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Abstract— This paper reports on a fast multiresolution scan
matcher for vehicle localization in urban environments for self-
driving cars. State-of-the-art approaches to vehicle localiza-
tion rely on observing road surface reflectivity with a three-
dimensional (3D) light detection and ranging (LIDAR) scanner
to achieve centimeter-level accuracy. However, these approaches
can often fail when faced with adverse weather conditions that
obscure the view of the road paint (e.g., puddles and snowdrifts)
or poor road surface texture. We propose a new scan matching
algorithm that leverages Gaussian mixture maps to exploit the
structure in the environment; these maps are a collection of
Gaussian mixtures over the z-height distribution. We achieve
real-time performance by developing a novel branch-and-
bound, multiresolution approach that makes use of rasterized
lookup tables of these Gaussian mixtures. Results are shown
on two datasets that are 3.0 km: a standard trajectory and
another under adverse weather conditions.

I. INTRODUCTION

Over the past several years, fully autonomous, self-driving
cars have become feasible with progress in the simultaneous
localization and mapping (SLAM) research community and
the advent of consumer-grade three-dimensional (3D) light
detection and ranging (LIDAR) scanners. While several
groups have attempted to transition to vision-only solutions
for autonomous vehicles because of cost and visual ap-
pearance [1]–[4], manufacturers continue to lower the price
and increase the aesthetic appeal of 3D LIDAR scanners
[5]. Further, production automated vehicles will need to
consider multi-modality methods that will yield a more
robust solution.

In order to navigate autonomously, the prevalent approach
to self-driving cars requires precise localization within an a
priori known map. Rather than using the vehicle’s sensors to
explicitly extract lane markings, traffic signs, etc., metadata
is embedded into a prior map, which reduces the complex-
ity of perception to a localization problem. State-of-the-
art methods [6], [7] use reflectivity measurements from 3D
LIDAR scanners to create an orthographic map of ground-
plane reflectivities. Online localization is then performed
with the current 3D LIDAR reflectivity scans and an inertial
measurement unit (IMU).

Reflectivity-based methods, however, can fail when there
is not sufficient observable road paint or in harsh weather
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Fig. 1: Overview of our proposed LIDAR localization scheme. We
propose to use Gaussian mixture maps: a 2D grid over xy where
each cell in the grid holds a one-dimensional Gaussian mixture
model that accurately models the distribution over that cell’s z-
height. We then perform registration in these maps by formulating
a branch-and-bound search over multiresolution, rasterized versions
of the Gaussian mixture maps where coarser resolutions capture an
upper-bound over the finer resolutions. This methodology finds the
guaranteed optimal registration over a user-specified search space.

conditions that result in partially occluded roadways. In
this paper, we seek a fast, globally optimal scan matcher
that allows us to quickly localize a vehicle by exploiting
the 3D structure of the scene as opposed to ground-plane
reflectivities.

We propose to leverage a Gaussian mixture map, which is
a 2D grid structure where each grid cell maintains a Gaussian
mixture model characterizing the distribution over z-height
(i.e., vertical structure) in that cell. Furthermore, we present
a novel upper-bound through rasterizations of the sum of
Gaussian mixtures that enables us to formulate the scan
matching problem as a branch-and-bound search. See Fig. 1
for a sample of these maps. The key contributions of our
paper are:
• Data reduction of large point clouds to a compact

mixture of Gaussians.
• Online rasterization of these parametric maps that en-

ables fast inference.
• Branch-and-bound registration formulation that allows

real-time, guaranteed-optimal registration, using generic
upper-bound rasterizations.

II. RELATED WORK

Automated vehicles require robust localization algorithms
with low error and failure rates. One of the most pervasive
strategies relies on observation of ground plane reflectivities,
a signal that captures lane markings, pavement variation,
tar strips, etc. Levinson et al. [6] initially proposed using
a 3D LIDAR scanner to observe the ground-plane reflec-



tivities, with which they were able to build orthographic
maps of ground reflectivities and perform localization using
the current 3D LIDAR scans and an IMU. Baldwin and
Newman [8] employed a similar approach, by using a two-
dimensional (2D) LIDAR scanner to build 3D swathes as
the vehicle traversed the environment. In previous work, we
demonstrated that ground-plane reflectivities can also be used
to localize a monocular camera in a 3D LIDAR reflectivity
map [4].

