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Abstract— The factor graph framework is a convenient mod-
eling technique for robotic state estimation and sensor fusion
where states are represented as nodes and measurements are
modeled as factors. In designing a sensor fusion framework
using factor graphs for legged robots, one often has access to
visual, inertial, encoders, and contact sensors. While visual-
inertial odometry has been studied extensively in this frame-
work, the addition of a preintegrated contact factor for legged
robots has been proposed recently. In this work, to cope with the
problem of switching contact frames which was not addressed
previously, we propose a hybrid contact preintegration that
does not require the addition of frequently broken contact
factors into the estimation factor graph. This paper presents
a novel method for preintegrating contact information through
an arbitrary number of contact switches. The proposed hybrid
modeling approach reduces the number of required variables
in the nonlinear optimization problem by only requiring new
states to be added alongside camera or selected keyframes.
This method is evaluated using real experimental data collected
from a Cassie-series robot where the trajectory of the robot
produced by a motion capture system is used as a proxy for
ground truth data. The evaluation shows that inclusion of the
proposed preintegrated hybrid contact factor alongside visual-
inertial navigation systems improves robustness to vision failure
as well as the estimation accuracy for legged robots while its
generalization makes it more accessible for legged platforms.

I. INTRODUCTION AND RELATED WORK

Long-term state estimation and mapping for legged robots
require a flexible sensor fusion framework that allows for
reducing the drift and correcting the past estimates as the
robot perceives new information. During long-term missions,
odometry systems can drift substantially since the abso-
lute position and yaw (rotation about gravity) are unob-
servable [1], [2], leading to an unbounded growth in the
covariance of the estimate and an undesirable expansion of
the search space for data association tasks. Factor graph
smoothing framework [3]–[6] offers suitable machineries for
building such systems in which real-time performance is
achieved by exploiting the sparse structure of the Simulta-
neous Localization and Mapping (SLAM) problem [7], [8].
In addition, the incorporation of loop-closures [8] into the
graph, upon availability, is convenient.

Legged robot perception often involves fusing leg odom-
etry, Inertial Measurement Unit (IMU), and visual/depth
measurements to infer the robot trajectory, controller inputs
such as velocity, and calibration parameters [9]–[12]. The
challenge in such perception problems is the rigorous real-
time performance requirements in legged robots arising from
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Fig. 1: Experiments were conducted on a Cassie-series robot designed by
Agility Robotics in an indoor laboratory environment. The motion capture
system is used to record the robot trajectory as a proxy for ground truth
data. The Cassie-series robot has 20 degrees of freedom, 10 actuators, joint
encoders, an IMU, and mounted with a Multisense S7 stereo camera.

their direct and switching contact with the environment [1],
[13]–[16]. Furthermore, leg odometry involves estimating
relative transformations and velocity using kinematic and
contact information, which can be noisy due to the encoder
noise and foot slip [2], [17].

Towards building a perception system for legged robots
suitable for long-term state estimation and mapping, in our
previous work [18], we developed two novel factors that
integrate the use of multi-link Forward Kinematics (FK)
and the notion of contact between the robotic system and
the environment into the factor graph framework. While
the new factors improved the estimator’s performance, new
challenges emerged due to frequent switching contacts as
the robot navigates through an environment. For example,
for a hexapod robot, maintaining and tracking one contact
pose per leg leads to an overly complicated implementation.
However, the inclusion of the contact frame pose in the state
is beneficial as the knowledge of the contact frame and the
estimated map provides additional loop-closures.

In this paper, we generalize the idea of the preintegrated
contact factor in [18] to a hybrid preintegration contact
factor that alleviates the effect of the frequently broken
contact with an environment. We develop a novel method
for preintegrating contact information though an arbitrary
number of contact switches. The proposed hybrid modeling
approach reduces the number of required variables in the
nonlinear optimization problem by only requiring new states
to be added alongside camera or selected keyframes. The
present work has the following contributions:



i. A generic forward kinematic factor modeled in SE(3)
using the manipulator Jacobian that supports both pris-
matic and revolute joints; the factor incorporates noisy
encoder measurements to estimate an end-effector pose
at any time-step;

ii. A hybrid preintegrated contact factor modeled in SE(3)
that allows for an arbitrary number of contact switches
between camera or selected keyframes.

iii. Real-time implementation and experimental evaluation
of the derived factors on a Cassie-series biped robot in
an indoor laboratory environment where ground truth
data was collected using a motion capture system.

