead work with Euclidean

rays:

x = K−1
u =

[
c
wR

∣
∣ c

tcw

]
X.

The implication is that we can now describe the epipolar ge-

ometry in terms of the Essential matrix [37] and recover the 5-

DOF camera pose from correspondences. For our application,

we obtain the intrinsic calibration matrix, K, by calibrating in
water using Zhang’s planar method [49] and employ Heikkilä’s

radial/tangential distortion model [48] to compensate for both

lens and index of refraction effects.



EUSTICE et al.: VISUALLY AUGMENTED NAVIGATION FOR AUTONOMOUS UNDERWATER VEHICLES 9

B. Exploiting Sensor-Measured Absolute Orientation

1) Infinite Homography View Normalization: Establishing

feature correspondences is arguably the most difficult task in

a feature-based registration approach — this is especially true

for low-overlap image registration. Without any knowledge

of extrinsic camera information, robust techniques must rely

upon encoding features in a viewpoint invariant way. For ex-

ample, rotational and scale differences between images render

simple correlation-based similarity metrics useless. Therefore,

to overcome these limitations, advanced techniques generally

rely upon encoding some form of locally invariant feature

descriptor such as differential invariants [50], generalized

image moments [42], [51], [52], and affine invariant regions

[53]–[55]. These higher-order descriptions, however, also tend

to be computationally expensive.

In the case of an instrumented platform with absolute

measurements of orientation, we can use sensor-derived in-

formation to our advantage to relax the demands of the

feature encoding while at the same time making it a more

discriminatory metric. For example, attitude can be measured

with bounded-error over the entire survey site. Therefore, in

our application we use sensor-derived absolute orientation

information on camera pose xℓci
to normalize the feature

regions around the Harris interest points in image Ii via the
infinite homography:

H∞ = K ℓ
ci
RK−1.

This homography warps image Ii, taken from camera pose
xℓci
, into a synthetic view Iℓ, corresponding to a simulated

view from a colocated frame at a canonical orientation. This

viewpoint mapping is exact for points at infinity where X =
[X,Y, 0, 1], but otherwise can be used to compensate for
viewpoint orientation (note that scene parallax is still present).

We compute H∞ based upon our attitude estimate at image

acquisition and apply it as an orientation correction to our

images when encoding the Harris features. As demonstrated

in Fig. 9, this warp effectively yields a synthetic view of

the scene from a canonical camera coordinate-frame aligned

North, East, Down. This allows normalized correlation to be

used as a similarity metric between Harris points and tends

to work well for temporally sequential image sequences by

generating a high density of matches. This scheme in concert

with SIFT features has proven to be successful for obtaining

robust similarity matches over the entire survey site.

2) Sampling from our Orientation Prior: We can also

take advantage of our absolute orientation prior by obtaining

an initial relative-pose solution using Horn’s algorithm [47].

Given a set of inlier feature correspondences and an initial

orientation guess, Horn’s algorithm iteratively calculates a

relative-pose estimate based upon enforcing the co-planarity

condition over all ray pairs (i.e., if a ray from the left and

right camera are to intersect then they must lie in a plane

that also contains the baseline). If the orientation guess is

approximately close to the true orientation, Horn’s algorithm

quickly converges to a minimal co-planarity error solution.

Since orientation can be measured with bounded precision

over the entire survey site while the camera baseline cannot,

u
v

(a) Original lens distortion com-
pensated image, Ii.

North

East

(b) Normalized image, Iℓ, using
H∞ warp.

Fig. 9. A demonstration of synthetically normalizing for the camera
orientation via the infinite homography. The imagery is of deep-water coral.

we use Horn’s algorithm to obtain our initial 5-DOF relative-

pose solution, which is then refined in a two-view bundle

adjustment step based upon minimizing the reprojection error

[37].

C. Pose-Constrained Correspondence Search (PCCS)

As previously mentioned, the problem of initial feature cor-

respondence establishment is arguably the most difficult and

challenging task of a feature-based registration methodology.

