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Abstract— This paper reports on an active visual SLAM
path planning algorithm that plans loop-closure paths in order
to decrease visual navigation uncertainty. Loop-closing revisit
actions bound the robot’s uncertainty but also contribute to
redundant area coverage and increased path length. We propose
an opportunistic path planner that leverages sampling-based
techniques and information filtering for planning revisit paths
that are coverage efficient. Our algorithm employs Gaussian
Process regression for modeling the prediction of camera
registrations and uses a two-step optimization for selecting
revisit actions. We show that the proposed method outperforms
existing solutions for bounding navigation uncertainty with
a hybrid simulation experiment using a real-world dataset
collected by a ship hull inspection robot.

I. INTRODUCTION

In order to perform tasks like exploration, search and

rescue, reconnaissance, and target tracking, autonomous mo-

bile robots must solve three main subproblems: localization,

mapping, and planning. While the simultaneous localization

and mapping (SLAM) problem has been well-studied in

the past decades, research toward integrating planning and

SLAM into a comprehensive framework is still in its early

years. Typically, SLAM solutions assume that a path is given

ahead of time. Likewise, path planning algorithms assume

that accurate localization is achievable and at least partial

information about the environment is known. Yet, real-world

robots operate at the intersection of these three areas where

the assumptions about prior information are not always true.

Real-world robotic systems demand an all-encompassing

architecture that localizes, maps, and plans concurrently.

This paper focuses on integrating path planning into the

SLAM framework, an area of research often called active

SLAM. We propose a path planning algorithm for finding

and deciding revisit actions in the SLAM formulation that

are useful for closing loops and driving down the robot’s

navigation uncertainty. We consider a robot with the goal of

efficiently surveying an a priori unknown target environment

subject to a localization uncertainty threshold. Exploring

new areas of the environment tends to grow navigation

uncertainty, so the robot must perform loop-closure revisit

actions to decrease uncertainty while accounting for overall

path length.
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Fig. 1: Gist of the proposed path planning algorithm. Given a
target area and nominal exploration policy, the robot explores the
environment subject to an acceptable navigation uncertainty. We use
GP regression to predict the visual saliency of the environment and
a sampling-based planning framework to find and evaluate loop-
closure revisit paths in order to drive down the robot’s uncertainty.

With the integrated path planning algorithm proposed in

this paper, we

1) employ Gaussian Process (GP) regression for accurate

prediction and probabilistic modeling of the loop-

closure utility of unmapped areas,

2) combine sampling-based planning with information

filtering to efficiently search hundreds of paths through

the environment for their expected utility, and

3) develop a two-step optimization process for selecting

revisit actions that yields an opportunistic planning

framework.

An illustration of the proposed algorithm is given in Fig. 1.

We evaluate our proposed planning method in a hybrid simu-

lation using a real-world dataset from a ship hull inspection

robot, using both synthetic and real camera imagery, and

show that it outperforms other methods.

II. RELATED WORK

Research in the area of active SLAM stems from the

seminal works of [1]–[3] and generally focuses on finding

control actions to reduce the uncertainty or maximize the

information of the SLAM posterior. While some of these

approaches do not include a measure of path length in the

objective function [4], [5], others focus on reducing uncer-

tainty while performing efficient exploration [6]–[8]. Our



formulation is similar in that we minimize an objective that

considers both path length and robot navigation uncertainty,

but we additionally consider the plausibility of expected

camera measurements when evaluating the utility of a loop-

closure path. Valencia et al. [9]–[11] presented an active

SLAM framework that is very close to our own in that

they use information filtering to evaluate the uncertainty of

revisit actions on a pose-graph; however, their formulation

only enumerates a small number of possible options when

deciding the best action. In contrast, we leverage sampling-

based planning to quickly explore the configuration space of

the robot with hundreds of candidate revisit paths.

Sampling-based planning originates from traditional path

planners like the Rapidly-exploring Random Tree (RRT) and

Probabilistic Roadmap (PRM) [12], but was only recently

extended to include a notion of uncertainty during the

planning process [13]. Karaman and Frazzoli [14] proposed

the Rapidly-exploring Random Graph (RRG) and RRT*—

adaptations of the RRT that incrementally improve the

shortest-distance path toward the goal with guarantees of

optimality in the limit. Bry and Roy [15] extended the RRG

even further to include stochasticity of measurements and

robot dynamics, a formulation generalized by [16] to accom-

plish information gathering. We take a similar approach and

adopt the use of the RRG, but present a proposed algorithm

integrated with SLAM.