The remainder of this paper is organized as follows.
Section II provides the mathematical background and pre-
liminaries. We formulate the problem using the factor graph
approach in Section III. Section IV explains the forward
kinematic modeling and derives the forward kinematic factor.
The proposed hybrid rigid contact model and hybrid contact
preintegration are derived in Section V. Experimental evalu-
ations of the proposed methods on a 3D biped robot (shown
in Fig. 1) are presented in Section VI. Finally, Section VII
concludes the paper and provides future work suggestions.

II. MATHEMATICAL BACKGROUND AND PRELIMINARIES

We first review the Lie group theory corresponding to
the rotation and motion groups [19], [20]. Afterwards, we
discuss the optimization technique on matrix Lie groups [21]
and the choice of retraction for deriving forward kinematic
and hybrid preintegrated contact factors.

Matrices are capitalized in bold, such as in X, and vectors
are column-wise in lower case bold type, such as in x.
We denote ‖e‖2Σ , eTΣ−1e. The n-by-n identity matrix
and the n-by-m matrix of zeros are denoted by In and
0n×m respectively. The vector constructed by stacking xi,
∀ i ∈ {1, . . . , n} is denoted by vec(x1, . . . , xn). The covari-
ance of a random vector is denoted by Cov(·). Finally, we
denote the base frame of the robot by B, the world frame by
W, and contact frame by C.

A. Matrix Lie Group of Rotation and Motion in R3

The general linear group of degree n, denoted by GLn(R),
is the set of all n × n nonsingular real matrices, where the
group binary operation is the ordinary matrix multiplication.
The three-dimensional (3D) special orthogonal group, de-
noted by SO(3) = {R ∈ GL3(R) | RRT = I3,det R = +1}
is the rotation group on R3. The 3D special Euclidean group,
denoted by

SE(3) = {H =

[
R p

01×3 1

]
∈ GL4(R) | R ∈ SO(3),p ∈ R3}

is the group of rigid transformations on R3. The Lie algebra
(tangent space at the identity together with Lie bracket) of
SO(3), denoted by so(3), is the set of 3×3 skew-symmetric
matrices such that for any ω , vec(ω1, ω2, ω3) ∈ R3:

ω∧ ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



and (ω∧)
∨

= ω . The Lie algebra of SE(3), denoted by
se(3), can be identified by 4× 4 matrices such that for any
ω , v ∈ R3 and the twist is defined as ξ , vec(ω , v) ∈ R6:

ξ∧ ,

[
ω∧ v

01×3 0

]
(1)

where the wedge operator (∧) for twist is overloaded.
The exponential map exp : se(3)→ SE(3) can be used to

map a member of se(3) around a neighborhood of zero to
a member of SE(3) around a neighborhood of the identity.
The logarithm map is the inverse, i.e., log : SE(3)→ se(3),
and exp(log(H)) = H , H ∈ SE(3). Now we can define
the difference between a transformation H ∈ SE(3) and its
estimate with a small perturbation H̃ ∈ SE(3) as [20], [22]:

ε∧ = log(H−1H̃)

where ε∧ ∈ se(3). To define the norm and covariance of the
error term, we exploit the fact that se(3) is isomorphic to
R6, i.e., ε∧ 7→ ε ∈ R6 using the ∨ operator. Therefore,
we can define the 6 × 6 covariance matrix conveniently
as Σε = Cov[ε]. We use the following adopted simplified
notations from [6]:

Exp : R6 3 ξ → exp(ξ∧) ∈ SE(3)
Log : SE(3) 3 H → log(H)∨ ∈ R6.

The adjoint representation of a Lie group is a linear map
that captures the non-commutative structure of the group. For
SE(3), the matrix representation of the adjoint map is given
by:

AdH =

[
R 03×3

p∧R R

]
(2)

For any H ∈ SE(3) and ξ ∈ se(3), the adjoint map
asserts [20]

AdHξ
∧ = Hξ∧H−1 ⇒ Exp(AdHξ) = HExp(ξ)H−1.