As we show in this section, having a pose prior relaxes the

demands on the complexity of the feature descriptor — instead

of having to be globally unique within an image, it now is

required to be only locally unique. We use the epipolar geom-

etry constraint expressed as a two-view point transfer model to

restrict the correspondence search to probable regions. These

regions are determined by our pose prior and altitude, and are

used to confine the interest point matching to a small subset of

candidate correspondences. The benefit of this approach is that

it simultaneously relaxes the demands of the feature descriptor

while at the same time improves the robustness of similarity

matching.

1) Epipolar Uncertainty Representation: Zhang [45] first

characterized epipolar geometry uncertainty in terms of the

covariance of the fundamental matrix while Shen [56] used

knowledge of the pose prior to restrict the correspondence

search to bands along the epipolar line calculated by propa-

gating pose uncertainty. However, a criticism of both of these

characterizations is that the uncertainty representation is hard

to interpret in terms of physical parameters — how does

one interpret the covariance of a line? Our approach is to

use a two-view point transfer mapping that benefits from a

direct physical interpretation of the pose parameters and, in

addition, can take advantage of scene range data if available.

While similar to Lanser’s technique [57], our approach does

not assume nor require that an a priori CAD model of the

environment exist.

2) Two-View Point Transfer Model: In deriving the point

transfer mapping we assume projective camera matrices

P = K[I |0] and P′ = K[R | t], where for notational conve-
nience we simply write the relative-pose parameters as R,t.
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We begin by noting that the scene pointX is projected through

camera P as

u = PX = KX,

which implies that explicitly accounting for scale we have

X ≡ ZK−1
u. (10)

The back-projected scene point, X, can subsequently be re-

projected into image I ′ as

u
′ = P′

X = K(RX + t). (11)

By substituting (10) into (11) and recognizing that the follow-

ing relation is up to scale, we obtain the homogeneous point

transfer mapping [37]:

u
′ = KRK−1

u + Kt/Z. (12)

Finally, by explicitly normalizing (12) we recover the non-

homogeneous point transfer mapping

u
′ =

H∞u + Kt/Z

H
3⊤
∞ u + tz/Z

(13)

where H∞ = KRK−1, H3⊤
∞ refers to the third row of H∞,

and tz is the third element of t.
When the scene depth Z of the image point u is known,
then (13) describes the exact two-view point transfer mapping.

When Z is unknown, however, then (13) describes a functional
relationship on Z (i.e., u

′ = f(u, Z)) that traces out the
corresponding epipolar line in I ′ [58].

3) Point Transfer Mapping with Uncertainty: Now that we

have derived the two-view point transfer mapping (13), in

this section we show how we can use it to constrain our

correspondence search between image pair (Ii, Ij) by using
our a priori pose knowledge from ξt. We begin by defining

the parameter vector, γ, as

γ = [x⊤
pi
,x⊤

pj
, Z, u, v]⊤ (14)

with mean, µγ , and covariance, Σγ , given by

µγ =









µpi

µpj

Z
u
v









Σγ =









Σpipi
Σpipj

0 0 0
Σpjpi

Σpjpj
0 0 0

0 0 σ2
Z 0 0

0 0 0 1 0
0 0 0 0 1









.

Here, xpi
, xpj

are the delayed-state vehicle poses extracted

from ξt (used to calculate relative camera pose according

to (6)), Z and σZ represent the scene depth parameters as

measured in camera frame i, and (u, v) describe the feature
location in pixels in image Ii. In defining Σγ we employ the

standard assumption that features are extracted with isotropic,

independent, unit variance noise [37] when defining the Σuv

sub-block. To obtain a first-order estimate of the uncertainty

in the point transfer mapping between Ii and Ij we compute

µu′ ≈ (13)
∣
∣
µγ

(15)