Despite attempts by Levinson et al. in [7] to model slight
changes in appearance of these ground plane maps, all of
these methods can fail when harsh weather is present in the
environment—for example, rain puddles and snowdrifts can
build up and occlude the view of the informative ground
signal, see Fig. 2. Additionally, long two-lane roads with
a double lane-marker between them can allow longitudinal
uncertainty to grow unbounded due to lack of texture in the
longitudinal direction. Thus, to increase robustness to these
types of scenarios, we are interested in exploiting the 3D
structure of the scene that is observed with a LIDAR scanner
in a fast and efficient manner.

Specifically, we are interested in registering a locally
observed point cloud to some prior 3D representation of our
environment. Many similar robotic applications use iterative
closest point (ICP) [9], generalized iterative closest point
(GICP) [10], normal distributions transform (NDT) [11], or a
similar variant to register an observed point cloud to another
point cloud or distribution. Registration using these methods
typically requires defining a cost function between two scans
and evaluating gradients (either analytical or numerical) to
iteratively minimize the registration cost. Due to the nature
of gradient descent, these methods are highly dependent on
initial position and are subject to local minimums.

To overcome local minima and initialize searches near the
global optimum, several works have been proposed that ex-
tract distinctive features and perform an alignment over these
first. For example, Rusu [12] and Aghamohammadi et al. [13]
presented different features that can be extracted and matched
from raw point cloud points. Pandey et al. [14] bootstrap
their registration search with visual feature correspondences
(e.g., SIFT). However, these feature-based approaches rely
on extracting robust features that are persistent from various
viewpoints.

As an alternative to searching for a single best regis-
tration for each scan, Chong et al. [15], Kümmerle et al.
[16], and Maier et al. [17] all demonstrated localization
implementations built upon a Monte Carlo framework. Their
approach allows particles to be sampled throughout the
environment and evaluated relative to a prior map. This
filtering methodology should be more robust to local minima
because the particles should ideally come to a consensus
through additional measurements—though this is dependent
on random sampling and can make no time-based optimality
guarantees.

Finally, multiresolution variations on the above algorithms
have been proposed that allow expanded search spaces to be
explored in a coarse-to-fine manner in hopes of avoiding

(a) Good Weather (b) Light Snow on Roads

(c) Poor Texture in Road

Fig. 2: Common snapshots of orthographic LIDAR reflectivity
maps. Notice the severe degradation of quality in the snow covered
roads and the hallucination of lane markings caused by tire tracks
through snow. Also, poor texture is a common occurrence on two-
lane roads.

local minima. This has been applied to ICP [18], NDT
[19] [20], and occupied voxel lists [21]. These searches use
heuristics to greedily guide the coarse-to-fine steps that yield
good results in practice, but still cannot guarantee global
optimality.

We employ techniques presented by Olson [22] to for-
mulate the multiresolution search as a branch-and-bound
problem that can guarantee global optimality over our search
space. In this work, we extend [22] to handle full-3D point
clouds by creating efficient Gaussian mixture maps for fast
inference.

III. GAUSSIAN MIXTURE MAPS

The key challenge to enabling fast localization is develop-
ing a prior representation of the world that facilitates efficient
inference. We propose using Gaussian mixture maps that
discretize the world into a 2D grid over the xy plane, where
each cell in the grid contains a Gaussian mixture over the
z-height distribution. This offers a compact representation
that is quite similar to a 2.5D map, with the flexibility
of being able to simultaneously and automatically capture
the multiple modes prevalent in the world—including tight
distributions around the ground-plane and wide distributions
over superstructure, as seen in Fig. 1.

This representation is quite similar to NDT maps [11]
in the sense that both representations can be viewed as a
Gaussian mixture over the environment, though our maps
are a collection of discontinuous, one-dimensional Gaus-
sians rather than a continuous, multivariate Gaussian. Our
representation is also similar to multi-level surface (MLS)



Fig. 3: Here we demonstrate the efficacy of our point cloud
reduction to a Gaussian mixture map. Colored from brown-yellow
is a rendering of the point cloud that we accumulate to build
our Gaussian mixture maps. On the ground plane we rendered
the Gaussian mixture map, where color encodes the number of
Gaussians in each cell’s Gaussian mixture (white, blue, and purple
corresponds to 0, 1, and 2, respectively). Our GMM is able to
compactly parameterize both ground-plane and superstructure to a
pair of Gaussians in each cell.

maps [23], which cluster the point cloud into horizontal and
vertical structure components. Rather than reducing our point
cloud into similar discrete intervals to characterize the z-
height distribution, we instead run Expectation-Maximization
(EM) to fit a Gaussian mixture model for each grid cell to
capture the true probabilistic distribution of our observed
point cloud.