B. Retraction Map and Optimization on Manifold

Given a retraction mapping and the associated manifold,
we can optimize over the manifold by iteratively lifting the
cost function of our optimization problem to the tangent
space, solving the re-parameterized problem, and then map-
ping the updated solution back to the manifold using the
retraction [21]. For SE(3) we use its exponential map as the
natural retraction, RH (δξ) = HExp(δξ), where δξ ∈ R6

is the twist defined earlier in (1). Therefore, lifting involves
the following retraction on the base and the contact poses:

Xi ← XiExp(δxi) Ci ← CiExp(δci) (3)

allowing the Jacobians of the residuals easy to compute.

III. PROBLEM STATEMENT AND FORMULATION

In the following, we formulate the state estimation prob-
lem using the factor graph framework where independent
measurements can be incorporated by introducing additional
factors based on the associated measurement models. The
biped robot is equipped with a stereo camera, an IMU
mounted on the torso, joint encoders, and binary contact



sensors on the feet. Without loss of generality, we assume
the IMU and camera are collocated with the base frame of
the robot.

A. State Representation

The state variables (at time ti) include the body 3D
pose, HWB(t) ∈ SE(3), and velocity, WvWB(t) ∈ R3, in
the world frame, the rigid contact 3D pose in the world
frame, HWC(t) ∈ SE(3), and the IMU bias, b(t) ,
vec (ba(t),bg(t)) ∈ R6, where ba(t) ∈ R3 and bg(t) ∈ R3

are the accelerometer and gyroscope biases, respectively. All
together, the state at any time-step i is a tuple as follows:

Ti ,
(

HWB(t),WvWB(t),HWC(t),b(t)
)
, (Xi, vi,Ci,bi) (4)

Further, it is convenient to denote the trajectory of the state
variables up to time-step k by Xk ,

⋃k
i=1 Ti. Foot slip is the

major source of drift in leg odometry. The inclusion of the
contact pose in the state tuple allows for isolating the noise
at the contact point.

B. Factor Graph Formulation

Let Lij ∈ SE(3) be a perceptual loop-closure measure-
ment relating poses at time-steps i and j (j > i) computed
from an independent sensor, e.g. using a point cloud match-
ing algorithm. The forward kinematic measurements at time-
step i are denoted by Fi. The IMU and contact sensors
provide measurements at higher frequencies. Between any
two time-steps i and j, we denote the set of all IMU and
contact measurements by Iij and Cij , respectively. Let Kk

be the index set of time-steps (or key-frames) up to time-step
k. We denote the set of all measurements up to time-step k
by Zk , {Lij , Iij ,Fi, Cij}i,j∈Kk

.
By assuming the measurements are conditionally indepen-

dent and are corrupted by additive zero mean white Gaussian
noise, the posterior probability of the full SLAM problem can
be written as p(Xk|Zk) ∝ p(X0)p(Zk|Xk), where

p(Zk|Xk) =
∏

i,j∈Kk
p(Lij |Xj)p(Iij |Xj)p(Fi|Xi)p(Cij |Xj).

The Maximum-A-Posteriori (MAP) estimate of Xk can be
computed by solving the following optimization problem:

minimize
Xk

− log p(Xk|Zk)

in which due to the noise assumption mentioned earlier is
equivalent to the following nonlinear least-squares problem:

minimize
Xk

‖r0‖2Σ0
+
∑

i,j∈Kk

‖rLij
‖2ΣLij +

∑
i,j∈Kk

‖rIij‖
2
ΣIij

+
∑
i∈Kk

‖rFi
‖2ΣFi

+
∑

i,j∈Kk

‖rCij‖
2
ΣCij

where r0 and Σ0 represents the prior over the initial state
and serves to anchor the graph, rLij

, rIij , rFi
, rCij are the

residual terms associated with the loop closure, IMU, for-
ward kinematic, and contact measurements respectively, i.e.
the error between the measured and predicted values given
the state, and ΣLij

, ΣIij , ΣFi
, ΣCij are the corresponding

covariance matrices.

Fig. 2: In this paper, we refer to two separate forward kinematics functions.
The pose of the current contact frame relative to the base frame is denoted by
HBC. When the robot has multiple points of contact with the environment,
it is possible to transfer this contact from from one frame to another. This
transfer of contact is captured by the homogeneous transform HC-C+ .