Σu′ ≈ JΣγJ⊤ (16)
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I1

cmatrix 3.17% non−zero

Fig. 10. The pose-constrained candidate correspondence matrix associated
with Fig. 11(c). The rows/columns correspond to an ordering of the feature
indices in Ii/Ij , respectively. Here, a nonzero entry indicates a potential
match. Note that without any a priori pose knowledge this matrix would be
full meaning that we would be forced to rely purely upon the discriminatory
power of the feature similarity measure to establish correspondences. Instead,
by applying the PCCS, we reduce the possible space of matches by over 97%.

where µu′ is the predicted point location of u in Ij , Σu′ its

covariance, and J = ∂u
′

∂γ
is the point transfer Jacobian.3

We use this knowledge to restrict our correspondence search

using a Mahalanobis distance test:

(
u
′ − µu′

)⊤
Σ−1

u′

(
u
′ − µu′

)
= k2 (17)

where the threshold k2 follows a χ2
2 distribution. Under this

scheme we test all feature points in Ij to see if they satisfy
(17), and if they do, then they are considered to be candidate

matches for u. Since relative-pose uncertainty depends on the

reference frame in which it is expressed, we apply the two-

view search constraint both forwards and backwards to obtain

a consistent candidate correspondence set. In other words,

candidate matches in Ij that correspond to interest points in
Ii are checked to see if they map back to the generating
interest point in Ii. Based upon this set of consistent candidate
matches, feature similarity is then used to establish the one-

to-one putative correspondence set.

Algorithm 2 describes the PCCS in pseudo-code where we

use scene depth, Z, and its uncertainty, σZ , as a convenient

parameterization for controlling the size of the search regions

in Ij through the definition of the parameter vector γ. For

example, in the case where no a priori knowledge of scene

depth is available, choosing any finite value for Z and setting
σZ →∞ recovers a search band along the epipolar line in
Ij whose width corresponds to the uncertainty in relative
camera pose, xcjci

(Fig. 11(a)). On the other hand, when

knowledge of an average scene depth, Zavg , exists (e.g., from

an altimeter), then it and an appropriately chosen σZ can be

used to limit the search space to ellipses centered along the

epipolar lines (Fig. 11(c)). Furthermore, in the case where

dense scene range measurements are available (e.g., from a

3We compute this Jacobian numerically as described in [37, §A4.2].
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(a) Search bands corresponding to no
scene depth prior (i.e., σZ → ∞).
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(b) Altimeter measured scene depth pro-
jected into the image plane (units in meters).

(c) Search bands become regions based
upon altimeter measured scene depth con-
straint.

Fig. 11. Demonstration of the PCCS for a temporal pair of underwater images. Images are arranged Ii above and Ij below; the two-view mapping is shown
for Ii → Ij . (a) Pose-prior instantiated epipolar lines are shown in both Ii and Ij . The search bands in Ij correspond to no knowledge of scene depth with
width attributable to relative-pose uncertainty. (b) Altimeter measured scene depth projected into the image plane of each view (the altimetry is derived from
the beam range measurements of the DVL). (c) The search regions now become ellipses based upon the altimetry constraint.

laser range finder or multibeam sonar), then scene depth, Z,
can be assigned on a point-by-point basis with high precision.

In any case, the PCCS greatly improves the reliability and

robustness of feature similarity matching by reducing the

candidate correspondence set to a relatively few number of

options as demonstrated in Fig. 10.

D. Are Pairwise Camera Measurements Correlated?

We now address the question of whether or not pairwise

camera measurements are correlated. Recall that a primary

assumption in the system model (1) is that measurements

are assumed to be corrupted by time independent noise. In

our view-based framework, images are pairwise registered to

produce a 5-DOF relative-pose measurement that is then fed

to the filter as an observation between the two correspond-

ing delayed-states. If an image is reused multiple times to

make multiple pairwise measurements, for example Ii ↔ Ij
and Ij ↔ Ik, then this raises the possibility that camera
measurements zij and zjk could be statistically correlated.