In order to predict the likelihood of making camera

measurements over unmapped areas, we use GP regression

to model a measure of the loop-closure utility of the envi-

ronment. Recently, GPs have been widely used in learning

spatial distributions and predicting sensor data. In [17], the

authors accurately predict an occupancy map using a GP with

a trained neural network kernel, despite dealing with noisy

and sparse sensor information. For underwater applications

like our own, [18] used a GP to predict bathymetric data in

unmapped patches in order to perform SLAM without any

actual sensor overlap. They implemented the GP over a large

dataset by selecting a sparse kernel covariance function [19].

Much of the work in this paper extends the perception-

driven navigation (PDN) method for active visual SLAM

presented earlier by Kim and Eustice [20]. The PDN ap-

proach considers the same problem formulation, however it

plans revisit paths by clustering salient nodes in the SLAM

pose-graph to form waypoints, planning a point-to-point path

to each waypoint, and computing a reward for revisiting

along each path. In contrast, the proposed algorithm reported

here improves upon this restriction by removing the need for

clustering while evaluating many more paths with a more

principled approach based upon GP regression and sampling-

based planning techniques.

III. PROBLEM FORMULATION

We consider a robot performing pose-graph SLAM to

survey an a priori unknown environment, subject to an

acceptable uncertainty threshold. The robot is equipped with

proprioceptive sensors to perform dead-reckoning and ex-

teroceptive sensors for perception, which define the robot’s

−20
−10

0
0 10 20 30 40

0
2
4
6
8

Lateral [m]Longitudinal [m]

D
e

p
th

[m
]

0

1A             B             C            D

Fig. 2: Representative sample images captured on the below-
water portion of the SS Curtiss’ ship hull. The underwater feature
distribution is highly diverse, ranging from feature-less (B,C) to
feature-rich (A,D) images. The nodes are color-coded by their local
saliency score, SL.

ability to survey the environment and gather loop-closure

measurements. Given this description, we are interested

in performing an underwater visual inspection of a large

ship hull with a Hovering Autonomous Underwater Vehicle

(HAUV) [21]. Since the HAUV is capable of hovering, we

assume holonomic kinematic constraints. The HAUV uses

a Doppler velocity log (DVL) and depth sensor for dead-

reckoning and is equipped with an underwater camera for

capturing images.

The problem is formulated with the following assumptions

and definitions:

1) The boundaries of the target coverage area are given.

2) A nominal exploration policy covers the target area in

efficient time (vertical tracklines for the HAUV, see

Fig. 1).

3) The user defines a navigation uncertainty threshold.

4) No other prior information on the environment is

provided. Planning is performed online in conjunction

with SLAM.

We adopt the incremental smoothing and mapping (iSAM)

algorithm by Kaess et al. [22], [23] as the SLAM back-

end for our pose-graph. iSAM performs nonlinear inference

over the factor graph containing constraints from odometry

and camera image registrations [21]. For planning, we use a

linearized snapshot of the system in the form of an extended

information filter (EIF). The EIF allows for accurate predic-

tion without relinearizing since the expected measurements

occur at the mean of the distribution.

Before we describe algorithmically how the proposed

method finds candidate revisit paths, we explain in the next

section the mathematical details pertaining to how revisit

paths are evaluated.

IV. REVISIT PATH UTILITY

The utility of a revisit path in our active SLAM formu-

lation depends highly on the expected loop-closures. We

use registrations between overlapping camera images (via

a homography mapping or the Essential matrix) to close

loops in the SLAM pose-graph, resulting in revisit paths that

must re-observe previously-seen portions of the environment.

However, feature-richness in underwater environments is

highly sporadic and images acquired by the robot typically

have a variable degree of registrability. As shown in the



sample images in Fig. 2, good underwater visual features

tend to be sparsely distributed, such that much of the

environment has little utility for visually closing loops, or

even none at all.

To aid in estimating the likelihood of successful registra-

tions, we adopt the visual saliency metrics defined by Kim

and Eustice [24], [25], including local saliency (SL). This

score describes the texture-richness of an image and directly

correlates to its registrability. The saliency score can only be

calculated for images actually captured by the robot, and

must be predicted for future poses along not-yet-traveled

revisit paths. Thus, estimating successful registrations hinges

on accurate saliency prediction.