We build these maps offline as a full SLAM prob-
lem. In doing so, we integrate odometry, GPS, and scan-
matching constraints to build a self-consistent pose-graph.
This pipeline is identical to our previous work [4], with the
exception that we no longer apply artificial height priors—
this allows our graph to be built in full-3D in order to
construct a more accurate representation.

With the optimized pose-graph, we then reproject all of
our 3D LIDAR scan points to create a point cloud. Then
at a fixed grid resolution (we used 20 cm throughout), we
look at each “column” of z-points. In order to capture the
variance of our LIDAR scanner and reduce discretization
errors, we blur these z-points with neighboring “columns”
with a Gaussian kernel. We then fit a weighted Gaussian
mixture model to these points using EM. The entire offline
map building process can be completed in approximately 1
hour on our datasets.

For each cell, we also re-run the EM for a varying number
of Gaussians, choosing the resulting Gaussian mixture with
the greatest likelihood without overfitting. In our experi-
ments, we empirically determined that limiting the number of
Gaussians to two is sufficient for capturing the ground sur-
face, building facades, and overhangs; though this threshold
can be application dependent on expected environment. This
resulting grid of Gaussian mixtures makes up our Gaussian
mixture map, G.

The efficacy of our Gaussian mixture map in modeling the

Algorithm 1 Full Registration

Input: GMM G, Point Cloud C, guess (x, y, z, r, p, h), search
range X , Y , H

Output: Optimal registration = (x, y, z, r, p, h)*
1: (x̂, ŷ, z, r, p, ĥ) = SEARCH(x, y, z, r, p, h)
2: (x, y, z, r, p, h)* = HILL-CLIMB (x̂, ŷ, z, r, p, ĥ)

distribution of the world can be seen in Fig. 3. In this figure,
we show our input point cloud that is constructed from our
pose-graph optimization and the reduction of this point cloud
to a 2D collection of Gaussian mixtures (our actual Gaussian
mixture map).

Inference in our Gaussian mixture map is easily done.
With our Gaussian mixture map, G, and an online point cloud
scan, C, we can probabilistically evaluate the likelihood of a
given transformation, T , that brings the two into alignment.
We evaluate this likelihood by applying the transformation
to each point in the point cloud, C′ = TC. Then, for
each point in this transformed cloud, pi = (xi, yi, zi), we
index into our Gaussian mixture map to obtain that cell’s
Gaussian mixture, gi ← G(xi, yi). From there, we treat each
point as an independent Gaussian observation, allowing us
to compute the total log-likelihood by summing each point’s
log-likelihood,

LL =
∑
i

log

∑
j

wij√
2πσij2

exp

(
− (zi − µij)

2

σij2

) ,

(1)
where wij , µij , and σij are the weight, mean, and standard
deviation, respectively, of the jth component of gi.

A. Registration Formulation

Given a point cloud, we seek to find the optimal transfor-
mation that maximizes Eq. 1.

We make the observation that a typical wheeled-robotic
platform will be fairly well constrained in roll, pitch, and
height: because (i) most IMUs constrain roll and pitch
to within a few degrees due to observation of the gravita-
tional force (note that wheeled platforms only traverse minor
roll/pitch) and (ii) any wheeled vehicle must be resting on
the ground surface, which constrains height with a prior
map.

Thus, we can tailor our search strategy according to this
by exhaustively searching over a range of x, y, and heading
transformations. As in [22], we can efficiently compute these
by applying the heading rotation to all points first, then
evaluating xy translations.

With our solution within the near vicinity of the optimum,
we then perform a simple, constrained 6-DOF hill-climbing
to lock into the global optimum over our search space:
(x, y, z, r, p, h)*. This allows for the small, but necessary
refinements of height, roll, and pitch.