Neglecting such a correlation would put too much weight

on the filter update step since it would treat observations

zij and zjk as being independent pieces of information.

Unfortunately, actually computing all possible measurement

correlations quickly becomes intractable in any scan-matching

framework. Thus, like other scan-matching algorithms [19],

[20], out of practicality we assume relative-pose measurements

to be statistically independent.4 We argue, however, that for

our AUV application the low degree of temporal image

overlap in our digital-still imagery renders the measurement

independence assumption not particularly far from the truth.

To see this, we note that our camera-derived relative-pose

measurement and covariance are generated as an end-product

of a feature-based two-view maximum likelihood estimate

based upon minimizing the reprojection error. As is standard in

the vision community, the image feature locations are assumed

to be corrupted by independent isotropic noise of unit variance

[37]. Denoting the set of common features between Ii ↔ Ij
as Fij , and the set between Ij ↔ Ik as Fjk, the implication of

this noise model is that for null pairwise feature intersection

(i.e., Fij ∩ Fjk = ∅), the corresponding camera measurements

zij and zjk are uncorrelated [58]. Hence, pairwise indepen-

dence holds for image sequences with less than 50% sequential

image overlap, which is frequently the case for our along-

track digital-still imagery and approximately the case for our

cross-track imagery where the number of re-observed point

correspondences is low.

VI. RESULTS

In this section we present results demonstrating VAN’s

application to underwater trajectory estimation. The first set of

results are for experimental validation of the VAN framework

4Recent work by Mourikis and Roumeliotis [59] reports an EKF filtering
technique that can account for correlation in temporal relative-pose measure-
ments, however, this technique also becomes intractable in the general case.
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Require: Ui {the set of feature points in image Ii}
Require: Uj {the set of feature points in image Ij}
Require:

[
µpi

µpj

]

,

[
Σpipi

Σpipj

Σ⊤
pipj

Σpjpj

]

{a priori pose knowledge}
Require: Z, σ2

Z {scene depth prior}
1: Cij ← 0Ui×Uj

{initialize the ij correspondence matrix}
2: for all ui ∈ Ui do {forward mapping from Ii to Ij}
3: assemble γ as in (14)

4: do point transfer µu′

i
← (15)

∣
∣
µγ

Σu′

i
← (16)

∣
∣
Σγ

5: for all uj ∈ Uj do {Mahalanobis test}
6: if

(
uj − µu′

i

)⊤
Σ−1

u′

i

(
uj − µu′

i

)
< k2 then

7: Cij(ui,uj)← 1 {flag ui, uj as candidate match}
8: end if

9: end for

10: end for

11: repeat lines 1–10 with the role of Ui, Uj swapped to

produce the ji correspondence matrix Cji

12: C ← Cij&C
⊤
ji {compute the bitwise AND between Cij

and Cji to find a consistent forwards/backwards mapping}
13: assign putative matches from the candidate correspon-

dence matrix C using image feature similarity measures

Algorithm 2: Pose-constrained correspondence search.

using a ROV at the Johns Hopkins University (JHU) Hydro-

dynamic Test Facility with ground-truth. The second set of

results are for a real-world data set collected by the SeaBED

AUV during a benthic habitat classification survey conducted

at the Stellwagen Bank National Marine Sanctuary.

A. Experimental Validation: JHU Test Tank

To better understand the error characteristics of VAN as

compared to traditional dead-reckoning navigation, we collab-

orated with our colleagues at JHU to collect an in-tank ROV

data set with ground-truth.