IV. FORWARD KINEMATICS

Forward kinematics refers to the process of computing the
relative pose transformation between two frames of a multi-
link system. Each individual joint displacement describes
how the child link moves with respect to the parent one. This
joint displacement can either be an angle (revolute joints) or
a distance (prismatic joints).

Let α ∈ RN denote the vector of joint displacements
for a general robot. Without loss of generality, we define a
base frame on the robot, denoted B, that is assumed to be
collocated with both the IMU and the camera frames. When
the robot is in contact with the static environment, we can
also define a contact frame, denoted C, on the robot at the
point of contact. The homogeneous transformation between
the base frame and the contact frame is defined by:

HBC(α) ,

[
RBC(α) BpBC(α)

01×3 1

]
(5)

where RBC(α) and BpBC(α) denote the relative orientation
and position of the contact frame with respect to the base
frame.

When there are two points in contact with the static
environment, it is possible to “transfer” the contact frame
from one point to the other (shown in Figure 2). Let C−

denote the old contact frame and C+ denote the new contact
frame. Then, the homogeneous transformation between the
old frame and the new frame is defined by:

HC-C+(α) ,

[
RC-C+(α)(α) CpC-C+(α)

01×3 1

]
(6)

where RC-C+(α) and CpC-C+(α) denote the relative orienta-
tion and position of the new contact frame with respect to
the old contact frame.

A. Measurements

We assume the robot’s joints are equipped with a set of
joint encoders that can measure the joint displacement. These
encoder measurements, α̃, are assumed to be corrupted
with Gaussian white noise. This is an explicit measurement
coming from physical sensors located on the robot.

α̃(t) = α(t) + ηα(t) ηα(t) ∼ N (0N×1,Σα(t)) (7)



The geometric (or manipulator) Jacobian, denoted J(α),
provides a method for computing the angular and linear
velocity of an end-effector given the vector of joint veloc-
ities [19]. In a similar manner, we can use the Jacobian
to map incremental angles to changes in the end-effector
pose. Let JBC(α) denote the body manipulator Jacobian
of the forward kinematics function (5). Then, the following
relationship holds:

CξBC δt = JBC(α) δα (8)

where δα and δt are incremental encoder and time quantities
and CξWC denotes the vector of angular and linear velocities
of the contact frame due to δα (measured in the contact
frame). We perform Euler integration using (8) to provide
a method for factoring out the noise from the forward
kinematics equations. Up to a first order approximation, (5)
can be factored as:

HBC(α̃(t)− ηα(t)) ≈ HBC(α̃(t)) Exp
(
−JBC(α̃(t))ηα(t)

)
(9)

A similar approximation can be found for (6), albeit with a
different Jacobian.

HC-C+(α̃(t)− ηα(t)) ≈ HC-C+(α̃(t)) Exp
(
−JC-C+(α̃(t))ηα(t)

)
(10)

Remark 1. In general, the manipulator Jacobian can be
derived as spatial or body manipulator Jacobian [19], and
based on this choice, the noise can appear on the left or right
side of the rotation/rigid body transformation, respectively.

B. Forward Kinematic Factor

The goal of this section is to derive a general forward kine-
matic factor that can be used in the factor graph framework.
This will be a unary factor that relates two poses through the
forward kinematics equations while accounting for encoder
noise. We derive it here for relating the base and contact
frames.

The orientation and position of the contact frame with
respect to the world frame are given by:

HWC(t) = HWB(t) HBC(α(t)) (11)

Substituting in the state variables at time ti (4), the forward
kinematic equations (5) yields:

Ci = Xi HBC(α̃i − η
α
i ) (12)

We can now use the first order approximation (9) to factor
out the encoder noise to give the following expressions:

Ci = Xi HBC(α̃i) Exp
(
−JBC(α̃i)η

α
i

)
(13)

Defining the zero-mean white Gaussian forward kinematic
noise terms, δci , JBC(α̃i)η

α
i allows us to write out the

forward kinematics measurement model:

HBC(α̃i) = XT
i Ci Exp(δci) (14)

where the forward kinematics noise is characterized by δci ∼
N (06×1,ΣFi

). The residual errors are defined in the tangent

space and can be written as:

rFi = Log
(

CT
i Xi HBC(α̃i)

)
(15)

The covariance is computed through the following linear
transformation:

ΣFi
= JBC(α̃i) Σ

α
i JT

BC(α̃i) (16)

where J(α̃i) is the body manipulator Jacobian evaluated
at the current encoder measurements and Σ

α
i denotes the

encoder covariance matrix at time ti.