Because our registration problem is parameterized by the
search boundaries, we are able to use pose priors to improve
run-time performance. A detailed overview of registration



Algorithm 2 Exhaustive Search

Input: GMM G, Point Cloud C, guess (x, y, z, r, p, h), search
range X , Y , H

Output: Best registration = (x̂, ŷ, ĥ)
1: best = −∞
2: for hi in H do
3: apply rotation hi to C
4: for xi, yi in XY do
5: likelihood = LL(xi, yi) . Eq. 1
6: if likelihood > best then
7: best = likelihood
8: (x̂, ŷ, ĥ) = (xi, yi, hi)
9: end if

10: end for
11: end for

into our Gaussian mixture map can be found in Algorithm
1 and Algorithm 2.

IV. MULTIRESOLUTION BRANCH-AND-BOUND

In this section, we replace the extremely expensive ex-
haustive search with an efficient multiresolution branch-and-
bound search.

A. Multiresolution Formulation

The idea behind our multiresolution search is to use a
bounding function that can provide an upper-bound over a
collection of cells in our reference map. This means that a
majority of the search can be executed at a coarser resolution
that can upper-bound the likelihood at finer scales. Using
tight bounds can transform the exhaustive search presented
in the previous section into a tractable search that makes no
greedy assumptions. The branch-and-bound strategy achieves
exactly the same result as the exhaustive search.

For evaluating a single transformation (i.e., (xi, yi)), you
must evaluate the log-likelihood of each point in a point
cloud, then sum all of these for a total log-likelihood.
Therefore in the exhaustive case, each point is evaluated
against a single Gaussian mixture. In order to search a range
of transformations, such as (xi, yi) → (xi+N , yi+N ), each
point is evaluated against a total of (N + 1)2 Gaussian
mixtures. However, each cell in our map is quite spatially
similar, meaning that inference into (xi, yi) yields a similar
log-likelihood as (xi+1, yi), so the exhaustive search will
often spend unnecessary time in low-likelihood regions.

We formulate a branch-and-bound search that exhaustively
searches over our coarsest resolution providing upper-bounds
over a range of transformations. These coarse search results
are then added to a priority queue, ranked by these upper-
bound likelihoods. We then iterate through this priority
queue, branch to evaluate the next finer resolution, and add
back to the priority queue. The search is then complete once
the finest resolution is returned from the priority queue.

We propose a slightly different multiresolution map struc-
ture than is traditionally considered. In many domains, mul-
tiresolution searches imply building coarser versions of your
target data and making evaluations on that (e.g., the image
pyramid). However, our approach creates many overlapping

Algorithm 3 Multiresolution Search

Input: Multires-GMM G, Point Cloud C, guess (x, y, z, r, p, h),
search range X , Y , H

Output: Best registration = (x̂, ŷ, ĥ)
1: // initialize priority queue with search over coarsest resolution
2: Initialize PriorityQueue . priority = log-likelihood
3: coarsest = N
4: RC = empty . rotated point clouds
5: for hi in h+H do
6: // store rotated clouds — allows to do transformations once
7: T = f(0, 0, z, r, p, hi) . [x, y] applied later
8: RC [hi] = T ∗ C
9: for xi in x+X/2coarsest do

10: for yi in y + Y/2coarsest do
11: cur.res = coarsest
12: cur. [x, y, h] = [xi, yi, hi]
13: cur.LL = LL(G [coarsest] ,RC [hi]), xi, yi)
14: PriorityQueue.add(cur)
15: end for
16: end for
17: end for
18: // iterate priority queue, branching into finer resolutions
19: while prev = PriorityQueue.pop() do
20: if prev.res == 0 then
21: // at finest resolution, can’t explore anymore
22: // this is the global optimum
23: (x̂, ŷ, ĥ) = prev. [xi, yi, hi]
24: return(x̂, ŷ, ĥ)
25: end if
26: // branch into next finer resolution
27: for xi in

[
prev.x, prev.x+ 2prev.res−1

]
do

28: for yi in
[
prev.y, prev.y + 2prev.res−1

]
do

29: cur.res = prev.res− 1
30: cur. [x, y, h] = [xi, yi, hi]
31: cur.LL = LL(G [cur.res] ,RC [prev.h]), xi, yi)
32: PriorityQueue.add(cur)
33: end for
34: end for
35: end while

coarse blocks (as depicted in Fig. 4) to better compute tight
upper-bounds. This optimization makes the trade off for
better bounds as opposed to a smaller memory footprint.