1) Experimental Setup: The experimental setup consisted

of a single downward-looking digital-still camera mounted

to a moving underwater pose instrumented ROV at the JHU

Hydrodynamic Test Facility [60]. Their vehicle [61] is instru-

mented with a typical suite of oceanographic dead-reckoning

navigation sensors capable of measuring heading, attitude,

XYZ bottom-referenced Doppler velocities, and a pressure

sensor for depth. The vehicle and test facility are also equipped

with a high frequency acoustic long-baseline (LBL) system,

which provides centimeter-level bounded error XY vehicle

positions used for validation purposes only. A simulated

seafloor environment (Fig. 12) was created by placing textured

carpet, riverbed rocks, and landscaping boulders on the tank

floor and was appropriately scaled to match a rugged seafloor

environment with considerable 3D scene relief.

In addition, we also tested an innovative dual-light config-

uration consisting of fore and aft lights on the ROV with the

camera mounted in the center as shown in Fig. 13. This dual-

light configuration was meant to alleviate viewpoint illumina-

tion effects by improving the signal-to-nose ratio in shadowed

regions so that fully automatic cross-track correspondence

could be achieved.

Relief is approximately 40% of altitude

Fig. 12. A partial view of the JHU experimental setup. Low-pile carpet,
artificial landscaping boulders, and riverbed rock were all placed on the tank
floor to create a natural looking seafloor with extensive scene relief for a
camera altitude of 1.5 m.

camera placement

(a) Dual-light ROV configuration.

(b) Single-light illumination.

double-shadows

(c) Dual-light illumination.

Fig. 13. The dual-light setup used on the JHU ROV. (a) This experimental
dual-light configuration, with the camera mounted in the center, made fully
automatic image registration robust to the effects of viewpoint variant scene
illumination. (b) Traditional single-light configurations cast significant shad-
ows and cause objects to look very different from differing vantage points
making automatic correspondence establishment difficult. (c) In contrast, the
innovative dual-light configuration increases image illumination invariance by
creating double-shadowed regions, which are imaged with high fidelity.
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(a) DR trajectory.
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307 camera constraints
  81 temporal (green links)
226 spatial    (red links)

(b) VAN trajectory.

Fig. 14. JHU tank results comparing DR and VAN trajectories to 300 kHz LBL ground-truth for a 101 image sequence. We subsampled the image sequence
using only every 10th frame to achieve roughly 25% temporal overlap (frame numbers start at 2000). The survey consisted of two overlapping grid trajectories,
one oriented NE/SW and the other E/W. The vehicle pose samples and 3σ confidence ellipses are shown for all 101 views. The corresponding time samples
from the ground truth trajectory are designated by the gray circles. The VAN result is end-to-end fully automatic including link hypothesis (Algorithm 1)
and correspondence establishment. Notice that XY uncertainty grows monotonically in the DR trajectory estimate while for VAN it is constrained by the
camera-constraint topology.
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(a) DR uncertainty characterization.
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(b) VAN uncertainty characterization.

Fig. 15. Uncertainty characteristics of VAN versus DR for the JHU tank data set of Fig. 14. Plots (a) and (b) show the determinant of the XY covariance
sub-block for each vehicle pose in the view-based map. The determinant is plotted versus both path length and Euclidean distance away from the first image
in the view-based map. Notice that the DR uncertainty is clearly a monotonic function of path length whereas VAN uncertainty is related to the distance away
from the reference image.



14 IEEE JOURNAL OCEANIC ENGINEERING

2) Experimental Results: Fig. 14 depicts the estimated XY

trajectory for a 101 image sequence comprised of roughly

25% temporal image overlap. For this experiment, the vehicle
started near the top-left corner of the plot at (−2.5, 2.75)
and then drove a course consisting of two grid-based surveys,

one oriented SW to NE and the other W to E. Both plots

show the spatial XY pose topology, 3σ confidence bounds, and
network of camera constraints — note that the VAN result is

end-to-end fully automatic. Again, green links correspond to

registered sequential images while red links correspond to non-

sequential pairs — in all there are 307 camera constraints (81

temporal / 226 spatial). Notice that the XY uncertainty in the

dead-reckoned (DR) estimate grows monotonically with time

while in the VAN estimate it is constrained by the camera-link

topology.