V. HYBRID CONTACT PREINTEGRATION

A continuous hybrid dynamical system, H, can defined
with a continuous dynamics function, f(·), a discrete transi-
tion map, ∆(·), and a switching surface, S [23]. Trajectories
of the hybrid dynamical system evolve according to the
continuous dynamics, until the switching surface it hit. At
those moments, the state gets mapped through the discrete
transition map, after which the trajectory continues according
to the continuous dynamics again. The general form of this
system can be expressed as follows.

H :

{
ẋ(t) = f(x, t) (x−, t−) 6∈ S
x+ = ∆(x−) (x−, t−) ∈ S

(17)

As long as the number of contact points is greater than or
equal to one, the switching contact frame dynamics can be
modeled as a hybrid system:

H :

{
ḢWC(t) = HWC(t) (CξWC(t))

∧
t− 6∈ S

HWC+ = HWC- HC-C+ t− ∈ S
(18)

with the switching surface, S is simply modeled as the set
of all times where contact is switched from one frame to
another. Since the sensor measurements are coming in at
discrete time-steps, we perform Euler integration from time t
to t+∆t to discretize the continuous hybrid contact dynamics
(18), forming the following discrete hybrid system:

H :

{
HWC(t+ ∆t) = HWC(t) Exp (CξWC(t)∆t) t− 6∈ S
HWC+ = HWC- HC-C+ t− ∈ S

(19)

Physically, the continuous dynamics function, f , describes
how a single contact frame moves over time while contact
is maintained. When a new contact frame is detected, the
new contact pose can be computed by applying the transition
map, ∆(·), which describes the homogeneous transformation
between the old and new contact frames.
A. Measurements

The angular and linear velocity of the contact point is an
implicit measurement that is inferred through a binary con-
tact sensor: specifically, when this sensor indicates contact,
the position of the contact point is assumed to remain fixed in
the world frame, i.e. the measured velocity is zero. In order to
accommodate potential contact slip, the measured velocity is
assumed to be corrupted with white Gaussian noise, namely

Cξ̃WC(t) = 06×1 = CξWC(t) + η(t), η(t) ∼ N (06×1,Σ
η (t)).



Fig. 3: In the factor graph framework, the robot’s state along a discretized
trajectory denoted by red circles. Each independent sensor measurement is a
factor denoted by lines that constraints the state at separate time-steps. The
proposed hybrid contact factor (shown on top) allows preintegration of high-
frequency contact data through an arbitrary number of contact switches. In
this example, there are two contact switches, where the robot moves from
left-stance (L) to right-stance (R), then back to left stance.

Using the state variables (4), forward kinematics definition
(6), encoder measurements (7), and contact measurements,
the hybrid contact dynamics (19) can be written as:

H :

{
Ck+1 = Ck Exp

(
−ηd

k∆t
)

t−k 6∈ S
C+ = C− HC-C+(α̃k − η

α
k ) t−k ∈ S

(20)

where ηd
k, the discrete time contact noise, is computed using

the sample time, Cov(ηd(t)) =
1

∆t
Cov(η(t)).

Remark 2. HC-C+(αk) will depend on the specific contact
frames, C− and C+, at time tk. For example, the forward
kinematics function to switch from left foot contact to a right
foot contact will be different than the one used to switch from
right foot to left foot.

B. Preintegrating Contact Pose

The goal of this section is to formulate a general hybrid
preintegrated contact factor which relates the contact pose
at ti to the contact pose at tj . The hybrid nature of this
factor comes from the potential switching of contact that
occurs naturally in legged locomotion. We preintegrate the
high-frequency contact measurements to prevent unnecessary
computation allowing efficient implementation of the factor.