Previously, PDN used a simple interpolation/extrapolation

scheme for predicting saliency scores throughout an un-

mapped area. However, this method has no notion of whether

the predicted score is accurate, and failure to accurately

predict can lead to planned revisit actions that greatly

overestimate their actual utility. Instead, here, we handle

saliency prediction using GP regression—a more principled

framework that accounts for the spatial distribution of visual

features and yields distributions of the saliency values to

include in the planning formulation.

A. Saliency Prediction using Gaussian Process Regression

The objective for using GP regression is to probabilisti-

cally handle expected camera registrations over unmapped

areas. As the robot follows the nominal exploration policy,

we train the GP using the captured images in association with

their 3D capture locations. The training data D = {X,y} is

composed of the 3D positions of the robot at the n capture

times, X = {Xi}
n
i=1 = {xi, yi, zi}

n
i=1, and the local saliency

scores of the n images, y = {SLi
}ni=1. Similar to Barkby

et al. [18], we use a simple stationary covariance function

suitable for large scale data [19]:

k(X,X ′; l, σ0) =
{

σ0

(

2+cos(2πd/l)
3 (1− d

l ) +
sin(2πd/l)

2π

)

, if d < l

0, otherwise.

This covariance function achieves sparsity and scalability by

truncating values for training pairs that exceed the weighted

distance d = |X − X ′|W = [(X − X ′)⊤W (X − X ′)]1/2.

For our application, we align the coordinate frame with the

survey area and choose W = diag(1/∆2
d, 1/∆

2
h, 1), where

∆d is the distance between two along-track SLAM poses and

∆h is the distance between two cross-track SLAM poses.

Fig. 3 shows the GP prediction performance over un-

mapped areas. Fig. 3(a) depicts the robot following the

nominal exploration policy. We use the GP to predict saliency

scores both in the future—throughout the remaining sur-

vey area, and in the past—in unmapped areas between

previously-traveled tracklines. Fig. 3(b) shows the associated

variance for the predictions, where the variance increases

as the predictions transition to farther-out areas covered by

the nominal exploration policy. Between past tracklines, the

saliency prediction closely matches the actual value with

small variance, shown closer in Fig. 3(c). This zoomed view

also shows that the GP prediction works as well as the linear

interpolation scheme from PDN in predicting mean values,

however, the true strength of using the GP is in the measure

of variance it also provides.

Together, the predicted mean and variance characterize a

Gaussian probability density function (pdf) of the saliency

score of a not-yet-seen image at the queried pose. Now that

we have a probabilistic method for modeling the saliency

throughout the environment, we focus on evaluating the

utility of a candidate revisit path.

B. Evaluation of a Revisit Path

For every candidate revisit path, P , we use an exactly

sparse delayed-state filter (ESDF) [26] to construct an EIF

that tracks the posterior distribution of the path with infor-

mation Λpath. The posterior information is the sum of the

prior SLAM information, Λslam, and two sources of delta

information corresponding to the the expected odometry and

camera registrations available along the path. In this way, a

candidate revisit path is distributed as a multivariate Gaussian

parameterized by a mean vector of both real (SLAM) and vir-

tual (revisit path) poses, µpath = µslam∪{xv0 , · · · ,xvp−1
},

and the posterior information, given by

Λpath = Λslam + Λodo + Λcam. (1)

The odometry delta information is block-tridiagonal and

found as the sum of relative-pose increments between se-

quential virtual poses in the path, (xvi ,xvi+1
) ∈ P:

Λodo =

p−1
∑

i=0

H⊤
odoi,i+1

Q−1
odoi,i+1

Hodoi,i+1
, (2)

where Hodoi,i+1
is the sparse Jacobian [27] and Qodoi,i+1

is

the noise.

The delta information from expected camera registrations

along a path has a similar expression, but requires more care.