Fig. 15 further corroborates the above observation and in

particular shows that VAN exhibits a linear trend in error

growth as a function of distance away from the reference

node. Note that the spread of points away from this linear fit

is due to inhomogeneity in the number of edges per node in

the corresponding pose-constraint network. Nonetheless, this

raises the interesting engineering question of how one might

go about reducing the slope of the linear relationship exhibited

in Fig. 15(b)? From a camera perspective, design criteria that

could help improve this performance are:

• Higher resolution images. Increased resolution improves

both the accuracy and precision with which 2D feature

points can be extracted and localized within the viewable

image plane. This in turn improves the accuracy and

precision of the relative-pose camera measurement.

• Wider field of view (FOV). Increasing the camera’s FOV

improves the pairwise observability of camera motion

and, hence, the overall precision of the camera-derived

relative-pose measurement. However, increasing the FOV

also results in lower spatial resolution, so a good balance

between the two is required.

• Better characterization of feature repeatability. Recall

that our image registration module employs the standard

assumption that features are extracted with independent,

isotropic, unit variance pixel noise. This noise model does

not have any real physical basis, but rather is assumed

merely for convenience. Hence, it would be worthwhile

to setup a testbed of seafloor imagery for measuring

the repeatability of our image feature extractors under

different viewing, surface, and lighting conditions. This

would provide a more accurate characterization of the

feature extraction precision and, thus, a better description

for the overall precision of our relative-pose camera

measurements. The end effect of this characterization

on navigation performance would be a more optimal

blending of strap-down sensor versus camera-derived

pose measurements.

• Better camera calibration. Our registration framework

assumes that we are using a calibrated camera, which

implies that the projective mapping from Euclidean ray

space to image pixel space is known. A poor calibration

could introduce a persistent bias into the camera-derived

relative-pose measurements and, hence, effect the overall

consistency of the state estimate. Therefore, obtaining an

accurate calibration is important.

B. Real-World Results: Stellwagen Bank

1) Experimental Setup: The SeaBED AUV [23], [24] con-

ducted a grid-based survey for a portion of the Stellwagen

Bank National Marine Sanctuary in March 2003. The vehicle

was equipped with a single down-looking camera and was

instrumented with the navigation sensor suite tabulated in

Table I. As depicted in Fig. 16(a)–(c), SeaBED conducted the

survey in a bottom-following mode where it tried to maintain

constant altitude over a sloping, rocky, ocean seafloor. The

intended survey pattern consisted of 15 North/South legs each

180 m long and spaced 1.5 m apart while maintaining an

average altitude of 3.0 m above the seafloor at a forward veloc-
ity of 0.35 m/s. Closed-loop feedback on the DR navigation
estimate was used for real-time vehicle control.

We processed a small subset of the data set using 100

images from a South/North trackline pair, the results of which

are shown in Fig. 16(d)–(f). Plot (e) depicts the VAN estimated

camera trajectory and its 3σ confidence bounds. Successfully
registered image pairs are indicated by the red and green

links connecting the camera poses where green corresponds

to temporally consecutive image frames and red to spatially

neighboring image frames. For comparison purposes, plot (d)

depicts the DR trajectory overlaid on top of the VAN estimated

XY trajectory. Both plots are in meters where X is East and Y

is North.

Our feature-based registration algorithm was successful in

automatically establishing putative correspondences between

sequential image pairs (green links), however, automatic cross-

track image registration (red links) proved to be too difficult

for this data set. The cause for this is due to significant

variation in scene appearance when illuminated from recip-

rocal headings. The SeaBED AUV uses a single-camera /

single-light geometry consisting of a down-looking digital-still

camera in the nose and a flash strobe in the tail (not the dual-

light configuration like in the previous tank data set). Hence,

strong shadows are cast in opposite directions for parallel

tracklines viewed from reciprocal headings. Therefore, for this

data set cross-track putative correspondences were manually

established for 19 image pairs, which are indicated by the red

spatial links in Fig. 16.