Let S denote the sequence of all time indices associated
with contact switches, so that each si ∈ S represents a single
time index where a contact switch occurs. To integrate the
hybrid contact dynamics model (20) through these contact
switches, we integrate the up to the next contact switch
time tsi , apply the transition map ∆(·), and continue the
integration. For the following derivations, a concrete example
(depicted in Figure 3) is used to make the derivation easier to
follow. We later extend the derivation to an arbitrary number
of contact switches. For the example shown in Figure 3,
there are two contact switches between times ti and tj , i.e.,
|S| = 2. Integrating the discrete hybrid contact model (20)
from ti to tj yields:

Cj = Ci

(
s1−1∏
k=i

Exp(−ηd
k∆t)

)
HC-C+(α̃s1 − η

α
s1)(

s2−1∏
k=s1

Exp(−ηd
k∆t)

)
HC-C+(α̃s2 − η

α
s2)

(
j−1∏
k=s2

Exp(−ηd
k∆t)

)

All noise terms can be shifted to the right by using (10) to
factor the noise from the forward kinematics term and the
adjoint relation (2) to shift the measured kinematics to the
left.

Cj = Ci HC-C+ (α̃s1) HC-C+ (α̃s2)(
s1−1∏
k=i

Exp(−AdH−1

C-C+ (α̃s2
)
AdH−1

C-C+ (α̃s1
)
ηd
k∆t)

)
Exp(−AdH−1

C-C+ (α̃s2
)
JC-C+ (α̃s1)ηα

s1
)s2−1∏

k=s1

Exp(−AdH−1

C-C+ (α̃s2
)
ηd
k∆t)


Exp(−JC-C+ (α̃s2)ηα

s2
)

 j−1∏
k=s2

Exp(−ηd
k∆t)



(21)

After multiplying both sides by CT
i , we arrive at a relative

contact pose expression that is independent of states Ti and
Tj .

∆Cij , CT
i Cj = ∆C̃ijExp(−δcij) (22)

where ∆C̃ij ,
∏|S|

n=1 HC-C+(α̃sn) represents the hybrid
preintegrated contact measurement, and Exp(−δcij) groups
all of the noise terms together. This noise term is a product of
multiple small rigid body transformations. Therefore, it can
be approximated as a summation in the tangent space through
iterative use of the Baker-Campbell-Hausdorff (BCH) for-
mula [20] (while keeping only the first order terms).

δcij ≈
s1−1∑
k=i

AdH−1

C-C+ (α̃s2
)AdH−1

C-C+ (α̃s1
)η

d
k∆t

+ AdH−1

C-C+ (α̃s2
)JC-C+(α̃s1)η

α
s1 +

s2−1∑
k=s1

AdH−1

C-C+ (α̃s2
)η

d
k∆t

+ JC-C+(α̃s2)η
α
s2 +

j−1∑
k=s2

ηd
k∆t

The hybrid preintegrated contact noise, δcij , is a summation
of zero-mean Gaussian terms, and is therefore also zero-
mean and Gaussian. It is possible to generalize this noise
expression to an arbitrary number of contact switches, how-
ever, it becomes much simpler to do so when looking at the
iterative propagation form in the following section.

C. Iterative Propagation

It is possible to write both the preintegrated contact mea-
surements, ∆C̃ij , and the preintegrated contact noise, δcij ,
in iterative update forms. This allows the terms to be updated
as contact and encoder measurements are coming in. In
addition, this form simplifies the expressions and allows for
the covariance to be conveniently computed. The following
proposition generalizes the hybrid preintegrated contact pose
and noise iterative propagation to an arbitrary number of
contact switches. The proof is given in the supplementary
material.

Proposition 1 (Iterative Propagation of Hybrid Contact
Process [24]). Between any two time-steps ti and tj such



Fig. 4: When a contact switch occurs, the relative contact pose, ∆C̃−ik , gets
mapped from one point in SE(3) to another point, ∆C̃+

ik , on the manifold.
The contact noise, δc−ik , is represented in the tangent space, se(3), and
is mapped from the tangent space of ∆C̃−ik to the tangent space of ∆C̃+

ik
through the use of the adjoint map of the forward kinematics transformation,
HC-C+ . However, due to noisy encoders, an addition noise term (computed
using the manipulator Jacobian) has to be added to compute δc+ik .

that j > i, starting with ∆C̃ii = I4, the hybrid preintegrated
contact measurement and noise for an arbitrary number of
contact switches can be computed using the following hybrid
systems:

H̃ :

{
∆C̃ik+1 = ∆C̃ik t−k 6∈ S
∆C̃

+

ik = ∆C̃
−
ik HC-C+(α̃k) t−k ∈ S

(23)

δH :

{
δcik+1 = δcik + ηd

k∆t t−k 6∈ S
δc+ik = AdH−1

C-C+ (α̃k)
δc−ik + JC-C+(α̃k)η

α
k t−k ∈ S

(24)

An abstract representation of these hybrid systems is shown
in Figure 4.