Because our maps are the same resolution through-
out each multiresolution layer, this results in us tak-
ing larger strides through the coarser resolutions, where
stride = 2res. Branching factor and number of multires-
olution maps is completely user-defined. In our experi-
ments, we opted for a branching factor of 2 ( (xi, yi) :
[(xi, yi), (xi, yi+2res), (xi+2res , yi), (xi+2res , yi+2res)]) to limit
the amount of unnecessary work.

Refer to Algorithm 3 and Fig. 4 for a more detailed
overview.

B. Rasterized Gaussian Mixture Maps

Here, we define our bounding function for our multireso-
lution search.

Finding good, parametric bounds for a collection of Gaus-
sians is a rather difficult task, so we instead opt for a non-
parametric solution in the form of rasterized lookup tables.
At the finest resolution, we replace our parametric Gaussian
mixture map with a rasterized version by evaluating the log-
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Fig. 4: A one-dimensional example of our multiresolution search formulation, where we demonstrate how a single point cloud point
would traverse through the multiresolution tree. Given some knowledge that the best transformation aligns the point somewhere within
a-h, we begin the search at the coarsest resolution in cell a. Using branch-and-bound and computing upper-bounds over the Base GMM
distribution in the multiresolution layers, we can efficiently search large spaces by avoiding low likelihood registrations (as depicted by
dashed lines and open circles). In this figure, the notation ga-h refers to the fact that inference in that cell is an upper-bound over the
distributions ga – gh, where gx is the Gaussian mixture in cell x of the Base GMM. Note that contrary to several other multiresolution
approaches, coarser resolutions in our framework do not imply a coarser resolution map. We maintain uniform resolution by using many
overlapping coarse blocks—a technique that facilitates tighter upper-bounds.

likelihood at a fixed discretization, generating a rasterization
for each grid cell. Upper bounds can then be exactly com-
puted by taking the max across each discretization in the
rasterized lookup table. See Fig. 5 for a visual representation
of these maps.

For a pure localization task such as ours, lookup tables can
be pre-computed offline. However, we decided to store only
the parametrized Gaussian mixture maps on disk to avoid
storing extremely large maps. This allows us to store 1 km of
urban maps using less than 30 MB of disk space, where our
maps have no more than two Gaussians per 20 cm grid cell.
We are then able to efficiently compute rasterized multireso-
lution maps online from our parameterized Gaussian mixture
map as a background job. This is done incrementally using
each successive multiresolution layer to build the next.

Note that our rasterized multiresolution maps are a generic
representation that can be used with many map types in-
cluding standard NDTs, MLS maps, occupancy voxels, etc.
After converting one of these arbitrary maps to a rasterized
multiresolution map, the remainder of our proposed pipeline
can be used for fast registration of a point cloud. The pipeline
can also be adapted to the probabilistic intensity maps of
Levinson et al. [7].

V. RESULTS

We evaluated our algorithm through data collected on
our autonomous platform, a TORC ByWire XGV. This
automated vehicle is equipped with four Velodyne HDL-
32E 3D LIDAR scanners and an Applanix POS-LV 420
inertial navigation system (INS), as can be seen in Fig. 6.
All experiments were run on a laptop equipped with a Core
i7-3820QM central processing unit (CPU).

Experiments are presented on two primary datasets:
• Downtown: 3.0 km trajectory through downtown Ann

Arbor, Michigan in which multiple roads are traversed
from both directions and the dataset contains several
dynamic obstacles.

• Downtown Snowy: Same trajectory as Downtown on a
snowy day with snow actively falling and covering the
ground, as depicted in Fig. 7.

Fig. 6: Test platform used for experimental results. This platform is
a TORC ByWire XGV equipped with 4 Velodyne HDL-32E LIDAR
scanners and an Applanix POS-LV 420 INS.

We also performed an additional pass through downtown
Ann Arbor to construct our Gaussian mixture map. All
three of these datasets were aligned using our offline SLAM
procedure, providing us with sufficiently accurate ground-
truth for our experiments (ground-truth accuracy an order of
magnitude greater than our localization errors).

A. Multiresolution Registration Results

For a set of scans in our datasets, we evaluated our
multiresolution registration by randomly sampling within
10 m of the ground-truth pose. By performing a search
around these randomly sampled points, we expect to see that
our algorithm is able to return the scan to the ground-truth
estimate; quantifying our registration error by L2 distance.