2) Experimental Results: A number of important obser-

vations in Fig. 16 are worth pointing out. First, note that

the VAN uncertainty ellipses are smaller for camera poses

that are constrained by spatial constraints. Since spatial links

provide a mechanism for relating past vehicle poses to the

present, they also provide a means for correcting DR drift

error. While trajectory uncertainty in a DR navigation system

grows monotonically unbounded with time, in contrast VAN’s

error growth is essentially a function of network topology and

distance away from the reference node (i.e., the first image)

like we saw with the JHU ground-truth data set.

Secondly, note the delayed-state smoothing that occurs in

the VAN framework. Spatial links not only decrease the
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(f) Initial DR (gray) and VAN (blue) results including the effect of an unmodeled heading bias.

Fig. 16. A depiction of the Stellwagen Bank data set and a comparison between the resulting VAN and DR trajectory estimates; the survey started at A and
ended at B. (a) The SeaBED AUV used for the experiment. (b) A plot of vehicle depth vs. time for this mission. Since the vehicle was trying to maintain
constant-altitude, the depth plot serves as a proxy for terrain variation. Note that depth excursion are on the order of several meters. (c) A sampling of
imagery collected during the survey. The seafloor topography ranges from pure sand (upper left) to large boulders (lower right). (d) Shown in blue is the XY
plot of 100 estimated camera poses with 3σ confidence ellipses. For comparison, overlaid in brown is the DR estimated trajectory. Notice that the DR error
monotonically increases while the VAN error is bounded for images in the vicinity of the cross-over point. (e) The same 100 estimated camera poses, but
with image constraints superimposed. The green links indicate that a camera-derived measurement was made between temporally consecutive image pairs,
while the red links indicate that a cross-track measurement was made. In all, there are 19 cross-track measurements. (f) The initial DR and VAN results, each
of which includes an unmodeled heading bias. Notice that the DR trajectory (gray) does not lie within the 3σ VAN estimate (blue). This discrepancy comes
from an unmodeled compass bias, which when accounted for, produces the results shown in (d).
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Fig. 17. A depiction of the time-evolution of the Stellwagen Bank pose-network uncertainty. (top) For each delayed-state entry in ξt (i.e., for each vehicle
pose xpi ), the trace of its 2 × 2 XY covariance sub-block is plotted versus image frame number. The dots depict the pose uncertainty at image insertion
and the lines show their time evolution for every 5th delayed-state. A couple of key events are worth pointing out. First, notice the monotonically increasing
uncertainty in XY position between frames 700–753. This initial period corresponds to only sequential pairwise camera measurements. Second, notice the
regional smoothing and sharp decrease in uncertainty at frame number 754; this is the first cross-track camera measurement. The pose uncertainty continues
to decrease as more cross-track measurements are made (frames 755-763). Finally, from frame 764 onward, uncertainty begins to increase again as no more
spatial measurements can be made. (bottom) A bar graph of the number of successfully registered image pairs for each frame number. Sequential camera
measurements are green and cross-track measurements are red. Notice that the decrease in XY uncertainty in the covariance plot coincides with the first
cross-track measurement.

uncertainty of the image pair involved, but also decrease

the uncertainty of other delayed-states that are correlated. In

particular, Fig. 17 characterizes the time-evolution of the view-

based map uncertainty by plotting the trace of the XY co-

variance sub-block for each delayed-state versus image frame

number. Note the sudden decrease in uncertainty occurring

at image frame 754 — this event coincides with the first

cross-track link. Information from that spatial measurement

is propagated along the network to other vehicle poses via

the shared correlations in the covariance matrix. This result is

consistent with the spatial error trend exhibited by Fig. 15(b).