D. Rigid Contact Factor

The relative contact pose expression (22) can be used to
define the preintegrated contact measurement model:

∆C̃ij = CT
i CjExp(δcij) (25)

where the zero-mean Gaussian preintegrated contact noise
is characterized by δcij ∼ N (06×1,ΣCij ). In the factor
graph framework, the preintegrated contact model represents
a binary factor that relates the contact frame pose over
consecutive time steps. The residual error is defined in the
tangent space, and can be written as:

rCij = Log
(

CT
j Ci∆C̃ij(α̃i)

)
(26)

The covariance is computed using the hybrid contact noise
model (24), starting with ΣCii = 06×6:

ΣCik+1
= ΣCik + Σ

η
k ∆t

Σ+
ik = AdH−1

C-C+ (α̃k)
Σ−Cik AdT

H−1

C-C+ (α̃k)

+JC-C+(α̃k) Σ
α
k JT

C-C+(α̃k)

(27)

VI. EXPERIMENTAL RESULTS

We now present experimental evaluations of the proposed
factors. In the first experiment, we compare three odometry

systems composed by Visual-Inertial-Contact (VIC), Inertial-
Contact (IC), and Visual-Inertial (VI) factors. Since the
proposed FK model is a unary factor, whenever the contact
factor is used, it is assumed that FK factor is also available;
therefore, it is not explicitly mentioned for brevity. In the
second experiment, we study the effect of losing visual data
for a period to see how the contact factor can constrain
the graph in the absence of a reliable vision system. In
the third experiment, we will evaluate a novel notion called
terrain factor, where loop-closures can be added to the graph
through contact frame poses.

A. Experimental Setup

All experiments are done on a Cassie-series robot designed
by Agility Robotics, which has 20 degrees of freedom, 10
actuators, joint encoders, an IMU, along with a Multisense
S7 stereo camera mounted on the top of the Cassie robot,
containing another IMU, as shown in Fig. 1. Cassie also
has four springs (two on each leg) that can be used as
a binary contact sensor by thresholding the spring deflec-
tion measurements. The Cassie robot has two computers: a
MATLAB Simulink Real-Time and a Linux-based system
computer. We use the Robot Operating System (ROS) [25]
with the User Datagram Protocol (UDP) to communicate
sensor data between the two computers. We also integrate
the time synchronization algorithm in [26] into our system
to ensure all sensory data are synchronized.

The motion capture system developed by Vicon is used as
a proxy for ground truth trajectories. The setup consists of
17 motion capture cameras where four markers are attached
to Cassie robot to represent its pelvis as well as two markers
to represent the orientation of the IMU on Cassie where the
base frame of FK is located. The dataset contains the stereo
images (20 Hz) and IMU data (750 Hz) from the Multisense
S7 camera as well as the joint encoders and IMU data from
the Cassie robot (at 400 Hz each).

The proposed factors are implemented in GTSAM [4], and
we used the IMU factor built into GTSAM 4.0 [6] with
an incremental solver iSAM2 [3]. We used a semi-direct
visual odometry library SVO 2.0 [27] with the Multisense
S7 camera. The camera recorded synchronized stereo images
at 20 Hz and IMU measurements in about 750 Hz. SVO
processes those measurements in real-time and outputs 6
degrees of freedom poses of the left camera in a fixed
world frame, Xi, for the current time-step i. The relative
transformation of the camera from time-step i to j can be
obtained using ∆Xij = X−1i Xj . We selected keyframes
approximately every 0.25 seconds and added a pose factor
for connecting any two corresponding successive keyframes
in the graph.

B. First Experiment: Odometry Comparison

In this experiment, we had Cassie stand in place for about
15 seconds, then slowly walk forwards and backwards along
the length of the lab for approximately 45 seconds. The re-
sulting data was used to compare the odometry performance
(processed off-line) of different combinations of factors. The



Fig. 5: The odometry results from a 60 second walking experiment using a Cassie-series robot. The Visual-Inertial-Contact (VIC) odometry outperformed
both the Inertial-Contact (IC), and the Visual-Inertial (VI) odometry. “Ground-truth” data was collected from a Vicon motion capture system. It is important
to note that no loop-closures are being performed, which helps to explain the relatively poor odometry from VI. The video of this experiment is provided
at https://youtu.be/WDPhdl5g2MQ.