We present these results in two ways. First, we compiled
the results into a histogram, as shown in the top row of
Fig. 8. Here we see that our proposed solution is able to
return to within 0.5 m of the ground-truth with minimal out-
liers. Additionally, we see that because our method exploits
the 3D structure, it is not impacted by harsh weather and our
results are similar across both datasets. Further, despite the
significant amount of falling snow, as shown in Fig. 7, our
method is still robust.



ga gb ge gf

gc gd gg gh
gi gj gm gn

gk gl go gp

(μa, σa) 
(μd, σd) 

(μb, σb) 

(μc, σc) 

Gaussian 
Mixture Map

ga gb ge gf

gc gd gg gh
gi gj gm gn

gk gl go gp

Rasterized
GMM

ga gb ge gf

gc gd gg gh
gi gj gm gn

gk gl go gp

Rasterized
Multires-1 GMM

ga gb ge gf

gc gd gg gh
gi gj gm gn

gk gl go gp

Rasterized
Multires-2 GMM

z

p(z)

z z

zga gb

gc gd

p(z) p(z)

p(z)

z ga-d

p(z)

z ga-p

p(z)

Fig. 5: Demonstration of the rasterization performed on the original Gaussian mixture map to facilitate exact upper-bounds. We begin
with a parametric 2D map that encodes a Gaussian mixture over z-height in each cell, which we then rasterize for each cell (note we
display the likelihood, not log-likelihood for clarity). These rasterized representations can then be used to create rasterized upper-bounds
for multiresolution search. The first step of this evaluates the upper-bound at each discretization by taking the max of the underlying
cell rasterizations. Note that as you continue to move to coarser resolutions the distribution generalizes quite well—data for this figure
was generated from looking at the edge of a tree, where the multiresolution map can capture the two common modes of tree limbs and
ground-plane. In this figure, the notation ga-d means the rasterization is an upper-bound over the ga – gd rasterizations.

Fig. 7: Point cloud rendering of typical snowfall observed during
the Downtown Snowy dataset.

Second, we display this same registration error as a func-
tion of initial offset input to the scan matcher, as displayed
in the bottom row of Fig. 8. We show that our registration
success is not dictated by distance from the optimum, as
long as our search space is able to enclose the perfect
transformation.

A sample search through our multiresolution search space
can be seen in Fig. 9. The shown example explores a
25 m× 25 m area in approximately 2 seconds, while only
needing to evaluate 1% of the transformations necessary in
the exhaustive search.

B. Filtered Results

We integrated our registration algorithm into an extended
Kalman filter (EKF) localization framework, which is an
extension from [4]. The only measurements used were those
from our IMU for odometry and our multiresolution scan
matches initialized around our 3-σ posterior belief. We use
fixed measurement uncertainties when incorporating mul-
tiresolution scan matches into our filter; however, one could

fit a conservative covariance using the explored search space
as in [22].

We compare our localization performance against our
own implementation of the state-of-the-art reflectivity-based
localization proposed by Levinson et al. in [6], [7]. Our
reflectivity-based localization system builds orthographic
ground images using the four Velodyne HDL-32E’s onboard;
these orthographic ground images can then be aligned to an
orthographic prior map built using an accumulation of these
scans.

Due to the significant amount of snow on the ground dur-
ing the Downtown Snowy dataset, we also had to incorporate
GPS measurements into our reflectivity-based localization
system (results denoted with an asterisk). Without these
additional measurements, the filter would constantly diverge
as orthographic reflectivity matches were rarely successful.

We display the lateral and longitudinal error over time
for both the Downtown and Downtown Snowy datasets in
Fig. 10. As can be seen, our proposed solution is able to
achieve similar performance on the Downtown dataset as
the reflectivity-based solution. Moreover, we are able to stay
well localized in the Downtown Snowy dataset, whereas the
reflectivity-based solution consistently diverges, only being
able to incorporate occasional measurements into its EKF.

Further, our results are tabulated in Table I. Here we
show that we are able to achieve longitudinal and lateral
root mean square (RMS) errors of 15.5 cm and 10.3 cm,
respectively, on the Downtown dataset. Additionally, we
obtain longitudinal and lateral RMS errors of 18.0 cm and
9.4 cm, respectively, on the Downtown Snowy dataset. Our
method is able to provide scan matches at approximately
3-4 Hz.