Thirdly, referring back to Fig. 16, note that a temporal

(green) link does not exist between consecutive image frames

near XY location (−4, 0). A break like this in the temporal
image chain prevents concatenation of the relative camera

measurements and in a purely vision-only approach could

cause algorithms that depend on a connected topology to fail.

It is a testament to the robustness of VAN that a disconnected

camera topology does not present any significant issue since

the Kalman filter continues to maintain correlations between

the delayed-state entries despite the absence of camera mea-

surements.

Finally, an additional point worth mentioning is that VAN

results in a self-consistent estimate of the vehicle’s trajec-

tory. Referring to Fig. 16(f), initial processing of the image

sequence resulted in a VAN trajectory estimate that did not

lie within the 3σ confidence bounds predicted by DR. In
particular, VAN recovered a crossing trajectory while the

DR estimate consisted of two parallel South/North tracklines.

Upon further investigation it became clear that the cause of this

discrepancy was a significant nonlinear heading bias present

in the AUV’s magnetic compass. We used an independently

collected data set to calculate a compass bias correction and

then applied it to our heading data to produce the results shown

in Fig. 16(d) where DR and VAN are now in agreement. Es-

sentially, VAN camera-derived measurements had been good

enough to compensate for the large heading bias and still

recover a consistent vehicle trajectory despite the unmodeled

compass error (recall that in a Kalman update the prior will

essentially be ignored if the measurements are very precise).

VII. CONCLUSION

In conclusion this article presented a systems-level frame-

work for visual navigation termed “visually augmented

navigation.” VAN’s systems-level approach leads to a robust

solution that exploits the complementary characteristics of a

camera and strap-down sensor suite to overcome the peculiar-

ities of low-overlap underwater imagery. Key strengths of the

VAN framework were shown to be:

• Self-consistency. Camera measurements forced the VAN

trajectory to cross-over despite the presence of an un-

modeled compass bias (Fig. 16(f)).

• Robustness. Trajectory estimation gracefully handles hav-

ing a disconnected image topology since the Kalman

filter continues to build correlation between camera poses

(Fig. 16(e)).

• Smoothing. The delayed-state EKF framework means

that information from loop-closing events gets distributed

throughout the entire map via the joint-correlations

(Fig. 17).



EUSTICE et al.: VISUALLY AUGMENTED NAVIGATION FOR AUTONOMOUS UNDERWATER VEHICLES 17

• Time-independent error characteristics. Uncertainty in a

DR system grows monotonically time, while in a VAN

approach it is a function of network topology. Essentially,

VAN allows error to be a function of space and not time

— space being distance away from the reference node in

a connected topology (Fig. 15).

This article’s goal was to outline our camera/navigation

systems-level fusion methodology. We showed that by main-

taining a collection of historical vehicles poses, we are able

to recursively incorporate pairwise camera constraints derived

from low-overlap imagery and fuse them with onboard navi-

gation data. For this purpose, we demonstrated that tracking

the mean and covariance statistics of this representation using

a standard EKF SLAM approach allows us to exploit state

information for image registration including pose-constrained

correspondences, link hypothesis, and image-based feature-

encoding. Furthermore, we showed that the EKF provides a

mechanism for propagating camera information throughout the

entire pose-network via the shared correlations.

Despite the advantages of this approach, a well-known

point of contention with EKF-based SLAM inference is that

it requires quadratic (i.e., O(n2)) complexity per update to
maintain the covariance matrix. Naı̈vely, this would seem to

limit the VAN framework to relatively small environments.

In separate publications [30]–[33], we report how to achieve

exactly the same state result as the EKF formulation, while

alleviating the quadratic computational burden. This is accom-

plished by recasting the estimation problem within the context

of an extended information filter (EIF) (i.e., the dual of the

EKF). The implication of this is that we can retain VAN’s

desirable standalone navigation attributes while exploiting the

EIF’s sparse representation to achieve large-area scalability on

the order of kilometers as demonstrated in [31]–[33].
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