Fig. 6: The Cumulative Distribution Function (CDF) of the relative position
error provides a way to analyze the drift in the odometry estimates from
various combinations of factors. The fraction of data corresponding to small
relative position errors (low-drift odometry) is the larger for Visual-Inertial-
Contact (VIC) odometry than for Inertial-Contact (IC) or Visual-Inertial (VI)
odometry.

results are shown in Figure 5. The odometry estimate from
VIC, as expected, outperforms all other combinations of
factors. The Cumulative Distribution Function (CDF) of the
relative position error is shown in Figure 6. The relative
position CDF provides a method for analyzing the drift of
an odometry estimate.

From Figure 6, it can be seen that VIC has the highest
fraction of data corresponding to smaller relative position
errors. This means VIC has lowest drift among all odometry
systems. When the robot is walking, the hard impacts cause
significant camera shake which leads to motion blur in the
images. This effect, along with possibly the lab environment
lacking numerous quality features, helps to explain the
relatively poor VI odometry performance.

C. Second Experiment: Vision Dropout

One of the main benefits from including FK and contact
factors is that the state estimator can be more robust to failure
of the vision system. In this experiment, we simulate the
effects of “vision dropout” by simply ignoring SVO visual-
odometry data for two 10-second periods of the experimental
data described in the previous section. In other words,
during a “vision dropout” period, VIC odometry reduces

Fig. 7: When vision data is lost, the covariance of the robot’s base pose
sharply grows for VI odometry due to the lack of additional measurements
to constrain the graph. In contrast, during “vision dropout” periods, the
additional contact factors allows the covariance estimate from VIC to
remains close to the nominal case.

to IC odometry, and VI odometry reduces down to inertial
(I) odometry. Figure 7 shows the log determinant of the
base pose covariance for VIC and VI for these “vision
dropout” experiments. The larger the log determinant, the
more uncertain the estimator is about the robot’s base pose.
During the “vision dropout” periods, uncertainty grows for
VI odometry. This sharp covariance growth is due to the
lack of additional sensor measurements to add into the factor
graph. In contrast, the covariance growth for VIC is hardly
affected over the same dropout periods.

D. Third Experiment: Terrain Factors as Loop-Closures

Another benefit of adding the proposed contact factors
comes from the addition of the contact frame poses into
the robot’s state. With these new state variables, it becomes
simple to to place additional constraints that relate the contact
pose to a prior map. We test this idea on the collected
experiment data by recognizing that the ground was relatively
flat in the laboratory. This “zero-height” elevation data serves
as our prior map. Figure 8 shows how adding this trivial
constraint can reduce position drift in the z-direction. This

https://youtu.be/WDPhdl5g2MQ


Fig. 8: Since the contact pose is now part of the estimated state, it is possible
to add “terrain factors” that relate this contact pose to a prior map. Adding
the simple constraint that the contact frame z-translation is zero (VIC-T)
improves the drift in the z-direction when compared to the nominal Visual-
Inertial-Contact (VIC) case.

experiment simply serves to illustrate the potential for “ter-
rain factors”, as the state estimate could be further improved
if the robot was actually mapping out the terrain; there was
actually a small downward slope in the lab (as shown in the
motion capture data).

VII. CONCLUSION

We developed a novel method for preintegrating contact
information through an arbitrary number of contact switches
using a hybrid preintegrated contact factor. The proposed
approach was verified through experimental evaluations us-
ing a Cassie-series robot where a motion capture system is
used as a proxy for ground truth data. Our results indicate
that the fusion of contact information with IMU and vision
data provide a reliable odometry system for legged robot.
Furthermore, we showed that the developed visual-inertial-
contact odometry system is robust to occasional vision
system failures.

In the future, we plan to incorporate loop closure con-
straints into our factor graph framework to further improve
state estimation, paving the way for long-term mapping
on legged robots. We also plan to further investigate the
potential utility of “terrain factors” to allow the robot’s state
to be corrected though detected contact on an estimated map.
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