We adopt the “link proposal” method from Kim and Eustice

[24] for proposing camera registration link hypotheses be-

tween a virtual pose on a path and up to nplink existing target

poses in the SLAM pose-graph that may contain spatially-

overlapping image views. Each link hypothesis has an em-

pirical probability of successful registration, PL, computed

as a function of target pose saliency and virtual pose saliency

for overlapping pairs, PL = g(SLt
, SLv

), shown in Fig. 3(d)

and described further in [20]. The GP prediction returns a

distribution of virtual pose saliency scores with pdf f(SLv
),

which we transform into the censored pdf f ′(SLv
) [28],

with mean values between 0 and 1, in order to compute the

expected probability of the link as

PL =

∫ 1

0

g(SLt
, SLv

)f ′(SLv
)dSLv

. (3)

The expected delta information corresponding to camera

registrations along a path is then calculated by

Λcam =

p−1
∑

i=0

∑

t∈Li

PL ·H⊤
camt,i

R−1Hcamt,i
, (4)
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Fig. 3: (a) The predicted saliency map from the GP. The ‘X’ indicates the current robot location while gray dots represent the historical
poses of the robot for training the GP. The predicted saliency scores are color-coded with respect to their saliency level. (b) Predicted
mean saliency values with variance, overlaid on the true saliency scores. (c) A zoomed view for predictions between past tracklines.
Two dotted blue lines indicate the 3-σ envelope of the prediction. Red circles are the true saliency scores and green diamonds are the
interpolated prediction. (d) The empirical probability of the camera registration to be successful, used in (3). The probability is a function
of target node saliency (SLt ) and virtual node saliency (SLv ).

where Hcamt,i
is the camera measurement Jacobian [29],

R is the camera measurement noise (assumed constant for

convenience), and Li is the index set of camera registrations

associated with virtual pose xvi
. The information of an

expected camera registration is scaled by its probability

of success as a method for handling the stochasticity of

achieving the measurement in the prediction.

The cost function we use to determine the utility of a path

reflects the planning tradeoff between navigation uncertainty

and area coverage. The planning objective is to minimize the

cost of a revisit path, computed by

C(P) = α ·
U(P)− Ulower
Uupper − Ulower

+ (1− α) ·
d(P)

dupper
, (5)

where U(P) = h(Σnn) is a function of the terminating pose

covariance of a path and used as a measure of navigation

uncertainty. Both the A-optimal trace and the D-optimal

determinant can be used for h( · ) [4]. The uncertainty upper

bound (Uupper) is specified by the user as the acceptable

threshold for the nominal exploration policy, and the lower

bound (Ulower) represents an uncertainty that the user is

willing to accept as near the best-possible. d(P) is the

revisit (redundant coverage) distance of the path and dupper
is the maximum revisit distance allowed by the user. The

tuning parameter α ∈ [0, 1] controls the balance between

uncertainty and revisit distance.

Per [30], we recover the terminating covariance of a revisit

path, Σnn, using ΛpathΣ∗n = I∗n, where Σ∗n and I∗n
are the nth block-columns of the covariance matrix and

block identity matrix, respectively. Since the information

matrix is exactly sparse for our visual SLAM formulation,

this calculation can be performed efficiently using sparse

Cholesky factorization.

V. ALGORITHM DESCRIPTION

We now discuss algorithmically how the proposed method

searches for candidate revisit paths. We leverage a sampling-

based approach to quickly explore the configuration space

of the robot while evaluating candidate paths using the

formulation from §IV. The planning algorithm is outlined

in Algorithm 1 and described in detail below.

A. Graph Construction

The underlying structure for the path planner is the

RRG [14]–[16], which incrementally constructs a roadmap

of vertices and edges, describing connectivity through the

configuration space of the robot. Contained at each vertex in

the RRG is a list of partial candidate revisit paths (hereafter

called just candidates, denoted by Pi) that each describe a

unique trajectory over edges in the RRG to arrive at the

vertex. Every candidate at every vertex is tracked by the

planner and represented by its mean, µpath, and associated

information, Λpath, from (1). The virtual poses in the mean

vector, {xv0 , · · · ,xvp−1
}, arise from traveling along edges,

and the information matrix Λpath is the sum of the SLAM

information, Λslam, and the delta information gathered along

the way. Fig. 4(a) displays an example RRG sampled on a

typical SLAM pose-graph built by the HAUV.

A benefit of using the information form to track candidates

is that each of the two sources of delta information from (1)

can be divided into multiple components and attributed to the

edges from which they originate. In this way, the total delta

information for a candidate is simply the sum of the delta

information contributed by each edge that it travels. Hence,

(1) can be rewritten as

Λpath = Λslam + Λ1
edge + . . .+ Λk

edge, (6)

where

Λi
edge = Λi

odo + Λi
cam, (7)

and Λi
edge represents the delta information matrix encoded

by the odometry and camera registration factors arising from

the edge. A key insight is that the delta information, Λi
edge,

only needs to be computed once during construction, and

is additively applied to a candidate’s information when the

edge is traversed. This benefit of the information form was

alluded to by [11] and is analogous to the one-step transfer

function used by the Belief Roadmap (BRM) [13].