Downtown Downtown Snowy
RMS Error RMS Error

Method Longitudinal Lateral Longitudinal Lateral
Reflectivity 12.4 cm 8.0 cm 73.4 cm* 62.9 cm*
Proposed 15.5 cm 10.3 cm 18.0 cm 9.4 cm

TABLE I: Comparison of RMS errors for reflectivity-based local-
ization and our proposed 3D structure-based localization.
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(a) Downtown—Registration Results.
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(b) Downtown Snowy—Registration Results.

Fig. 8: This figure shows the registration error of our proposed scan-matching algorithm. We generated random initial offsets for our scan
matcher around a ground-truth estimate, evaluating how accurately the scan-matcher can return to this ground-truth. The top row shows a
histogram of our L2 error, demonstrating good registration performance. The bottom row shows a plot of initial offset versus registration
error, where we show that our scan matching errors are independent of initial guess.
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Multires-6

hi hi+3 hi+6 hi+9 hi+12 hi+15hi-3hi-6hi-9hi-12hi-15

Fig. 9: Sample multiresolution search space traversal. Top-bottom represents coarse-to-fine searching, left-right represents different slices
through our heading search, and each pixel depicts an xy translation searched. Log-likehoods are colored increasingly yellow-black,
purple and non-existent cells are areas not needed to be explored by the multiresolution search, and the optimal is indicated in green. We
exhaustively search the coarsest resolution, then use branch-and-bound to direct our traversal through the tree. For typical scan alignments,
we only have to search approximately 1% of the transformations in the finer resolutions, doing a majority of the work in the coarser
resolutions.

C. Obstacle Detection

Another benefit of using structure in our automated vehi-
cle’s localization pipeline is that it provides a probabilistic
method to classify point cloud points as dynamic obstacles
or not. In generating the likelihood for a registration, we
evaluate the likelihood of each scan point against the prior
map, which tells us how likely each scan point is to be part
of the map. Thus, by looking at points that poorly align to the
prior map (i.e., those with low likelihoods), we can perform
a classification. We do this by setting a Mahalanobis distance
threshold and labeling all points that exceed this threshold as
obstacles. Our formulation allows us to do this classification
on a frame-by-frame basis and extend our sensing range of
obstacles. A visualization of point cloud classification can
be seen in Fig. 11.

VI. CONCLUSION

In this paper we demonstrated a new Gaussian mixture
map that can be used for rapid registration from an observed

Fig. 11: Sample point cloud colored by Mahalanobis distance from
the underlying map’s Gaussian mixture. Note the obstacles in red
and agreeing prior map in blue. Our method allows us to expand
our obstacle sensing horizon, as we can not sense the ground-plane
beyond 40 m.
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(a) Downtown—Filtered Results.
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(b) Downtown Snowy—Filtered Results.

Fig. 10: Here we present our localization accuracy in terms of longitudinal and lateral error relative to SLAM-optimized ground-truth over
time. Our proposed solution is able to overcome lack of ground plane reflectivites by exploiting the structure in the Downtown Snowy
dataset.

point cloud. Through the use of multiresolution rasterized
maps that can be computed online, we can efficiently find
the guaranteed optimal registration using branch-and-bound
search, rather than finding local optima as with modern
scan matchers. Finally, we integrated this into an EKF to
demonstrate that an autonomous platform can remain well
localized in a prior map using these measurements alone.
Our proposed system is able to handle harsh weather and
poorly textured roadways, which is a significant advantage
over the current state-of-the-art methodologies for automated
vehicle localization.
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[19] C. Ulaş and H. Temelta, “3d multi-layered normal distribution trans-
form for fast and long range scan matching,” J. Intell. and Robotic
Syst., vol. 71, no. 1, pp. 85–108, 2013.

[20] N. Ripperda and C. Brenner, “Marker-free registration of terrestrial
laser scans using the normal distribution transform,” vol. 4, Mestre-
Venice, Italy, August 2005.

[21] J. Ryde and H. Hu, “3d mapping with multi-resolution occupied voxel
lists.” Auton. Robots, vol. 28, no. 2, pp. 169–185, 2010.

[22] E. Olson, “Real-time correlative scan matching,” in Proc. IEEE Int.
Conf. Robot. and Automation, Kobe, Japan, June 2009, pp. 4387–4393.

[23] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots and Syst., Beijing, China, Oct. 2006, pp. 2276–
2282.