When an edge is traversed, however, the size of the

candidate’s information matrix grows proportional to the

number of virtual poses added by the edge. For example,

an edge adding five 6-degree of freedom (DOF) virtual

poses to a candidate path adds five odometry factors to the



pose-graph and grows the candidate information matrix by

30 rows and columns. To alleviate this growth and further

increase the benefit of the information form parameterization,

we can significantly reduce the dimensionality of the delta

information of an edge during its construction by using

marginalization.

Consider the example edge shown in Fig. 4(b); rather than

explicitly representing all the factors along the edge, we

condense their combined delta information (Λi
edge) into a

single n-ary factor by marginalizing out the intermediate

poses in the edge (i.e., edge poses that are not the source

or destination). The single factor is represented by the

marginalized delta information, Λi
marg , which replaces Λi

edge

but induces the exact same information into the factor graph.

The marginalized delta information is found in the usual way

via the Schur complement, and visualized in Fig. 4(b). Now,

(6) takes the final form,

Λpath = Λslam + Λ1
marg + . . .+ Λk

marg. (8)

As a result of this marginalization, a candidate’s mean

and information are augmented by only one new virtual pose

upon traversing an edge, no matter how many virtual poses

it originally contained. Edge construction is accomplished

within the Connect() function of the proposed algorithm.

B. Path Propagation and Pruning

As the RRG is built, the algorithm grows a tree of candi-

dates over the roadmap, where candidates can be thought of

as leaves of the tree. The root of the tree is initialized at the

most recent SLAM pose with initial information Λslam. New

leaves are generated by creating a new vertex from a sampled

pose in the configuration space (vnew), connecting nearby

vertices (Vnear) to the new vertex with new edges, and

propagating the candidates from the nearby vertices over the

new edges and recursively throughout the rest of the graph.

Propagating a candidate over an edge (and hence creating

a new leaf) amounts to branching the candidate (parent

leaf) from the edge source vertex, creating a new candidate

(child leaf) at the destination vertex, and calculating the child

information by adding the delta information from the edge

to the parent leaf information. Without pruning leaves, the

tree encodes every possible path through the graph to reach

any vertex from the root.

However, the number of candidates tracked by the planner

can quickly become too large for computational feasibility.

It is logical to prune leaves of the tree that are not useful

given the objective. A conservative pruning strategy would

eliminate only suboptimal leaves from the tree [15], [16], but

we are willing to employ a more aggressive heuristic that

sacrifices optimality for a large increase in speed, as done in

[16] for submodular objective functions. Thus, we maintain

a partial ordering of candidates at each vertex according to

the distance and uncertainty metrics of (5):

Pa > Pb ⇔ d(Pa) < d(Pb) ∧ U(Pa) < U(Pb) + ǫ, (9)

where ǫ is a small factor to aid in pruning when the

candidates are quite similar [15]. When (9) is true, candidate

Algorithm 1 Opportunistic Path Planning Algorithm

Input: current pose x0, SLAM pose-graph, exploration policy
Output: best path P∗
Initialize: vertices V = {v0}, edges E = {}, queue Q = {}

for xl in look-ahead poses do
vnew = ExtendToNearest(xl)
while Q is not empty do

ProcessQueue()
end while

end for
ComputeMaxCost()
while computation time remains do

xsample = SamplePose()
vnew = ExtendToNearest(xsample)
Vnear = FindNearVertices(vnew)
for all vk in Vnear do

E = E ∪ {Connect(vk, vnew), Connect(vnew, vk)}
Q = Q ∪ {all P at vk}

end for
while Q is not empty do

ProcessQueue()
end while
UpdateBestPath()

end while

Function: ExtendToNearest(xi)
vnearest = FindNearestVertex(xi)
vnew = SteerToward(xi, vnearest)
V = V ∪ vnew

E = E∪{Connect(vnearest, vnew), Connect(vnew, vnearest)}
Q = Q ∪ {all P at vnearest}
return vnew

Function: ProcessQueue()
Pparent = Pop(Q)
for all vneighbor of v(Pparent) do

Pchild = PropagatePath(eneighbor,Pparent)
if not PrunePath(vneighbor,Pchild) then

AddPathToVertex(vneighbor,Pchild)
Q = Q ∪ Pchild

end if
end for

Pb has both a longer revisit distance and a higher uncertainty

than Pa, so Pb can be pruned from the vertex, as well as its

children.

C. Opportunistic Look-Ahead Planning

The planning algorithm is integrated with the visual

SLAM framework in order to provide online decision-

making for the robot. The planning process is not triggered

by breaching an uncertainty measure as in [20]; rather, the

planner is initialized with the SLAM process and runs in

parallel for the duration of the mission. To this end, we

design a planning framework that is opportunistic in nature,

such that the selection of a revisit action is based on its

expected benefit, not on a discrete triggering event. Thus,

we develop a two-step optimization for the planner to decide

whether to continue the exploration policy or divert to make

loop-closures along a revisit path:

1) we predict the uncertainty along a look-ahead horizon

of the next m steps from the nominal exploration policy
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in order to put an upper bound (Cmax) on the cost of

a selected revisit path, and

2) we search for the candidate path with minimum cost

that is less than this upper bound.

We incorporate the look-ahead horizon by adding the

poses of the next m steps from the nominal exploration policy

as vertices in the RRG and designating each as a valid goal

point for the planner. (We use m = 100, corresponding to

a 20 m horizon in our case.) Incorporation of the horizon

gives the planner a sense of the expected measurements and

predicted uncertainty, Uexp, for exploring with the nominal

policy. We query the planner for Uexp in order to compute

the maximum acceptable cost for a candidate that diverts

within the look-ahead horizon, given by

Cmax = β
(

Uexp

Uupper
−1)

, (10)

where β is selected by the user. (We use β = 1000.) This

exponential function yields a higher allowable cost as the

uncertainty Uexp increases (see Fig. 4(c)). Instituting this up-

per bound is the first step in the optimization, accomplished

within ComputeMaxCost().

From here, the algorithm proceeds with RRG construction

and candidate path propagation to find candidates that may

divert from exploration at any point within the look-ahead

horizon. The second step in the optimization is the search

for the candidate with minimum cost below Cmax, performed

by the UpdateBestPath() function. If no revisit paths

are found with cost below Cmax, the exploration action of

traveling along the look-ahead steps is selected, provided this

action does not exceed the uncertainty threshold Uupper.

Whenever an action is executed and finished, either ex-

ploring or revisiting, the algorithm begins again with a new

initialization and look-ahead horizon.

D. Comments on Computation

The computational complexity of the proposed algorithm

can be roughly attributed to three sources: construction of

the RRG, propagation of candidates throughout the RRG,

and the evaluation of the cost of candidates for pruning and

best path selection. The complexity of the construction phase

is well-documented [14], although we include the additional

computation required to predict the measurements available

along each edge. Similarly, [16] presents the complexity

of propagating candidates throughout the RRG, which is

exponential in the worst case but much better for aggressive

pruning strategies like the one we propose. Evaluation of

the cost of a candidate using the Cholesky decomposition is

generally O(n3), but lower with methods for sparse systems.

Other techniques can help reduce overall computation time,

like the proposed edge marginalization step, biased sampling

toward salient regions (which we also employ), or adjusting

parameters related to RRG connectivity and pruning ag-

gressiveness. Additionally, the incremental sampling-based

nature of the algorithm finds coarse solutions quickly but

improves the best path as computation time remains. Still,

reducing planning time remains a large area of future work.

We can achieve online operation in parallel with SLAM

in our application by pausing the HAUV at times during the

inspection to plan over the upcoming look-ahead horizon.

For 50 calls to the planner during experiments like those

in §VI, the average planning time was 54.4 s. The average

time for a single iteration within the algorithm was 1.25 s.
Propagation and evaluation of a candidate path over an edge

averaged 33.2 ms.

VI. RESULTS

We tested the proposed planning algorithm with a hybrid

simulation using data collected during a ship hull inspection

of the SS Curtiss by the HAUV in February 2011. More

information about the experimental setup and this dataset

can be found in [20]. See also the accompanying video

attachment to this paper for visualization.

A. Synthetic Saliency Map

The first simulation features real odometry and depth mea-

surements collected by the robot but uses synthetic imagery,

such that salient and non-salient portions of the environment

are assigned by the user in simulation. We compare the

proposed planning algorithm against three other planning

methods: an open-loop survey with no revisit actions, a

preplanned deterministic strategy with revisit actions along

every trackline, and PDN. The deterministic case is simulated

twice—over an optimistic salient region of the environment

and over a pessimistic non-salient region. In all scenarios,

the robot follows the same nominal exploration policy and

the compared planning methods determine when to make

loop-closures and which revisit paths to take.



TABLE I: Summarized Results

METHOD PATH LENGTH AVG. UNCERTAINTY

Open-loop 386.5 [m] 121.8 [% of Uupper]

SYNTHETIC SALIENCY

DET (non-sal) 885.2 151.7
DET (sal) 876.2 33.4
PDN 583.3 71.3
Proposed 524.5 42.5

REAL IMAGERY

DET 865.8 64.3
PDN 527.2 67.2
Proposed 557.3 53.7

Results from the synthetic saliency simulation are shown

in Fig. 5 and Fig. 6(a). While the path length of the de-

terministic method is inherently long, its performance at

bounding the uncertainty of the robot is completely depen-

dent on whether the preplanned revisit paths travel a salient

region. To this end, we see its two extremes of the spectrum:

a salient case that serves as a good baseline for “best-

possible” uncertainty performance, and a non-salient case

that underperforms even the open-loop survey. Considering

the problem formulation of operating in an a priori unknown

environment, the selection of salient preplanned revisits, and

hence the performance of this method, are left completely

up to chance.

PDN identifies salient areas of the environment online and

thus performs well regarding path length and uncertainty.

However, it is a naı̈ve framework that only enumerates a

few candidate revisit paths and simply waits until the uncer-

tainty threshold is breached before triggering the planning

process. In contrast, the opportunistic nature and sampling-

based approach of the proposed method evaluates hundreds

of candidate paths for revisiting at any point during the

mission. As a result, the proposed method outperforms the

deterministic and PDN methods in terms of path length and

results in uncertainty levels similar to the “best-possible”

deterministic case. Summarized statistics for all the hybrid

simulations are presented in Table I.

B. Real Image Data

Here we present results using the hybrid simulation with

the real imagery collected during the dive. Images from the

dataset densely cover the entire target environment of the SS

Curtiss, as shown in Fig. 2. We use the same exploration

policy as the previous simulation but instead use the real

camera images recorded by the robot to calculate saliency

scores and make loop-closure registrations. The proposed

algorithm is again compared to the three other planning

methods. Results are presented in Fig. 5 and Fig. 6(b).

This time, the deterministic revisits happen to travel por-

tions of the environment that yield some camera registrations,

but none that significantly drive down the uncertainty. PDN

slightly outperforms the proposed method in overall path

length. (Notice, though, that PDN is very close to triggering

the execution of a fourth revisit action at the end of the

mission.) Still, the proposed method results in an average

uncertainty along the exploration trajectory that is 20% lower

than the PDN result with less than 6% increase in path length.

Refer to Table I for a summary of results.

VII. CONCLUSION

In this paper, we proposed a path planning algorithm

integrated with visual SLAM in order to find and execute

loop-closure revisit paths for a robot exploring an a priori

unknown underwater environment subject to an acceptable

uncertainty threshold. We combined a sampling-based plan-

ning approach for efficiently exploring the configuration

space with an EIF framework for tracking the utility of can-

didate revisit paths. In addition, we included the use of GP

regression for predicting environment saliency in unmapped

areas and probabilistically handling expected camera regis-

trations along a path. Finally, we developed an opportunistic

approach for selecting the best revisit paths that allows the

robot to autonomously execute useful loop-closure actions at

any point during the mission, while still exploring the target

area in efficient time. We demonstrated the proposed method

using a hybrid simulation with both synthetic and real camera

imagery and showed that it outperforms other representative

SLAM planning methods.
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Fig. 5: The SLAM trajectories and associated time elevation graphs resulting from PDN and the proposed method in the hybrid simulation.
Both the synthetic saliency tests (a) (b) (e) (f) and real imagery tests (c) (d) (g) (h) are shown.
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(a) Synthetic saliency results
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Fig. 6: Plots of the uncertainty metric U(P), as a percentage of the threshold, along the nominal exploration trajectory versus path length
for the hybrid simulation. Comparisons for the synthetic saliency tests (a) and real imagery tests (b) are presented for four methods: the
open-loop survey (OPL), deterministic revisit actions (DET), PDN, and the proposed algorithm.
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